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Abstract—This position paper introduces a novel Cyber-
Physical-Socio-Environmental Systems (CPSES) frame-
work for Smart Water Networks (SWN). The proposed
framework introduces environmental aspects as a key
constituent, which is important for addressing the inter-
connected challenges of water systems, such as climate
change impacts, contamination risk, and sustainability. The
CPSES framework dynamically incorporates interactions
between physical components (sensors, actuators), cyber
systems (control, monitoring, digital twins), social factors
(policy, demand management, crisis response), and envi-
ronmental impacts (emissions, resource availability). The
significance of this framework lies in its potential to enable
more resilient, sustainable, and secure SWNs by incorpo-
rating feedback loops among the CPSES constituents. Key
CPSES research challenges are outlined, such as model-
ing the impacts of climate change, dynamic risk estima-
tion, and ethical and fairness aspects within SWN. A real-
world use case on water contamination crisis management
demonstrates the framework’s practical application and
relevance for researchers.

Index Terms—water resources, water pollution, water
monitoring, cyber-physical systems, system of systems,
environmental factors, social factors, smart water networks

I. INTRODUCTION

WATER systems are crucial for the continuous supply
of water, which is vital for everyday human needs,

sustainable development, energy production, and industrial and
agricultural processes. In particular, Drinking Water Distribu-
tion Systems (DWDS) comprise multiple physical subsystems,
including infrastructure and processes for collecting, cleaning,
disinfecting, and delivering clean water to consumers [1].
These systems may operate in urban or rural environments,
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distributing water to consumers through networks of pipes,
pumps, and tanks. The main operational objective is to ensure
the delivery of water in adequate quantities and quality while
maintaining a high level of efficiency.

DWDS face multiple challenges, such as aging infras-
tructure, increased water losses, degrading water quality, the
risk of contamination events, increased energy costs, and
the threat of cyberattacks [2]. Rapid population growth and
urbanization also increase water consumption, which is linked
with increased energy usage and water losses. These factors
contribute to increased environmental stress [3]. The climate
crisis further raises the risk of disrupting water distribution,
e.g., through the reduced availability of water for treatment
[4], or due to emergencies affecting system operation [5].

Industrial Cyber-Physical Systems (CPS) provide a suitable
framework for modeling DWDS by integrating infrastructure
and processes (the physical constituent) with communication
and computing capabilities (the cyber constituent) for moni-
toring and control [6]–[8].

In general, CPS provide an abstraction for modeling and
analysis, capturing complex dynamics, with feedback control
software on the physical constituent through actuators for
reconfiguration and automation, while sensors in the physical
constituent communicate data back to the cyber constituent
for processing, monitoring, and event diagnosis [9], [10].

Various CPS challenges have been investigated in research,
focusing on modeling, security, and AI-based decision support.
For instance, in [11], the problem of cyber-physical security
is studied from a systems and control perspective, and the
use of multi-agent AI systems to manage the dynamic CPS
environment is studied in [12]. Moreover, in [13], the problem
of modeling under missing data and noise was examined, and
the proposed dynamic latent variable model was demonstrated
in a wastewater treatment case study.

Recently, a scientific policy brief advocated for the need
for AI-enhanced CPS to support intelligent decarbonization
[14]. Although CPS provides a valuable framework for water
systems control and security, they often neglect to account for
human and policy-related factors. In addition, environmental
dynamics (such as emissions or water losses) are typically
treated as constraints or static variables. As a result, industrial
CPS research tends to overlook crucial connections between
water-related challenges and social or environmental dimen-
sions. Addressing the pressing issues of climate change, the
rapid increase in water demand, and the rapid adoption of ICT
and AI requires a more comprehensive approach that integrates



these overlooked aspects.
This paper builds upon CPS research and introduces the

Cyber-Physical-Socio-Environmental Systems (CPSES) mod-
eling framework, designed specifically for DWDS. By ex-
plicitly incorporating environmental factors alongside cyber,
physical, and social components, this framework enables a
more holistic and adaptive approach to managing water dis-
tribution systems. The CPSES model allows for better risk
management, climate adaptation, and operational efficiency
through the integration of real-time data, advanced modeling,
and stakeholder engagement.

The contributions of this position paper are summarized as
follows:

1) We propose a new Cyber-Physical-Socio-Environmental
Systems (CPSES) modeling framework that explicitly in-
tegrates social and environmental aspects within DWDS.

2) We map critical interdependencies between environmen-
tal, social, and cyber-physical constituents in DWDS,
which are required for modeling, optimization, and de-
cision support tools of SWN.

