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Abstract—Cross-border collaboration among Law Enforce-
ment Agencies is essential for effective and timely suspect identi-
fication, especially when the availability of biometric data varies
between agencies. This paper presents a scalable and secure
approach for multimodal biometric identification across multiple
jurisdictions. Our approach allows Law Enforcement Agencies
to combine biometric modalities -facial images, fingerprints, and
voice samples- and compare them with collaborating agencies,
improving the overall accuracy and effectiveness of suspect
identification. By leveraging deep learning models for indexing
and comparison, efficient data retrieval was achieved without
compromising privacy or security. To ensure the protection of
sensitive biometric data, our approach incorporates advanced
encryption mechanisms, including Homomorphic encryption for
secure computations and AES encryption for safeguarding bio-
metric information. Its decentralised architecture allows each
LEA to maintain independent instances of the Deep Learning
Indexer and Comparator, minimising risks associated with cen-
tralising sensitive data and supporting seamless collaboration
between agencies. This approach not only improves the accuracy
of suspect identification but also enhances operational efficiency
by allowing LEAs to query and share biometric data securely
across borders.

Index Terms—Biometrics, Mutlimodal Biometric Data, Deep
Learning, Security, Cross-Border Collaboration

1. INTRODUCTION

Law Enforcement operations, tasked with enforcing the law
through the investigation, deterrence, or punishment of indi-
viduals who violate rules and norms governing that society, are
inherently complex and sensitive. The challenges arise from
legal and jurisdictional constraints -especially when national
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security is at stake- and due to the management of sensitive
extensive suspect information.

Efforts to foster cross-border collaboration among Law
Enforcement Agencies (LEAs) have seen some initial progress
[1]. However, legal complexities and data sensitivity issues are
significantly amplified when operations span multiple jurisdic-
tions [2]. Consequently, it has become imperative to develop
or adapt existing frameworks utilised by a singular LEA, to
ensure secure, efficient, and robust cross-border cooperation.

In this context, we propose an approach that facilitates
scalable and secure cross-border multimodal identification of
potential unknown suspects. This approach integrates three
distinct biometric data modalities -facial images, fingerprints,
and voice samples- allowing for the use of either a single
modality or a combination of them to search for matches.
The key advantage of cross-border matching lies in addressing
situations where a LEA may not have any matching data in
their databases, thus lacking critical information needed for
suspect identification. Collaboration between LEAs provides a
second opportunity, where even if the requesting LEA has no
relevant data, the suspect may have been identified by another
LEA. This approach allows requesting LEAs to search across
databases of collaborating LEAs, thereby improving both
identification capabilities and overall operational efficiency.

To ensure fast and efficient storage, retrieval, and compari-
son of inherently high-dimensional biometric data, indexing is
employed. In this context hashing [3] is particular beneficial
since it converts high-dimensional biometric data into more
efficient and compact representations. With the rise of deep



learning, Deep Hashing [4] has gained prominence for its
ability to optimise the grouping and differentiation of similar
data. This proves particularly advantageous when handling
noisy biometric data that exhibit subtle variations, such as
slight changes in facial expressions, fingerprint positioning or
tonal differences in voice samples.

This work builds upon a previous publication on Cross-
Border Collaboration by the authors [5], specifically extending
the focus from Facial Biometric Search by incorporating two
additional biometric modalities. It also addresses the chal-
lenges associated with combining multiple biometric modal-
ities, as relying on a single modality may yield incomplete
results, while integrating multiple modalities may sometimes
lead to conflicting matching outcomes. The proposed extended
approach continues to employ distributed deployment and
robust encryption measures to ensure data security and privacy

At its core the approach consists of three distinct phases
-Model Training Phase, Indexing Phase and Searching Phase-
each of which must be completed for the subsequent phase
to be able to function properly. The Model Training Phase is
responsible for training the models tailored for each modality
that both the indexing and searching phases will utilise. The
trained models will be distributively deployed with each LEA
receiving its own snapshot of the Deep Learning Indexer and
Comparator modules.

