
RNeXML: a package for reading and writing richly annotated phylogenetic,1

character, and trait data in R2

Carl Boettiger∗,a, Scott Chamberlainb, Rutger Vosc, Hilmar Lappd3

aUniversity of California, Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720-3114, USA4

bUniversity of California, Berkeley, CA, USA5

cNaturalis Biodiversity Center, Leiden, the Netherlands6

dCenter for Genomic and Computational Biology, Duke University, and National Evolutionary Synthesis Center, Durham,7

NC, USA8

Abstract9

1. NeXML is a powerful and extensible exchange standard recently proposed to better meet the10

expanding needs for phylogenetic data and metadata sharing. Here we present the RNeXML11

package, which provides users of the R programming language with easy-to-use tools for reading12

and writing NeXML documents, including rich metadata, in a way that interfaces seamlessly with13

the extensive library of phylogenetic tools already available in the R ecosystem.14

2. Wherever possible, we designed RNeXML to map NeXML document contents, whose arrangement15

is influenced by the format’s XML Schema definition, to their most intuitive or useful representation16

in R. To make NeXML’s powerful facility for recording semantically rich machine-readable metadata17

accessible to R users, we designed a functional programming interface to it that hides the semantic18

web standards leveraged by NeXML from R users who are unfamiliar with them.19

3. RNeXML can read any NeXML document that validates, and it generates valid NeXML documents20

from phylogeny and character data in various R representations in use. The metadata programming21

interface at a basic level aids fulfilling data documentation best practices, and at an advanced22

level preserves NeXML’s nearly limitless extensibility, for which we provide a fully working23

demonstration. Furthermore, to lower the barriers to sharing well-documented phylogenetic data,24

RNeXML has started to integrate with taxonomic metadata augmentation services on the web,25

and with online repositories for data archiving.26

4. RNeXML allows R’s rich ecosystem to read and write data in the NeXML format through an27

interface that is no more involved than reading or writing data from other, less powerful data28

formats. It also provides an interface designed to feel familiar to R programmers and to be29

consistent with recommended practices for R package development, yet that retains the full power30

∗Corresponding author
Email address: cboettig(at)gmail.com (Carl Boettiger) June 27, 2016

for users to add their own custom data and metadata to the phylogenies they work with, without31

introducing potentially incompatible changes to the exchange standard.32

Introduction33

Users of the popular statistical and mathematical computing platform R (R Core Team 2014) enjoy a34

wealth of readily installable comparative phylogenetic methods and tools (O’Meara 2014). Exploiting35

the opportunities arising from this wealth for complex and integrative comparative research questions36

relies on the ability to reuse and integrate previously generated or published data and metadata. The37

expanding data exchange needs of the evolutionary research community are rapidly outpacing the38

capabilities of most current and widely used data exchange standards (Vos et al. 2012), which were39

all developed a decade or more ago. This has resulted in a radiation of different data representations40

and exchange standard “flavors” that are no longer interoperable at the very time when the growth of41

available data and methods has made that interoperability most valuable. In response to the unmet42

needs for standardized data exchange in phylogenetics, a modern XML-based exchange standard, called43

NeXML, has recently been developed (Vos et al. 2012). NeXML comprehensively supports current data44

exchange needs, is predictably machine-readable, and is forward compatible.45

The exchange problem for phylogenetic data is particularly acute in light of the challenges in finding46

and sharing phylogenetic data without the otherwise common loss of most data and metadata semantics47

(Stoltzfus et al. 2012; Drew et al. 2013; Cranston et al. 2014). For example, the still popular NEXUS48

file format (Maddison et al. 1997) cannot consistently represent horizontal gene transfer or ambiguity49

in reading a character (such as a DNA sequence base pair). This and other limitations have led to50

modifications of NEXUS in different ways for different needs, with the unfortunate result that NEXUS51

files generated by one program can be incompatible with another (Vos et al. 2012). Without a formal52

grammar, software based on NEXUS files may also make inconsistent assumptions about tokens, quoting,53

or element lengths. Vos et al. (2012) estimates that as many as 15% of the NEXUS files in the CIPRES54

portal contain unrecoverable but hard to diagnose errors.55

A detailed account of how the NeXML standard addresses these and other relevant challenges can be56

found in Vos et al. (2012). In brief, NeXML was designed with the following important properties. First,57