3) We address key CPSES research challenges relevant
to DWDS, including understanding policy impacts on
water consumption, mitigating extreme weather effects on
water quality, ensuring equitable distribution in scarcity,
optimizing energy efficiency with renewable sources, and
enhancing resilience to threats and faults.

4) We discuss practical aspects relevant to the implemen-
tation and demonstrate the conceptual application of the
framework in a realistic contamination event management
scenario.

The paper is structured as follows: Section II provides
background on Smart Water Networks. Section III introduces
the foundational concepts and explains the constituents of the
framework. Section IV presents the CPSES framework and
how it is adapted for DWDS, expanding on each constituent
and its dynamics. Section V discusses key aspects of the
proposed framework and provides high-level specifications for
its practical applications within Digital Twins. Section VI
outlines the challenges and future directions of the CPSES
framework. Section VII concludes the paper, summarizing key
implications and future work. In the Supplementary Material,
we demonstrate how the framework applies to a pathogen
contamination emergency response case study, and its digital
twin.

II. BACKGROUND ON SMART WATER NETWORKS

The adoption of Information and Communication Technolo-
gies (ICT) in DWDS, augmented by the sensing capabilities
of the Supervisory Control and Data Acquisition System
(SCADA), has significantly enhanced the monitoring and con-
trol of physical elements through cyber components [15]. In
general, urban water networks, compared to rural networks, are
better monitored using advanced technologies. The potential of
integrating ICT with smart algorithms to address the multiple
challenges of DWDS has fostered the development of Smart
Water Networks (SWN) [16]–[18], a concept analogous to
the Smart Grid in Power Systems [19], [20]. This analogy

highlights the use of advanced technologies and data-driven
approaches to optimize operations and enhance efficiency.

SWN refers to an integrated DWDS that uses advanced
sensing and actuation technologies, communications, data
management, and visualizations, along with advanced data
analytics and decision support systems. Analytics in SWN are
strategically designed to enhance system management. The
goals include dealing with events/faults such as pipe bursts
and leakages [21], [22], ensuring water quality and mitigating
contamination risks [5], [23], [24], reducing energy usage [25],
[26], improving cyber-physical security [27], [28], optimizing
system efficiency [29], [30], increasing reliability [31], and
addressing the consequences of climate change and diminish-
ing water resources, such as through intermittent water supply
[32], [33]. At the same time, the widespread adoption of these
technologies increases potential security risks, expanding the
number of potential attack vectors [34].

It is important to note that the current state of practice in
DWDS management is still quite far from the envisioned SWN
described in this paper, and significant investments, as well as
a cultural shift, would be needed to enable their adoption.

III. CONCEPTUAL FOUNDATIONS AND FRAMEWORK
DEVELOPMENT

The epistemological foundations for our work are based on
Systems Theory [35] and Systems-of-Systems [36], [37]. Sys-
tems Theory provides a comprehensive framework for mod-
eling interdependencies between various components within
a system, whereas Systems-of-Systems extends this by in-
tegrating multiple independent systems, each with its high-
level objectives. Through these mechanisms, we identify in-
terconnected components of different systems (constituents) of
industrial CPS that interact dynamically, governed by complex
relations.

In addition, feedback loops are directly considered, and
emerging properties can be identified and explored to provide
insights into system behavior and performance. Based on these
foundations, we identify multiple constituents that are interre-
lated with industrial CPS, including human or social dynamics,
as well as dynamics interacting with the environment.

To incorporate human dynamics (the social constituent) as
an essential part of these systems, the concept of Cyber-
Physical-Social Systems (CPSS) was introduced [38]–[40],
expanding the foundational CPS framework. CPSS emphasizes
the importance of the social constituent, recognizing human
dynamics as integral to effective system design and analysis.
In CPSS, the social constituent, comprising human actors at
various levels, interacts with the cyber constituent through
information exchange and decision enforcement. In addition,
this social constituent influences the physical constituent by
affecting its dynamics and making decisions that impact the
physical infrastructure.

CPSS have been considered in various application domains,
notably in smart cities. Urban environments can leverage the
CPSS framework to design innovative services, including en-
vironmental monitoring, business, commerce, social activities,
and emergency response, thus improving urban functionality
and livability [41].
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Additionally, social aspects are recognized as crucial in
the design and analysis of various industrial systems. In
Intelligent Transportation Systems [42], [43], CPSS enables
the capture, analysis, and utilization of uncertain, complex,
and diverse social behaviors of humans, optimizing control and
management performance through model-based, data-driven,
or hybrid approaches.