The Indexing Phase utilises the DL Indexer to process all
available biometric data creating an index catalogue that stores
representations of the actual data, along with a pseudonymised
identifier. For each modality a different index catalogue is
created and it is not imperative to acquire all modalities for a
suspect. In the Searching Phase, the DL. Comparator receives
query biometric data and compares them against all artifacts
in each index catalogue. Each biometric modality is compared
exclusively against the same data type. The output is a ranked
list of suspect IDs, ordered by descending similarity, which
can then be used to retrieve more detailed information about
the individual associated with the biometric data.

To support distributed deployment, each LEA maintains
its own snapshot of the DL Indexer and DL Comparator.
Additionally, all data are encrypted, using either homomorphic
[6] or AES [7] encryption depending on the nature of the
operations required. Homomorphic encryption is applied when
computations need to be performed on the data, while AES
encryption is used for biometric data containing sensitive
suspect information to ensure privacy and security.

This paper is structured as follows: In Section II, prior works
related to multimodal biometric frameworks are discussed.
Section III, provides the motivation behind our approach,
Section IV offers a detailed description of our approach, which
encompasses its overall architecture. Finally, we conclude this
paper in Section V.

II. RELATED WORK

In an effort to enhance the effectiveness of integrating mul-
tiple biometric data modalities, a substantial amount of highly
relevant data with superior information quality is essential.

Information fusion techniques [8] aim to improve information
quality by merging heterogeneous data sources. Information
quality is often compromised due to imperfections in the data
or limited resources. Thus, incorporating information fusion
techniques into biometric systems is vital for improving the
overall performance and reliability of suspect identification
efforts across jurisdictions.

In the context of biometric data evaluation, similarity can be
approached in two distinct ways. Many methods emphasise a
binary similar-dissimilar format, which applies a strict degree
of similarity between data samples [9]. In contrast other ap-
proaches focus on similarity ranking, where a pool of existing
samples is compared against a specific instance, and results
are ordered in descending similarity [10]. This ranking method
allows for more nuanced comparisons, offering a graded view
of similarity that is particularly useful in complex biometric
matching scenarios.

Regarding distributed biometric systems with enhanced se-
curity measures, an authentication framework [11] incorpo-
rated facial, fingerprint and IRIS data to enhance security and
data integrity. Unlike traditional systems that rely on static
parameters, this framework supported dynamic and multi-user
authentication, which allows for continuous verification of user
integrity in multi-user settings.

Similarly, a multimodal biometric system that combined
face and fingerprint recognition was introduced in [12]. This
fusion addressed the limitations of unimodal systems, such as
vulnerability to noise, forgery, and a lack of universality. This
approach demonstrated the potential for multimodal biomet-
ric systems to significantly enhance identification accuracy,
especially in cyber-physical environments where security is
paramount.

Furthermore, [13] presented a highly accurate multimodal
biometric system that combined fingerprint, finger-vein, and
face images using Convolutional Neural Networks for fea-
ture extraction and recognition. The system leveraged CNN-
based feature extraction techniques to process each modality
independently, generating feature vectors for robust person
identification. The fusion of these modalities through weighted
sum and product techniques further enhanced recognition
accuracy.

The literature reveals a significant gap in the application
of multimodal biometric approaches specifically designed to
support Law Enforcement Agencies. Most approaches concern
unimodal biometrics like in [14] where various algorithms
for fingerprint classification and identification are examined,
demonstrating their utility in criminal investigations.

For facial data [15], highlighted the challenges of using
weak biometric modalities, such as facial recognition, in
forensic science due to their lower discriminatory power
compared to stronger biometrics like fingerprints and DNA.
The proposed framework integrated these weak biometrics into
forensic investigations, emphasizing semi-automatic systems
where human experts review automated results to improve
accuracy. Additionnaly, one significant project is the Speaker
Identification Integrated Project (SiiP) [16], which has cre-



ated an interoperable database for voice biometrics—the third
largest biometric database at Interpol after fingerprinting and
facial recognition. SiiP uniquely incorporated soft biometrics
like age, accent, and gender, inferred from voice data, to
enhance the accuracy of speaker identification.