NeXML is defined by a precise grammar that can be programmatically validated; i.e., it can be verified58

whether a file precisely follows this grammar, and therefore whether it can be read (parsed) without59

2

errors by software that uses the NeXML grammar (e.g. RNeXML) is predictable. Second, NeXML60

is extensible: a user can define representations of new, previously unanticipated information (as we61

will illustrate) without violating its defining grammar. Third and most importantly, NeXML is rich in62

computable semantics: it is designed for expressing metadata such that machines can understand63

their meaning and make inferences from it. For example, OTUs in a tree or character matrix for frog64

species can be linked to concepts in a formally defined hierarchy of taxonomic concepts such as the65

Vertebrate Taxonomy Ontology (Midford et al. 2013), which enables a machine to infer that a query for66

amphibia is to include the frog data in what is returned. (For a more broader discussion of the value of67

such capabilities for evolutionary and biodiversity science we refer the reader to Parr et al. (2011).)68

To make the capabilities of NeXML available to R users in an easy-to-use form, and to lower the69

hurdles to adoption of the standard, we present RNeXML, an R package that aims to provide easy70

programmatic access to reading and writing NeXML documents, tailored for the kinds of use-cases that71

will be common for users and developers of the wealth of evolutionary analysis methods within the R72

ecosystem.73

The RNeXML package74

The RNeXML package is written entirely in R and available under a Creative Commons75

Zero public domain waiver. The current development version can be found on Github at76

https://github.com/ropensci/RNeXML, and the stable version can be installed from the CRAN77

repository. RNeXML is part of the rOpenSci project. Users of RNeXML are encouraged to submit bug78

reports or feature requests in the issues log on Github, or the phylogenetics R users group list at79

r-sig-phylo@r-project.org for help. Vignettes with more detailed examples of specific features of80

RNeXML are distributed with the R package and serve as a supplement to this manuscript. Each of81

the vignettes can be found at http://ropensci.github.io/RNeXML/.82

Representation of NeXML documents in R83

Conceptually, a NeXML document has the following components: (1) phylogeny topology and branch84

length data, (2) character or trait data in matrix form, (3) operational taxonomic units (OTUs), and (4)85

metadata. To represent the contents of a NeXML document (currently in memory), RNeXML defines the86

nexml object type. This type therefore holds phylogenetic trees as well as character or trait matrices,87

and all metadata, which is similar to the phylogenetic data object types defined in the phylobase88

3

package (NESCENT R Hackathon Team 2014), but contrasts with the more widely used ones defined89

in the ape package (Paradis et al. 2004), which represents trees alone.90

When reading and writing NeXML documents, RNeXML aims to map their components to and from,91

respectively, their most widely used representations in R. As a result, the types of objects accepted92

or returned by the package’s methods are the phylo and multiPhylo objects from the ape package93

(Paradis et al. 2004) for phylogenies, and R’s native data.frame list structure for data matrices.94

Reading phylogenies and character data95

The method nexml_read() reads NeXML files, either from a local file, or from a remote location via96

its URL, and returns an object of type nexml:97

nex <- nexml_read("components/trees.xml")

The method get_trees_list() can be used to extract the phylogenies as an ape::multiPhylo object,98

which can be treated as a list of ape::phylo objects:99

phy <- get_trees_list(nex)

The get_trees_list() method is designed for use in scripts, providing a consistent and predictable100

return type regardless of the number of phylogenies a NeXML document contains. For greater convenience101

in interactive use, the method get_trees() returns the R object most intuitive given the arrangement102

of phylogeny data in the source NeXML document. For example, the method returns an ape::phylo103

object if the NeXML document contains a single phylogeny, an ape::multiPhylo object if it contains104

multiple phylogenies arranged in a single trees block, and a list of ape::multiPhylo objects if it105

contains multiple trees blocks (the capability for which NeXML inherits from NEXUS).106