In the context of moving toward a sustainable energy future,
the traditional concept of the Smart (Energy) Grid, which
previously omitted the social constituent, is now considered
inadequate for addressing the challenges of modern systems
[44]–[46]. The inclusion of CPSS in future energy systems is
advocated as a holistic approach that considers environmental,
economic, and social factors, as well as human behaviors [44].

Similarly, the manufacturing sector is evolving toward In-
dustry 4.0 [47], characterized by the interaction between phys-
ical, cyber, and social factors, which underlines the compre-
hensive benefits of CPSS [48]. An extensive literature review
on the topic for various infrastructures is available in [49]. A
key contribution of that work is the inclusion of the function of
humans, rather than just the social aspects in general, as well as
the presentation of a virtualized architecture and an integrated
framework suitable for optimization. A key differentiation of
our work with respect to [49], is the direct consideration of
the environmental constituent, specifically within the context
of SWN.

Consumers influence the hydraulic dynamics of the system
through their consumption patterns and can act as “sensors”
by detecting and reporting leaks or quality problems. Further-
more, consumers can push for policy changes, as seen in the
European Right2Water citizen initiative [50]. In research, the
role of consumers has been investigated in various studies
[51]–[53] as an independent component. However, there has
been limited examination of the human factor as an integral
part of the design and operational phases of CPS control.

Moreover, the roles of operators, managers, and policymak-
ers are often not considered within the framework of CPS.
Operators set the system parameters to meet operational goals,
and Managers ensure adherence to service standards and legis-
lation. The overall management and governance framework is
specified by Policymakers, who are becoming more aware of
the ethical and societal equity aspects related to water supply,
as well as the impact on the environment and citizens’ health.
For example, the EU Directive 2020/2184 [54] related to
drinking water quality was a socially driven process outcome.

A comparative analysis of the CPS, CPSS, and CPSES
modeling frameworks is provided in Table I. The analy-
sis illustrates that CPS and CPSS frameworks do not di-
rectly consider, or only implicitly consider, environmental
and sustainability factors. For example, such considerations
are implicitly associated with various studies, e.g., on smart
cities [41], [55]–[57], and on the smart grid [58]. Notably,
[59] combines CPS and water systems toward sustainability
through monitoring, sensing, and control for sustainability,
without considering social aspects. Overall, there is an em-
phasis on the technological challenges relevant to modeling,
simulation, interoperability, and security. Social aspects have
also been explored in research, focusing on human behavior,
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Fig. 1. High-level architecture of main constituents of DWDS as CPSES.

understanding societal impacts, and exploring human-machine
collaborations.

Moreover, our study identified that, there is limited access to
software tools capable of modeling all the different physical,
cyber, social, and environmental dynamics in a unified way,
as well as relevant benchmarks and testbeds.

We propose a broader inclusion of environmental dynamics
in system planning and execution through the design of
conceptual frameworks, as well as models and software tools
to capture these dynamics and explore different options. In
the following section, we propose such a framework that
can be used to design new integrated platforms, supporting
interoperability and the exploration of the dynamics of the
different constituents.

IV. A CYBER-PHYSICAL-SOCIO-ENVIRONMENTAL
SYSTEMS ARCHITECTURE FOR SWN

Figure 1 offers a high-level overview, illustrating how the
core constituents (physical, cyber, social, and environmental)
map to SWN.

The Physical constituent (blue) encompasses infrastructure
elements such as pipes, tanks, valves, pumps, and consumption
points, along with sensors and actuators. The Cyber constituent
(yellow) includes the SCADA system, telecommunications,
control and alerting algorithms, and advanced analytics meth-
ods. The Social constituent (orange) consists of stakeholders
who impact the other constituents directly or indirectly through
information exchange, decision-making, or influencing the
system dynamics.

This group includes consumers (citizens and industries),
organizations, technical operators, utility managers, local au-
thorities, and policymakers. Finally, the Environmental con-
stituent (green) encompasses elements affecting water supply,
including aspects of climate change (such as precipitation,
temperature, floods, and droughts), water quality, availability
of water resources, pollution, and ecosystem impacts.

The directed lines in Fig. 1 indicate the relationships be-
tween the different constituents:
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TABLE I
COMPARATIVE ANALYSIS OF CPS, CPSS, AND CPSES MODELLING FRAMEWORKS IN DWDS

Characteristic CPS CPSS CPSES
Physical Constituents Directly modeled: Real-time con-

trol and monitoring of physical as-
sets (pipes, sensors, actuators).

Directly modeled: As in CPS, in-
cludes human actions (e.g., water
demands, maintenance activities).

Directly modeled: As in CPSS, in-
cludes environmental effects (e.g.,
water losses impacting ecosys-
tems).