III. MOTIVATION

The motivation for this works arises from the limitations
of relying on a single modality of biometric data for suspect
identification. In real-world scenarios, the availability of bio-
metric data can vary significantly. For instance, in one case, a
suspect may not leave fingerprints at a crime scene, but CCTV
cameras may capture their facial features. In another case, the
scene may be filled with the suspect’s fingerprints as they
failed to conceal their identity, but no cameras were present to
capture the individual. Furthermore, there are situations were
CCTYV footage may be insufficient due to poor lighting, yet
clear audio recordings of the suspect’s voice are available.
Such real-world situations are often far more complex that
the controlled, hypotherical scenarios used for testing. In light
of this complexity, three distinct biometric modalities -facial
images, fingerprints, and voice samples- were selected to
evaluate the effectiveness of this approach.

In a cross-border scenario, the most critical functionality
for suspect identification is the secure transmission of suspect
data between collaborating LEAs. However, this process is not
as simple as sending the biometric data over the network, as
numerous security and legal constraints prevent raw data from
being transmitted in its original form. While a straightforward
solution would involve encrypting the data before transmis-
sion and decrypting it upon the arrival at the other LEA’s
premises, this method introduces delays, and decrypted raw
data remains vulnerable. To address this, our approach utilises
Homomorphic Encryption, a form of encryption that allows
computations to be performed on encrypted data without
needing to decrypt it first. Since the objective is to provide
potential suspect identifications ranked by similarity from a
pool of existing samples in LEAs’ databases, rather than a
binary similar-dissimilar sample comparison, homomorphic
encryption ensures that this relative order of similarity is
preserved. In essence the output of the comparison process
remains the same both in encrypted and raw data computa-
tions.

Furthermore, the decision to adopt a distributed architecture
in our approach stems from the limitation of a centralised
solution. A centralised approach would require the encryption
of all biometric data from each LEA’s databases, transmission
to a central server for decryption and indexing, and then re-
encryption and distribution of the indexed representations back
to the respective LEAs. This process would not only be time-
consuming and costly but will also pose security risks asso-
ciated with the transmission of sensitive data. Additionally,
when new LEAs join the collaboration, the entire databases
would need to be re-indexed, further complicating the process.
This distributed nature allows each LEA to maintain its own

instances of the indexer and comparator, minimising data
transfer.

The innovation of the proposed approach lies not only in its
ability to handle large-scale, multimodal biometric data in real-
time, but also in its distributed architecture and security mech-
anisms, which together make an effective solution for complex
applications such as cross-agency biometric matching. This
distributed nature ensures that data from various sources, can
be processed efficiently without centralising sensitive infor-
mation such as suspect personal identification and biometric
data. Moreover, the incorporation of homomorphic encryption
enables the secure sharing and comparison of biometric data
across agencies. This ensures that while data is processed and
compared by external LEAs, it remains encrypted, protecting
sensitive information in cross-agency collaborations.

IV. THE APPROACH

The functionality of our approach relies on two key modules
that leverage deep learning: the Deep Learning Indexer and the
Deep Learning Comparator. Deep Learning models typically
require a substantial amount of data for training to achieve
robust and accurate results. However, due to the sensitive na-
ture of biometric data, there are ethical and legal challenges in
collecting real-world data. To address this, a hybrid approach
was adopted. The vast majority of the data originate from
publicly available and synthetic datasets that are not associated
with criminal records.

Specifically, the facial indexing utilised the “FaceScrub”
[17] and ”YouTube Faces” [18] datasets. The former contains
facial images of individuals from diverse racial and ethnic
backgrounds, while the later frames from YouTube videos
uploaded by content creators. For voice data, the "CSTR’s
VCTK Corpus (Centre for Speech Technology Voice Cloning
Toolkit)” [19] was used, comprising voice recordings from
English speaking individuals with various accents. Addition-
ally, training for fingerprint indexing was conducted using the
“FVC2000” [20] dataset, which contains fingerprint data from
various participants.

For pilot testing, consortium partners have already collecting
data from real users, which will be used for Machine Learning
training and system demonstrations. However, only about 5%
of training data will originate from datasets collected through
the pilots, ensuring realistic demonstrations while maintaining
the integrity of the experimental setup.

As mentioned above the functionality of this approach
revolves around three distinct and sequential phases, where
each phase builds upon the previous one. This cumulative
structure requires that each preceding phase be completed
successfully to provide the foundation for the subsequent
phases to function effectively.