If the location parameter with which the nexml_read() method is invoked is recognized as a URL,107

the method will automatically download the document to the local working directory and read it from108

there. This gives convenient and rapid access to phylogenetic data published in NeXML format on the109

web, such as the content of the phylogenetic data repository TreeBASE (Piel et al. 2002, 2009). For110

example, the following plots a tree in TreeBASE (using ape’s plot function):111

4

tb_nex <- nexml_read(

"https://raw.github.com/TreeBASE/supertreebase/master/data/treebase/S100.xml")

tb_phy <- get_trees_list(tb_nex)

plot(tb_phy[[1]])

The method get_characters() obtains character data matrices from a nexml object, and returns them112

as a standard data.frame R object with columns as characters and rows as taxa:113

nex <- nexml_read("components/comp_analysis.xml")

get_characters(nex)

log snout-vent length reef-dwelling114

taxon_1 4.7532824 1115

taxon_10 3.1373971 0116

taxon_2 -2.7624146 0117

taxon_3 2.1049413 0118

taxon_4 -4.9504770 0119

taxon_5 1.2714718 1120

taxon_6 6.2593966 1121

taxon_7 0.9099634 1122

taxon_8 -3.2777799 0123

taxon_9 2.0959433 1124

A NeXML data matrix can be of molecular (for molecular sequence alignments), discrete (for most125

morphological character data), or continuous type (for many trait data). To enable strict validation126

of data types NeXML allows, and if their data types differ requires multiple data matrices to be127

separated into different “blocks”. Since the data.frame data structure in R has no such constraints, the128

get_characters() method combines such blocks as separate columns into a single data.frame object,129

provided they correspond to the same taxa. Otherwise, a list of data.frames is returned, with list130

elements corresponding to characters blocks. Similar to the methods for obtaining trees, there is also a131

method get_characters_list(), which always returns a list of data.frames, one for each character132

block.133

5

Writing phylogenies and character data134

The method nexml_write() generates a NeXML file from its input parameters. In its simplest135

invocation, the method writes a tree to a file:136

data(bird.orders)

nexml_write(bird.orders, file = "birds.xml")

The first argument to nexml_write() is either an object of type nexml, or any object that can be coerced137

to it, such as in the above example an ape::phylo phylogeny. Alternatively, passing a multiPhylo138

object would write a list of phylogenies to the file.139

In addition to trees, the nexml_write() method also allows to specify character data as another140

parameter. The following example uses data from the comparative phylogenetics R package geiger141

(Pennell et al. 2014).142

library("geiger")

data(geospiza)

nexml_write(trees = geospiza$phy,

characters = geospiza$dat,

file="geospiza.xml")

Note that the NeXML format is well-suited for incomplete data: for instance, here it does not assume143

the character matrix has data for every tip in the tree.144

Validating NeXML145

File validation is a central feature of the NeXML format which ensures that any properly implemented146

NeXML parser will always be able to read the NeXML file. The function takes the path to any NeXML147

file and returns TRUE to indicate a valid file, or FALSE otherwise, along with a display of any error148

messages generated by the validator.149

nexml_validate("geospiza.xml")

[1] TRUE150

6

The nexml_validate() function performs this validation using the online NeXML validator (when a151

network connection is available), which performs additional checks not expressed in the NeXML schema152

itself (Vos et al. 2012). If a network connection is not available, the function falls back on the schema153

validation method from the XML package (Lang 2013).154

Creating and populating nexml objects155

Instead of packaging the various components for a NeXML file at the time of writing the file, RNeXML156

also allows users to create and iteratively populate in-memory nexml objects. The methods to do this157

are add_characters(), add_trees(), and add_meta(), for adding characters, trees, and metadata,158

respectively. Each of these functions will automatically create a new nexml object if not supplied with159

an existing one as the last (optional) argument.160

For example, here we use add_trees() to first create a nexml object with the phylogeny data, and161

then add the character data to it:162

nexObj <- add_trees(geospiza$phy)

nexObj <- add_characters(geospiza$dat, nexObj)

The data with which a nexml object is populated need not share the same OTUs. RNeXML automatically163

adds new, separate OTU blocks into the NeXML file for each data matrix and tree that uses a different164

set of OTUs.165

Other than storage size, there is no limit to the number of phylogenies and character matrices that166

can be included in a single NeXML document. This allows, for example, to capture samples from a167

posterior probability distribution of inferred or simulated phylogenies and character states in a single168

NeXML file.169

Data documentation and annotation with built-in metadata170

NeXML allows attaching (“annotating”) metadata to any data element, and even to metadata themselves.171