Cyber Constituents Directly modeled: SCADA, control
algorithms, and real-time monitor-
ing.

Directly modeled: As in CPS, with
feedback loops from social systems
(e.g., consumer feedback).

Directly modeled: As in CPSS,
includes environmental dynamics
(e.g., GHG emissions models).

Social Constituents Indirectly modeled: Social behav-
ior is considered constant or peri-
odic (e.g., water demands).

Directly modeled: Social behav-
iors, policies, and human decision-
making affect operations.

Directly modeled: As in CPSS, in-
cludes impacts to public health due
to environmental conditions.

Environmental
Constituents

Indirectly modeled: Typically re-
lated to efficiency or availability
constraints (e.g., energy use).

Indirectly modeled: As in CPS. Directly modeled: Includes climate
change, emissions, resource man-
agement, and environmental condi-
tions.

The Physical constituent provides sensing signals of its
states to the Cyber constituent, and the Cyber constituent
returns control actions to regulate the actuators of the Physical
constituent. The use of actuators in the Physical constituent
generates Greenhouse Gas (GHG) emissions. Together with
underground water losses and potential pollution events, this
impacts the Environmental constituent on a larger scale. Simul-
taneously, the Environmental constituent affects the Physical
constituent, as there may be limited water resources available,
and disruptive natural events (such as floods or fires) may
cause failures and water contamination in the Physical con-
stituent.

The Physical constituent contributes to the Social con-
stituent through the reliability of the service provided, as well
as by maintaining a high level of public health and supporting
an evolving economy. Conversely, the Social constituent is
the key driver of the Physical constituent’s dynamics through
water consumption and investments in new infrastructure. The
Social constituent can act as “human sensors,” providing feed-
back (e.g., on leaks using online tools) and driving investments
and policies for the Cyber constituent. Concurrently, the Cyber
constituent communicates alerts and other relevant information
to the Social constituent, aiding in decision-making. The So-
cial constituent also influences the Environmental constituent
through policy-making and regulations.

However, the Environmental constituent can dramatically
affect the Social constituent, especially during extreme events,
which can impact security, safety, and overall public health.
Likewise, extreme events can cause failures in the Cyber con-
stituent, disrupting its operation. Finally, the Cyber constituent
can affect the Environmental constituent through associated
GHG and heat emissions, as well as other technology-related
pollution (e.g., from rare earth materials, electronic waste,
etc.).

Other critical aspects are the cyber-physical security risks,
which affect both the cyber and physical domains, and can
have direct or indirect implications for the environment and
societal stakeholders [11], [60]. For instance, an attack on a
state estimation module [61] can trigger a change in the system
actuators, causing tank overflows with increased disinfectant
concentrations, which can have a severe environmental impact
[62].

The following subsections outline the proposed architec-
ture of the CPSES, detailing the distinct constituents and
their interrelationships, as illustrated in Fig. 2. Note that the
Social constituent is segmented into four main categories
of stakeholders within the water sector: consumers, utility
operators, water management authorities, and policymakers.
Practical aspects of how the CPSES modeling framework
can be implemented within the context of Digital Twins, are
discussed in the next section.

A. Physical Constituent
The Physical constituent comprises the DWDS, central to

which is the network of pipes that deliver water to consumers.
The network’s flows are affected by water consumption and
water losses, including leaks. To maintain system pressure
and ensure sufficient water quantities for all consumers, even
during emergencies, water storage & disinfection facili-
ties and actuators (such as pumps, valves, and disinfection
stations) are essential. Water supply depends on the overall
availability and quality of water resources. The system’s
physical characteristics are monitored by sensors installed
within the infrastructure, measuring consumption volume, flow
rates, pressures, water levels in tanks, and water quality (e.g.,
turbidity, pH, etc.). Portable sensors may also be employed in
this context for monitoring flexibility.

The Physical constituent is closely interconnected with the
Social constituent through various stakeholders. Consumers’
consumption behavior significantly affects the hydraulic dy-
namics of the system, acting as an uncontrolled disturbance.
From the perspective of the water authority, Operators are
tasked with ensuring the efficient operation of the system. This
responsibility includes maintaining, repairing, or upgrading the
physical infrastructure. Lastly, Managers play a crucial role
in decision-making, particularly regarding investments in new
technologies and the expansion of the infrastructure. These
decisions are made in alignment with the policies established
by Policymakers.

B. Cyber Constituent
The Cyber constituent consists of all the Information and

Operational Technology (IT/OT) infrastructure, including both
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hardware and software, necessary to monitor, operate, control,
and manage the Physical constituent. Additionally, it serves as
an interface with social stakeholders. The main software mod-
ules of the Cyber constituent are described in the following
paragraphs. Notably, the integration of advanced computing
paradigms, such as Artificial Intelligence (AI) and Machine
Learning (ML) methods, will enable automation across the
various modules and decision support tools.