A. Model Training Phase

The Model Training Phase, as depicted in Figure 1, is
responsible for developing three specialised deep learning
models that are distributed to each Law Enforcement Agency
in the form of a trained Deep Learning Indexer and Deep



Learning Comparator. The use of separate models for each
biometric modality is critical, as deep learning models require
substantial volumes of relevant data to accurately learn in-
tricate patterns that enable accurate predictions. These spe-
cialised models are more beneficial than attempting to train
a single general model that covers the prediction across all
data modalities simultaneously. Furthermore, this decentralised
approach is scalable, allowing for the seamless integration
of new biometric data types in the future, without requiring
significant modifications.

After concluding an extensive literature review and per-
forming experiments to validate the accuracy of the models
when trained with the open, publicly available datasets, two
model architectures where selected. For facial data images,
the Orthonormal product quantization network (OPQN) model
introduced in [21] was chosen, while for fingerprints and
voice samples the Deep Hashing Network (DHN) model
introduced in [22] was utilised. A detailed explanation of the
OPQN model’s application can be found in our previous work
[5]. The OPQN model creates indices denoting the closer
centroid to the image and the similarity relies on distances
from this predefined centroids. The DHN model generates
binary hashcodes, and the comparisons between biometric data
representations rely to Hamming Distance to assess similarity.

The Training Module is responsible for utilising the an-
notated, high-quality datasets and the identified deep learning
models to produce trained model Weights. The trained weights
are then distributed to each LEA by the Distributed Deploy-
ment Manager and are used to generate hash representations of
the biometric data in the LEAs’ databases This decentralised
approach enables the integration of additional LEAs without
disrupting ongoing operations. This eliminates the need to
transfer data to a central space for processing, thus enhancing
security and efficiency.

Upon the completion of training, all original training data
are securely deleted, and the models’ outputs are designed
in such a way that they cannot be used to reverse-engineer
or retrieve the original biometric data. This ensures that
the system remains secure, even in the unlikely event that
the model weights or outputs are accessed by unauthorized
entities.

B. Indexing Phase

Once the Model Training Phase is completed, the Indexing
Phase depicted in Figure 2 commences, laying the foundation
for generating indexing artifacts essential for the biometric
matching. The Deep Learning Indexer is designing to parse
biometric data from Law Enforcement Agencies and generate
an index catalogue comprising three distinct collections, each
corresponding to a specific biometric modality.

Each entry in these collections is converted into a unique
triple format that contains the following information:

« Hash representation: A memory-efficient, encrypted rep-
resentation of the biometric data.

Training Module Distributed DM

Trained Global
Model Weights

Deploy Indexer
Instances

Fig. 1: Model Training Phase

o LEA ID: An unique identifier representing the originating
LEA, facilitating data aggregation across multiple agen-
cies.

o suspect ID: A pseudonymised identifier that remains
pseudonymised within the distributed dataset but can be
securely mapped back to real individuals by each LEA
using a Pseudonymization Mapping.

The hash representation varies depending on the biometric
data modality. For fingerprints and voice samples, the hashes
are binary representation of the respective data, In contrast, for
facial images, the hash consists of six indices, with each index
representing the ID of the closest centroid to a specific part
of the image. These centroids are determined by the model’s
weights, which are consistent in all DL-Indexers, serving as a
common reference point for comparison.

To ensure secure computational operations in subsequent
stages, different encryption techniques are applied. For stor-
ing the hash representations efficiently, binary hashcodes are
encrypted using homomorhic encryption to allow for com-
putational comparison operation in the later stage, while for
facial images since the indexes cannot have altered values AES
encryption is employed and the decryption of this indexes is
needed in the subsequent phase. All generated triplets, along
with the Pseudonymization Mapping, are securely stored in
the Local Storage within each LEA. This storage solution
provides a structured and secure repository for critical suspect
information, ensuring organized access and privacy.

This indexing process allows our approach to operate
in a decentralised manner, reducing risks associated with
centralizing sensitive data and enabling secure collaboration
between LEAs. The structured triplet format, combined with
robust encryption methods, ensures that biometric data remain
protected, while still enabling efficient and accurate cross-
agency comparisons.
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C. Searching Phase

Once the indexing artifacts are created, the Searching Phase,
as shown in Figure 3, enables Law Enforcement Agencies to
collaborate effectively in suspect identification across various
jurisdictions. Each LEA maintains a local snapshot of the
DL Comparator, which allows them to initiate the comparison
process.