Whether at the level of the document as a whole or an individual data matrix or phylogeny, metadata172

can provide bibliographic and provenance information, for example about the study as part of which173

the phylogeny was generated or applied, which data matrix and which methods were used to generate it.174

Metadata can also be attached to very specific elements of the data, such as specific traits, individual175

OTUs, nodes, or even edges of the phylogeny.176

7

As described in Vos et al. (2012), to encode metadata annotations NeXML uses the “Resource177

Description Framework in Annotations” (RDFa) (Prud’hommeaux 2014). This standard provides for178

a strict machine-readable format yet enables future backwards compatibility with compliant NeXML179

parsers (and thus RNeXML), because the capacity of a tool to parse annotations is not predicated on180

understanding the meaning of annotations it has not seen before.181

To lower the barriers to sharing well-documented phylogenetic data, RNeXML aims to make recording182

useful and machine-readable metadata easier at several levels.183

First, when writing a NeXML file the package adds certain basic metadata automatically if they184

are absent, using default values consistent with recommended best practices (Cranston et al. 2014).185

Currently, this includes naming the software generating the NeXML, a time-stamp of when a tree was186

produced, and an open data license. These are merely default arguments to add_basic_meta() and187

can be configured.188

Second, RNeXML provides a simple method, called add_basic_metadata(), to set metadata attributes189

commonly recommended for inclusion with data to be publicly archived or shared (Cranston et al.190

2014). The currently accepted parameters include title, description, creator, pubdate, rights,191

publisher, and citation. Behind the scenes the method automatically anchors these attributes in192

common vocabularies (such as Dublin Core).193

Third, RNeXML integrates with the R package taxize (Chamberlain & Szöcs 2013) to mitigate one of194

the most common obstacles to reuse of phylogenetic data, namely the misspellings and inconsistent195

taxonomic naming with which OTU labels are often fraught. The taxize_nexml() method in RNeXML196

uses taxize to match OTU labels against the NCBI database, and, where a unique match is found, it197

annotates the respective OTU with the matching NCBI identifier.198

Data annotation with custom metadata199

The RNeXML interface described above for built-in metadata allows users to create precise and semantically200

rich annotations without confronting any of the complexity of namespaces and ontologies. Nevertheless,201

advanced users may desire the explicit control over these semantic tools that takes full advantage of202

the flexibility and extensibility of the NeXML specification (Parr et al. 2011; Vos et al. 2012). In this203

section we detail how to accomplish these more complex uses in RNeXML.204

Using a vocabulary or ontology terms rather than simple text strings to describe data is crucial for205

allowing machines to not only parse but also interpret and potentially reason over their semantics.206

8

To achieve this benefit for custom metadata extensions, the user necessarily needs to handle certain207

technical details from which the RNeXML interface shields her otherwise, in particular the globally unique208

identifiers (normally HTTP URIs) of metadata terms and vocabularies. To be consistent with XML209

terminology, RNeXML calls vocabulary URIs namespaces, and their abbreviations prefixes. For example,210

the namespace for the Dublin Core Metadata Terms vocabulary is “http://purl.org/dc/elements/1.1/”.211

Using its common abbreviation “dc”, a metadata property “dc:title” expands to the identifier “http:212

//purl.org/dc/elements/1.1/title”. This URI resolves to a human and machine-readable (depending on213

access) definition of precisely what the term title in Dublin Core means. In contrast, just using the214

text string “title” could also mean the title of a person, a legal title, the verb title, etc. URI identifiers215

of metadata vocabularies and terms are not mandated to resolve, but if machines are to derive the216

maximum benefit from them, they should resolve to a definition of their semantics in RDF.217

RNeXML includes methods to obtain and manipulate metadata properties, values, identifiers, and218

namespaces. The get_namespaces() method accepts a nexml object and returns a named list of219

namespace prefixes and their corresponding identifiers known to the object:220

birds <- nexml_read("birds.xml")

prefixes <- get_namespaces(birds)

prefixes["dc"]

dc221

"http://purl.org/dc/elements/1.1/"222

The get_metadata() method returns, as a named list, the metadata annotations for a given nexml223

object at a given level, with the whole NeXML document being the default level ("all" extracts all224

metadata objects):225

meta <- get_metadata(birds)

otu_meta <- get_metadata(birds, level="otu")