The Data Processing and Analysis module is responsible
for receiving measurements from sensors, processing, and stor-
ing data for use by other modules. Data can be semantically
annotated depending on their type. This module also checks
data quality, identifying issues such as missing data. Besides
physical sensor information, this module incorporates informa-
tion from the Social constituent, such as consumer feedback
about system operations, including reports of pressure drops,
abnormal water quality, or leaks. Data pre-processing can be
incorporated in this module [63].

The Models module comprises mathematical and computa-
tional representations of the physical system and its dynamics.
For example, DWDS topology is modeled using Geographic
Information Systems (GIS) and is mathematically character-
ized using Differential-Algebraic Equations for hydraulics and
Partial Differential Equations for water quality [5]. Alongside
first-principle models, AI/ML data-driven models are also
utilized. It is important to note that hydraulic dynamics drive
water quality dynamics, which are associated with uncer-
tainties. This module can include models of various faults

affecting the dynamics and requires updates when the physical
system undergoes changes, such as upgrades or maintenance,
possibly through online learning.

The Estimator module utilizes models of the physical
system and the latest sensor data to estimate unmeasured
consumptions and hydraulic and water quality state dynamics
in real time. These state estimates are crucial for diagnosis and
control. The estimations are fed to the Monitoring and Diag-
nosis module. Leveraging sensor data, consumer reports, state
estimates, and models, this module is tasked with detecting,
isolating, and identifying faults in the Smart Water Network.
These may include leaks, actuator/sensor faults, contamination
events, and cyber-physical attacks.

The Digital Twin & Planning module is a virtual rep-
resentation of the physical system that assists stakeholders,
primarily Operators, and secondarily Managers and Policy-
makers, in decision-making. For short-term decisions, it uses
recent sensor data, state estimates, and nominal computational
models to create an updated, calibrated system model (a
Digital Twin) for simulation and optimization. For long-term
planning, it offers tools to evaluate different policies and
investment decisions by exploring various future scenarios,
e.g., under different climatic conditions. Lastly, the Real-
time Control module, controlling actuators such as pumps,
valves, and disinfection systems, is guided by the high-level
control decisions of Operators using the outputs of the Digital
Twin and Estimation modules. Additional details regarding
the Digital Twin are provided in the next section.
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C. Environmental Constituent

The dynamics of the Environmental constituent are closely
linked with those of the Physical constituent. The increased
use of pumps, which leads to higher energy consumption,
results in greater GHG emissions, thereby contributing to
climate change. Conversely, climate change significantly af-
fects the availability and quality of water resources. This, in
turn, impacts the water supply and quality within the distri-
bution network. Additionally, increased water losses from the
network diminish the overall availability of water resources,
necessitating the use of more clean water to satisfy demand.
Moreover, water quality degradation, caused by contaminants
due to floods or high temperatures, can affect water quality,
and subsequently, the health of Consumers.

D. Social Constituent

The Social constituent in SWN comprises four primary
stakeholder groups: (i) Consumers; (ii) Operators; (iii) Man-
agers; and (iv) Policymakers. Each group plays distinct roles
and holds different responsibilities within the system. Con-
sumers directly influence water demand and usage patterns.
Operators are responsible for the day-to-day management and
operational efficiency of the system. Managers make strategic
decisions regarding system upgrades and investments. Policy-
makers set the regulatory framework and policies guiding the
system’s operations. These stakeholders interact with the Cy-
ber, Physical, and Environmental constituents in various ways,
shaping the system’s overall functionality and effectiveness. A
more detailed analysis follows.

1) Consumer Stakeholder: The term Consumers refers to
all entities (humans, industries, etc.) that request drinking
water. Demand is characterized by a complex socio-economic
function, influencing consumption patterns. For instance, de-
mand can be affected by factors such as water pricing or the
conservation actions adopted by consumers, which may be
driven by policies. Additionally, consumers may provide direct
or indirect feedback to water authorities regarding faults or
other events, thereby enhancing the system’s early warning
capabilities by acting as “sensors.” Concurrently, information
communicated by the Cyber constituent to consumers, such
as comparisons of their consumption with similar consumer
profiles, can influence their conservation behaviors. Critically,
consumer health can be affected by the Environmental con-
stituent.