The Local DL Comparator processes biometric queries, that
may include facial images, fingerprints and voice samples.
Similar to the DL Indexer, the Local DL Comparator employs
two distinct strategies based on the biometric modality. Fin-
gerprints and voice samples are converted into binary repre-
sentations, while facial images are transformed into an array
of partial distances that representing the distance from each
centroid, which is predetermined by the model’s weights. This
transformation is crucial for ensuring accurate biometric data
comparisons. Both types of representations are then encrypted
using homomorphic encryption, which preserves the relative
ranking of numerical values throughout the computational
process, eliminating the necessity to decrypt the query data
at any stage. The order of the encrypted values mirrors that of
their unencrypted counterparts. The encrypted data are trans-
mitted to the Global DL. Comparator, which acts as a broker,
distributing the encrypted queries to locally deployed instances
of DL Comparators belonging to collaborating LEAs.

Upon receiving homomorphically encrypted queries, each
Local DL Comparator accesses the artifact collections main-
tained by the LEA. The Local DL Comparator retrieves the
hash representations from the Local Datastore and employs
two distinct comparison strategies depending on the biomet-
ric modality. For fingerprints and voice samples, Hamming
Distance is employed, while for facial images, the hash rep-
resentations functions as an array of indices to extract partial

distances from the query array. Rather than directly comparing
hash values, the system calculates the distance between the
query and the closest centroid to the hash representation. By
precomputing and storing these partial distances in the query
array, the method prioritises computational efficiency, though
it may slightly compromise accuracy in distance calculations.
The Local DL Comparator performs the comparison and
similarity scoring directly on the encrypted data, ensuring that
sensitive biometric information remains protected throughout
the process. This mechanism preserves data privacy while
allowing for accurate similarity scoring and comparison.

The Global DL Comparator upon receiving responses
from all distributed instances, compiles a list of potential
matches categorised by the respective authority, fostering
cross-authority collaboration. The aggregated results are pro-
vided to the initiating LEA.

Each comparison result includes the following information:

o Similarity Rate: Ranked on a scale from Highly Likely
Suspect, Probable Suspect, Unlikely Suspect, Doubtful
Suspect, to Highly Doubtful Suspect.

o LEA ID: An unique identifier representing the originating
LEA.

e Suspect ID: A pseudonymised
anonymity for the suspect.

identifier, ensuring

This comparison process enables our approach to function
in a decentralised manner, minimising risks associated with
centralised processing of sensitive biometric data and fostering
secure collaboration between LEAs. By utilising encrypted
query data and maintaining the integrity of similarity rank-
ings, the DL Comparator ensures that biometric information
remains protected throughout the matching process, while still
providing efficient and accurate cross-agency comparisons.

To provide an intuitive visualisation for biometric data
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Fig. 3: Data Searching Phase

matching across multiple LEAs, as well as to avoid over-
whelming law enforcement agents by providing the triples,
a simple proposed visualisation is depicted in Figure 4. The
results are sorted by each LEA, with the initiating LEA (PJ)
shown at the top, followed by other LEAs like MOI and GPI.
The information is grouped by suspect ID, and confidence
scores for face, fingerprint, and voice matches are displayed
if data is available. When other LEAs have suspect data but
have not identified the individual, no further action can be
taken. However, when an LEA has identified the individual, the
system allows the user to request and access that information,
supporting the investigation process. This design prioritises
clarity, organising matches by confidence score and enabling
efficient inter-agency collaboration while supporting action-
able steps through a streamlined request system.

V. CONCLUSION

In conclusion, this work introduces an innovative solu-
tion for cross-border biometric identification, addressing the
challenges of handling multimodal data in a secure and de-
centralised manner. By leveraging deep learning techniques
and robust encryption methods, our approach enables Law
Enforcement Agencies to collaborate effectively while main-
taining data privacy. The system’s decentralised architecture
reduces the risks associated with centralising sensitive infor-
mation and facilitates efficient cross-agency suspect identifi-
cation. This solution represents a significant step forward in
improving public safety and operational efficiency in a global
context. Future work will focus on expanding the system’s
capabilities and exploring additional biometric modalities for
even greater accuracy and robustness.
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