The returned list does not include the data elements to which the metadata are attached. Therefore, a226

different approach, documented in the metadata vignette, is recommended for accessing the metadata227

attached to data elements.228

9

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title

The meta() method creates a new metadata object from a property name and content (value). For229

example, the following creates a modification date metadata object, using a property in the PRISM230

vocabulary:231

modified <- meta(property = "prism:modificationDate", content = "2013-10-04")

Metadata annotations in NeXML can be nested within another annotation, which the meta() method232

accommodates by accepting a parameter children, with the list of nested metadata objects (which can233

themselves be nested) as value.234

The add_meta() function adds metadata objects as annotations to a nexml object at a specified level,235

with the default level being the NeXML document as a whole:236

birds <- add_meta(modified, birds)

If the prefix used by the metadata property is not among the built-in ones (which can be obtained237

using get_namespaces()), it has to be provided along with its URI as the namespaces parameter. For238

example, the following uses the “Simple Knowledge Organization System” (SKOS) vocabulary to add a239

note to the trees in the nexml object:240

history <- meta(property = "skos:historyNote",

content = "Mapped from the bird.orders data in the ape package using RNeXML")

birds <- add_meta(history,

birds,

level = "trees",

namespaces = c(skos = "http://www.w3.org/2004/02/skos/core#"))

Alternatively, additional namespaces can also be added in batch using the add_namespaces() method.241

By virtue of subsetting the S4 nexml object, RNeXML also offers fine control of where a meta element is242

added, for which the package vignette on S4 subsetting of nexml contains examples.243

Because NeXML expresses all metadata using the RDF standard, and stores them compliant with244

RDFa, they can be extracted as an RDF graph, queried, analyzed, and mashed up with other RDF data,245

local or on the web, using a wealth of off-the-shelf tools for working with RDF (see Prud’hommeaux246

(2014) or Hartig (2012)). Examples for these possibilities are included in the RNeXML SPARQL vignette247

10

http://www.w3.org/TR/skos-reference/

(a recursive acronym for SPARQL Protocol and RDF Query Language, see http://www.w3.org/TR/rdf-248

sparql-query/), and the package also comes with a demonstration that can be run from R using the249

following command: demo("sparql", "RNeXML")).250

Using metadata to extend the NeXML standard251

NeXML was designed to prevent the need for future non-interoperable “flavors” of the standard in252

response to new research directions. Its solution to this inevitable problem is a highly flexible metadata253

system without sacrificing strict validation of syntax and structure.254

Here we illustrate how RNeXML’s interface to NeXML’s metadata system can be used to record and255

share a type of phylogenetic data not taken into account when NeXML was designed, in this case256

stochastic character maps (Huelsenbeck et al. 2003). Such data assign certain parts (corresponding to257

time) of each branch in a time-calibrated phylogeny to a particular “state” (typically of a morphological258

characteristic). The current de-facto format for sharing stochastic character maps, created by simmap259

(Bollback 2006), a widely used tool for creating such maps, is a non-interoperable modification of the260

standard Newick tree format. This means that computer programs designed to read Newick or NEXUS261

formats may fail when trying to read in a phylogeny that includes simmap annotations.262

In contrast, by allowing new data types to be added as — sometimes complex — metadata annotations263

NeXML can accommodate data extensions without compromise to its grammar and thus syntax In264

NeXML. To illustrate how RNeXML facilitates extending the NeXML standard in this way, we have265

implemented two functions in the package, nexml_to_simmap and simmap_to_nexml. These functions266

show how simmap data can be represented as meta annotations on the branch length elements of a267

NeXML tree, and provide routines to convert between this NeXML representation and the extended268

ape::phylo representation of a simmap tree in R that was introduced by Revell (2012). We encourage269

readers interested in this capability to consult the example code in simmap_to_nexml to see how this is270

implemented.271

Extensions to NeXML must also be defined in the file’s namespace in order to valid. This provides a272

way to ensure that a URI providing documentation of the extension is always included. Our examples273

here use the prefix, simmap, to group the newly introduced metadata properties in a vocabulary, for274

which the add_namespace() method can be used to give a URI as an identifier:275

11

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

nex <- add_namespaces(c(simmap =

"https://github.com/ropensci/RNeXML/tree/master/inst/simmap.md"))