2) Operator Stakeholder: Operators play a crucial role
in managing maintenance and operations within a water
authority. Their responsibilities include making decisions on
the best ways to control the system, such as opening, closing,
or regulating valves and pumps to ensure efficient system
operation. For this process, Operators interact with the system
through the Cyber constituent. In SWN, they may utilize Digi-
tal Twins to determine the most effective actions for optimizing
operations. Maintenance activities, involving interaction with
the Physical constituent, might include disconnecting parts
of the network or replacing infrastructure elements. Such
maintenance actions are often guided by the Monitoring and
Event Diagnosis module. After completing maintenance tasks,

Operators update the system’s model (e.g., the GIS) to reflect
physical changes, such as new pipes, sensors, or actuators, and
to incorporate new fault types into the model.

3) Manager Stakeholder: Managers are responsible for
making decisions that affect the entire water organization.
This role encompasses strategic management, often informed
by insights gained from Digital Twins and planning tools
within the Cyber constituent. Their decisions involve resource
allocation and investments in both the Physical and Cyber
constituents. Effective strategic management must align with
the various policies established by Policymakers. Additionally,
Managers are tasked with crisis management, where they
make crucial decisions and coordinate with external stakehold-
ers, such as First Responders (FR) during emergencies (e.g.,
contamination events, earthquakes, or floods).

4) Policymaker Stakeholder: The role of the Policymakers
is to establish high-level policies that broadly affect all other
stakeholders within the system. For example, pricing policies
pertain to the cost of water for different consumer categories,
such as offering lower tariffs for large families. Meanwhile,
conservation policies aim to incentivize sustainable demand
behavior among consumers, such as the installation of water-
saving fixtures. Water quality policies play a crucial role in
setting safety standards for chemical and biological compo-
nents in drinking water, which are monitored and controlled
through the Cyber constituent. Lastly, safety and security
policies address the management of risks associated with un-
certainties in water resources, climate change, and unforeseen
events like accidents or malicious attacks. An example of this
is the Water Safety Plans (WSP) proposed by the World Health
Organization [64].

V. TOWARDS A CPSES DIGITAL TWIN: DISCUSSION
AND PRACTICAL APPLICATIONS

In this section, we discuss practical aspects of the applica-
tion of the framework and provide a reference architecture for
future implementations. Various measurement data, models,
and analytics are required to capture the dynamics between the
different constituents. As a result, the connection with legacy
systems (such as GIS and SCADA), as well as the integration
with more advanced technologies (such as IoT Platforms, Data
Spaces, and Digital Twins), is critical. This is also aligned
with the Smart Water Networks Forum’s (SWAN) reference
architecture [65], which considers the physical, sensing and
control, communication, data management, and analytics lay-
ers as enablers of Smart Water Networks.

A Digital Twin of the physical DWDS is a virtual (com-
putational) representation that is continuously updated with
real-time data, such as pressure and flow rate measurements
[66], [67]. This real-time data integration allows for a deeper
understanding of the system’s behavior and enables more in-
formed decision-making in DWDS management. Digital Twins
can be used for a variety of purposes, including monitoring
network conditions, locating leaks, optimizing pressures and
disinfectant dosage, and more. They can also be used to
simulate the impacts of different scenarios, such as changes
in demand or water main breaks, which can help water
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utilities plan for future events and improve their response to
emergencies [68], [69].

Even though Digital Twins have demonstrated their effec-
tiveness in addressing challenges in the physical system, there
is still a need for integrating cyber, social, and environmen-
tal aspects, compatible with the proposed CPSES modeling
framework. As a result, CPSES Digital Twins need to go a
step further by modeling the different constituents and their
interdependencies to enable the exploration of different what-if
scenarios.

A. Modeling
CPSES Digital Twins should include mathematical and

computational models spanning various domains. Hydraulic
and water quality dynamics are required for modeling flows,
pressures, as well as substance transport and reaction dynam-
ics, using EPANET/EPANET-MSX and their toolkits [70]–
[73]. Environmental models quantify greenhouse gas emis-
sions, based on pump energy consumption and water losses
[74]–[76]. Cybersecurity models can estimate the behavior of
the system under potential attacks, using the Digital Hydraulic
Simulator (DHALSIM) [77], [78]. Emergency response op-
timization models provide situational awareness and suggest
actions to mitigate the impacts of events, such as using the
Water Network Tool for Resilience (WNTR) [79]. Quanti-
tative Microbial Risk Assessment (QMRA) can be used to
assess public health risks by linking pathogen exposure, dose-
response functions, and risk characterization [80].

Another critical aspect highlighted by the CPSES frame-
work is societal dynamics. Consumer behavior and behavioral
economics can be modeled to simulate consumer response
to financial and conservation policies, price and income
elasticity [81], [82], as well as stochastic consumer behav-
ior through the SIMulation of water Demand, and End-Use

Model (SIMDEUM) [83]. During a water contamination crisis,
disinformation, such as fake news, may spread among the
population, affecting demand dynamics and, in turn, the overall
system dynamics (e.g., causing a drop in system pressure due
to the simultaneous opening of all water taps). For this reason,
tools integrated with Digital Twins to detect fake news during
crisis management are of great importance [84], [85].

Mapping and modeling the interconnections between the
different elements of the framework require synergies between
different scientific domains (such as engineering, computer
science, economics, social sciences, and environmental sci-
ence) and different stakeholders (citizens, volunteers, oper-
ators, managers, and policymakers). To achieve this, social
science frameworks can be utilized, such as the Communities
of Practice (CoP) framework, a multi-stakeholder, participa-
tory, and co-creation approach [86], as well as through choice
experiments [87].

B. Proposed CPSES Digital Twin Architecture
A high-level overview of the Digital Twin, which is aligned

with the proposed CPSES framework, is depicted in Fig. 3.
The south-bound Data Layer comprises different data sources,
such as GIS, IoT, SCADA, Open Data, other Data Spaces,
knowledge bases, and others. The CPSES Digital Twin is
composed of the Models, the Simulators, and the Algorithms
Modules. The Models Module consists of the mathematical
and computational models that describe the different dynamics
of the CPSES.

The Simulator Module links the models with simulation
engines capable of executing various experiments and eval-
uating multiple scenarios. Finally, the Algorithms Module
includes all the methods needed for estimating the states (as
points and/or as boundaries), optimization, parameter estima-
tion, event diagnosis, risk assessment, etc. The CPSES can
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communicate with Decision Support Systems (DSS), which
fully utilize the CPSES framework. Examples of such DSS in-
clude Crisis Management, Operational Efficiency, Investment
Support, Policy Simulation, Sustainable Development Goals
(SDG) contribution, and others.

A use case where the CPSES framework was applied in
the context of pathogen contamination emergency response, is
provided in the Supplementary Material.

C. Investment and Scalability
Beyond the Digital Twin, the CPSES framework requires

investments in infrastructure (for sensors, actuators, commu-
nication systems, etc.), software (for developing innovative or
acquiring existing software, customizing it to specific needs,
data management, etc.), and maintenance.

However, the potential benefits can be substantial, measured
through various performance indicators linked, among others,
to the UN Sustainable Development Goals (SDGs) and the
International Water Association (IWA) [88]. These perfor-
mance indicators will also facilitate benchmarking between
water providers across various aspects, including efficiency,
resilience, and sustainability.

Lastly, we note that the CPSES framework is adaptable to
other industrial CPS domains. For example, even though the
main emphasis is on urban DWDS, CPSES can be adapted to
rural DWDS and wastewater systems.

VI. CHALLENGES AND FUTURE DIRECTIONS

The proposed architecture opens up research questions
spanning various disciplines, including water engineering, ML,
control systems, social sciences, and economics. In the fol-
lowing paragraphs, we introduce several new challenges that
highlight the opportunities presented by adopting this holistic
framework across different research areas. Addressing these
challenges necessitates interdisciplinary approaches, calling
for the exchange of knowledge among experts from diverse
scientific fields. This requirement for cross-disciplinary collab-
oration presents a significant challenge in itself, underscoring
the complexity and integrated nature of CPSES.

Modelling Climate Change: Climate change significantly
affects the availability of water resources, making it crucial
to model its impact on both the quality and quantity of these
resources, as well as the changing frequency of extreme events
like floods and droughts [89], [90]. By modeling various
climate change scenarios and their associated uncertainties,
such as changes in temperatures, precipitation patterns, and
sea-level rise, this information becomes invaluable for the
long-term planning processes of Managers and informs the
development of new policies. Concurrently, the operation of
DWDS also influences climate change, evident through GHG
emissions and potential environmental impacts from water
losses. Therefore, incorporating energy efficiency and sustain-
ability into the design and operation of DWDS represents a
significant challenge.

System Evolution and Deep Uncertainties: DWDS are
constantly evolving. The geospatial distribution of consumers
changes over time, and concurrently, the Physical constituent

undergoes aging and requires replacement over periods span-
ning decades. Additionally, technological advancements in
sensing and actuator technologies, ICT, and AI are leading
to the generation of large volumes of data. Societal priorities
also evolve, influencing policies in ways that are challenging to
predict over the long term. Consequently, a critical challenge
is managing these deep uncertainties in a manner that ensures
system designs are flexible [91], technology adoption is recon-
figurable and not limited to specific protocols, and models can
be continuously updated through incremental learning [92]–
[94].