Here the URI does not resolve to a fully machine-readable definition of the terms and their semantics,276

but it can nonetheless be used to provide at least a human-readable informal definition of the terms.277

Publishing NeXML files from R278

Data archiving is increasingly required by scientific journals, including in evolutionary biology, ecology,279

and biodiversity (e.g. Rausher et al. (2010)). The effort involved with preparing and submitting280

properly annotated data to archives remains a notable barrier to the broad adoption of data archiving281

and sharing as a normal part of the scholarly publication workflow (Tenopir et al. 2011; Stodden 2014).282

In particular, the majority of phylogenetic trees published in the scholarly record are inaccessible or lost283

to the research community (Drew et al. 2013).284

One of RNeXML’s aims is to promote the archival of well-documented phylogenetic data in scientific data285

repositories, in the form of NeXML files. To this end, the method nexml_publish() provides an API286

directly from within R that allows data archival to become a step programmed into data management287

scripts. Initially, the method supports the data repository Figshare (http://figshare.com):288

doi <- nexml_publish(birds, repository="figshare")

This method reserves a permanent identifier (DOI) on the figshare repository that can later be made289

public through the figshare web interface. This also acts as a secure backup of the data to a repository290

and a way to share with collaborators prior to public release.291

Conclusions and future directions292

RNeXML allows R’s ecosystem to read and write data in the NeXML format through an interface that is293

no more involved than reading or writing data from other phylogenetic data formats. It also carries294

immediate benefits for its users compared to other formats. For example, comparative analysis R295

packages and users frequently add their own metadata annotations to the phylogenies they work with,296

such as annotations of species, stochastic character maps, trait values, model estimates and parameter297

values. RNeXML affords R the capability to harness machine-readable semantics and an extensible298

12

http://figshare.com

metadata schema to capture, preserve, and share these and other kinds of information, all through an299

API instead of having to understand in detail the schema underlying the NeXML standard. To assist300

users in meeting the rising bar for best practices in data sharing in phylogenetic research (Cranston et301

al. 2014), RNeXML captures metadata information from the R environment to the extent possible, and302

applies reasonable defaults.303

The goals for continued development of RNeXML revolve primarily around better interoperability with304

other existing phylogenetic data representations in R, such as those found in the phylobase package305

(NESCENT R Hackathon Team 2014); and better integration of the rich metadata semantics found in306

ontologies defined in the Web Ontology Language (OWL), including programmatic access to machine307

reasoning with such metadata.308

Acknowledgements309

This project was supported in part by the National Evolutionary Synthesis Center (NESCent) (NSF310

#EF-0905606), and grants from the National Science Foundation (DBI-1306697) and the Alfred311

P Sloan Foundation (Grant 2013-6-22). RNeXML started as a project idea for the Google Summer312

of Code(TM), and we thank Kseniia Shumelchyk for taking the first steps to implement it. We313

are grateful to F. Michonneau for helpful comments on an earlier version of this manuscript, and314

reviews by Matthew Pennell, Associate Editor Richard FitzJohn, and an anonymous reviewer. At315

their behest, the reviews of FitzJohn and Pennell can be found in this project’s GitHub page at316

github.com/ropensci/RNeXML/issues/121 and github.com/ropensci/RNeXML/issues/120, together317

with our replies and a record of our revisions.318

Data Accessibility319

All software, scripts and data used in this paper can be found in the permanent data archive Zenodo under320

the digital object identifier doi:10.5281/zenodo.13131 (Boettiger et al. 2014). This DOI corresponds to321

a snapshot of the GitHub repository at github.com/ropensci/RNeXML.322

References323

Boettiger, C., Vos, R., Chamberlain, S. & Lapp, H. (2014). RNeXML v2.0.0. Retrieved from http:324

//dx.doi.org/10.5281/zenodo.13131325

Bollback, J. (2006).BMC Bioinformatics, 7, 88. Retrieved from http://dx.doi.org/10.1186/1471-2105-7-326