Human-System Interaction: Recent technological ad-
vances in AI have given rise to Large Language Models
(LLMs). LLMs (such as Meta’s Llama [95]) are statistical
models pre-trained on massive amounts of diverse text data
(e.g., websites and code). They are capable of generating
text and enabling applications such as question-answering.
In the context of CPSES and particularly within the Social
constituent, these models can provide a means of interacting
with stakeholders. Consumer feedback can also be actionable
data for AI/ML models [96].

Water Quality and Dynamic Risk Estimation: Currently,
water quality and risk are managed through sparse, periodic
sampling. Samples are analyzed in laboratories with signifi-
cant latency (typically days). At the same time, regulations
and risk assessment studies only consider a small fraction
of contaminants. For some potentially dangerous substances
(e.g., disinfection by-products), there are no widely available
technologies for real-time monitoring, nor are there clear
indications of their health impacts. Advancements in sensor
technologies and the integration of ML for creating models
of water quality and its health impacts represent a critical
step towards CPSES. By incorporating a real-time, data-driven
approach, it is possible to design models for dynamic and
continuous risk assessment.

Fusing Multi-Modal Data: “Modality” refers to how
information is experienced or occurs—for instance, visual
observation, auditory signals, or textural sensations. Multi-
modal learning [97] extends beyond traditional data fusion
methods [98], aiming to build models capable of process-
ing and correlating information from various modalities. In
SWN, rich interactions between the physical, cyber, and socio-
environmental constituents generate a diverse array of data.
This includes time-series data from various sensors in the
Physical constituent, billing records, telephone interactions,
and even social media. The challenge lies in how to effec-
tively collect, represent, and fuse these different data types to
enhance the system’s ability to make informed decisions and
predictions.

Ethics and Faireness: The continuous integration of Phys-
ical constituents (sensors and actuators) with Cyber con-
stituents (controls, communications, and AI-enabled automa-
tion), alongside human interaction, raises significant ethical is-
sues [99], [100]. Decision-making processes must be unbiased
and promote equitable water distribution, especially in times of
scarcity (e.g., due to droughts). Additionally, the proliferation
of SWN risks widening the digital divide, disproportionately
impacting low-income or marginalized communities.
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Modeling Consumer Demand: Modeling consumer de-
mand is a pivotal aspect of smart water network management.
Consumption is often viewed as a diurnal time series. ML
techniques are employed to analyze the vast data collected
from diverse consumption patterns, thereby refining models
and enhancing predictive accuracy. In reality, consumption
is influenced by a complex interplay of factors, including
pricing policies, conservation perceptions, demographics, and
socioeconomic status. Insights from social studies, particularly
in psychology and behavioral economics, are instrumental
in unraveling the key determinants of consumption behavior,
ultimately aiding in more informed decision-making.

VII. CONCLUSIONS

This paper has introduced a comprehensive modeling frame-
work for conceptualizing Smart Water Networks (SWN)
as Cyber-Physical-Socio-Environmental Systems (CPSES).
CPSES integrates the complex interactions between the cyber
and physical constituents, along with societal stakeholders,
while considering critical interdependencies with the environ-
ment and the implications of climate change.

The framework provides a holistic approach to understand-
ing the complex dynamics and risks of SWN, aiming to
guide future software and decision support tools. Through the
adoption of tools built using the CPSES reference framework
(such as Digital Twins), stakeholders will be able to manage
SWN more efficiently and resiliently. By incorporating real-
time data analytics, enhanced sensor networks, and advanced
modeling techniques, the CPSES framework supports more
effective monitoring, control, and management of water re-
sources. The integration of societal and environmental aspects
will improve not only operational efficiency but also resilience
during emergencies. Furthermore, the adoption of the frame-
work will provide actionable insights to industry professionals
and policymakers for future investments as well as strategic
decisions toward adaptability, security, and sustainability, con-
sidering the challenges of climate change, urbanization, and
other cyber-physical threats.

CPSES emphasizes the need for multidisciplinary collabo-
ration, extending beyond the technical and engineering dimen-
sions to include social sciences, economics, and environmental
science. Through these synergies, we can foster the evolution
of future smart water distribution systems that are more
sustainable, efficient, resilient, and equitable. Future research
should focus on refining the computational models within
the CPSES framework to better capture the dynamics and
interdependencies, further understand the security challenges,
and integrate advanced technologies. Furthermore, open tools
should be designed to support the development of Digital
Twins, which incorporate the different CPSES models and
interdependencies with water data spaces.
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