13

https://github.com/ropensci/RNeXML/issues/121
https://github.com/ropensci/RNeXML/issues/120
doi:10.5281/zenodo.13131
https://github.com/ropensci/RNeXML
http://dx.doi.org/10.5281/zenodo.13131
http://dx.doi.org/10.5281/zenodo.13131
http://dx.doi.org/10.5281/zenodo.13131
http://dx.doi.org/10.1186/1471-2105-7-88
http://dx.doi.org/10.1186/1471-2105-7-88
http://dx.doi.org/10.1186/1471-2105-7-88

88327

Chamberlain, S.A. & Szöcs, E. (2013). Taxize: Taxonomic search and retrieval in r. F1000Research.328

Retrieved from http://dx.doi.org/10.12688/f1000research.2-191.v2329

Cranston, K., Harmon, L.J., O’Leary, M.A. & Lisle, C. (2014). Best practices for data shar-330

ing in phylogenetic research. PLoS Curr. Retrieved from http://dx.doi.org/10.1371/currents.tol.331

bf01eff4a6b60ca4825c69293dc59645332

Drew, B.T., Gazis, R., Cabezas, P., Swithers, K.S., Deng, J., Rodriguez, R., Katz, L.A., Crandall,333

K.A., Hibbett, D.S. & Soltis, D.E. (2013). Lost branches on the tree of life. PLoS Biol, 11, e1001636.334

Retrieved from http://dx.doi.org/10.1371/journal.pbio.1001636335

Hartig, O. (2012). An introduction to sPARQL and queries over linked data. Web engineering pp.336

506–507. Springer Science + Business Media. Retrieved from http://dx.doi.org/10.1007/978-3-642-337

31753-8_56338

Huelsenbeck, J.P., Nielsen, R. & Bollback, J.P. (2003). Stochastic mapping of morphological characters.339

Systematic Biology, 52, 131–158. Retrieved from http://dx.doi.org/10.1080/10635150390192780340

Lang, D.T. (2013). XML: Tools for parsing and generating xML within r and s-plus. Retrieved from341

http://CRAN.R-project.org/package=XML342

Maddison, D., Swofford, D. & Maddison, W. (1997). NEXUS: An extensible file format for systematic343

information. Syst. Biol., 46, 590–621. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11975335344

Midford, P., Dececchi, T., Balhoff, J., Dahdul, W., Ibrahim, N., Lapp, H., Lundberg, J., Mabee, P.,345

Sereno, P., Westerfield, M., Vision, T. & Blackburn, D. (2013). The vertebrate taxonomy ontology: A346

framework for reasoning across model organism and species phenotypes. J. Biomed. Semantics, 4, 34.347

Retrieved from http://dx.doi.org/10.1186/2041-1480-4-34348

NESCENT R Hackathon Team. (2014). Phylobase: Base package for phylogenetic structures and349

comparative data. Retrieved from http://CRAN.R-project.org/package=phylobase350

O’Meara, B. (2014). CRAN task view: Phylogenetics, especially comparative methods. Retrieved from351

http://cran.r-project.org/web/views/Phylogenetics.html352

Paradis, E., Claude, J. & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R353

language. Bioinformatics, 20, 289–290.354

Parr, C.S., Guralnick, R., Cellinese, N. & Page, R.D.M. (2011). Evolutionary informatics: unifying355

14

http://dx.doi.org/10.1186/1471-2105-7-88
http://dx.doi.org/10.1186/1471-2105-7-88
http://dx.doi.org/10.12688/f1000research.2-191.v2
http://dx.doi.org/10.1371/currents.tol.bf01eff4a6b60ca4825c69293dc59645
http://dx.doi.org/10.1371/currents.tol.bf01eff4a6b60ca4825c69293dc59645
http://dx.doi.org/10.1371/currents.tol.bf01eff4a6b60ca4825c69293dc59645
http://dx.doi.org/10.1371/journal.pbio.1001636
http://dx.doi.org/10.1007/978-3-642-31753-8_56
http://dx.doi.org/10.1007/978-3-642-31753-8_56
http://dx.doi.org/10.1007/978-3-642-31753-8_56
http://dx.doi.org/10.1080/10635150390192780
http://CRAN.R-project.org/package=XML
http://www.ncbi.nlm.nih.gov/pubmed/11975335
http://dx.doi.org/10.1186/2041-1480-4-34
http://CRAN.R-project.org/package=phylobase
http://cran.r-project.org/web/views/Phylogenetics.html

knowledge about the diversity of life. Trends in ecology & evolution, 27, 94–103. Retrieved from356

http://www.ncbi.nlm.nih.gov/pubmed/22154516357

Pennell, M.W., Eastman, J.M., Slater, G.J., Brown, J.W., Uyeda, J.C., Fitzjohn, R.G., Alfaro, M.E. &358

Harmon, L.J. (2014). Geiger v2.0: An expanded suite of methods for fitting macroevolutionary models359

to phylogenetic trees. Bioinformatics, 30, 2216–2218.360

Piel, W.H., Chan, L., Dominus, M.J., Ruan, J., Vos, R.A. & Tannen, V. (2009). TreeBASE v. 2: A361

database of phylogenetic knowledge. Retrieved from http://www.e-biosphere09.org362

Piel, W.H., Donoghue, M.J. & Sanderson, M.J. (2002). TreeBASE: A database of phylogenetic363

information. The interoperable ‘catalog of life’ (eds J. Shimura, K.L. Wilson & D. Gordon), pp. 41–47.364

Research report. National Institute for Environmental Studies, Tsukuba, Japan. Retrieved from365

http://donoghuelab.yale.edu/sites/default/files/124_piel_shimura02.pdf366

Prud’hommeaux, E. (2014). SPARQL query language for rDF. W3C. Retrieved from http://www.w3.367

org/TR/rdf-sparql-query/368

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for369

Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/370

Rausher, M.D., McPeek, M.A., Moore, A.J., Rieseberg, L. & Whitlock, M.C. (2010). Data archiving.371

Evolution, 64, 603–604. Retrieved from http://dx.doi.org/10.1111/j.1558-5646.2009.00940.x372

Revell, L.J. (2012). Phytools: An r package for phylogenetic comparative biology (and other things).373

Methods in Ecology and Evolution, 3, 217–223.374

Stodden, V. (2014). The scientific method in practice: Reproducibility in the computational sciences.375

SSRN Journal. Retrieved from http://dx.doi.org/10.2139/ssrn.1550193376

Stoltzfus, A., O’Meara, B., Whitacre, J., Mounce, R., Gillespie, E.L., Kumar, S., Rosauer, D.F. & Vos,377

R.A. (2012). Sharing and re-use of phylogenetic trees (and associated data) to facilitate synthesis. BMC378

Research Notes, 5, 574. Retrieved from http://dx.doi.org/10.1186/1756-0500-5-574379

Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A.U., Wu, L., Read, E., Manoff, M. & Frame, M.380

(2011). Data sharing by scientists: Practices and perceptions (C. Neylon, Ed.). PLoS ONE, 6, e21101.381

Retrieved from http://dx.doi.org/10.1371/journal.pone.0021101382

Vos, R.A., Balhoff, J.P., Caravas, J.A., Holder, M.T., Lapp, H., Maddison, W.P., Midford, P.E.,383

Priyam, A., Sukumaran, J., Xia, X. & Stoltzfus, A. (2012). NeXML: Rich, extensible, and verifiable384

15

http://www.ncbi.nlm.nih.gov/pubmed/22154516
http://www.e-biosphere09.org
http://donoghuelab.yale.edu/sites/default/files/124_piel_shimura02.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.R-project.org/
http://dx.doi.org/10.1111/j.1558-5646.2009.00940.x
http://dx.doi.org/10.2139/ssrn.1550193
http://dx.doi.org/10.1186/1756-0500-5-574
http://dx.doi.org/10.1371/journal.pone.0021101

representation of comparative data and metadata. Systematic Biology, 61, 675–689. Retrieved from385

http://dx.doi.org/10.1093/sysbio/sys025386

16

http://dx.doi.org/10.1093/sysbio/sys025

	Introduction
	The RNeXML package
	Representation of NeXML documents in R
	Reading phylogenies and character data
	Writing phylogenies and character data
	Validating NeXML
	Creating and populating nexml objects
	Data documentation and annotation with built-in metadata
	Data annotation with custom metadata
	Using metadata to extend the NeXML standard
	Publishing NeXML files from R

	Conclusions and future directions
	Acknowledgements
	Data Accessibility

	References

