Date: 2023-10-16 17:53:43
Author: T.Gibson
Run Name: Sim_1


The elasticity of each parameter within the NIS-intro-detect-sim script is tested and reported. Elasticity analysis is a method of comparing the sensitivity of each parameter where there is no scale in differences between parameters.

Three scenarios for site surveillance to detect non indigenous species (NIS) introduction are presented and the time to detection is reported.


Default Elasticity Parameters

The default parameters used for each run were as follows:

##       Parameter Name Input Value
## 1               name     default
## 2          num_sites         100
## 3          num_years          30
## 4     establish_risk exponential
## 5     establish_prob         0.8
## 6         intro_prob         0.8
## 7         intro_risk exponential
## 8    mean_visit_rate           1
## 9        p_detection         0.8
## 10      max_p_detect           1
## 11 max_p_detect_elas           1
## 12      min_p_detect         0.1
## 13    detect_dynamic    constant
## 14            seed_n           1
## 15 seed_n_elasticity           1
## 16         start_pop           1
## 17     start_possion           F
## 18             pop_R           2
## 19      growth_model exponential
## 20           pop_cap         500
## 21              APrb          10
## 22   Abund_Threshold        1000
## 23        Prob_Below         0.1
## 24        Prob_Above         0.8

The following input parameters (num_sites, num_years, mean_visit_rate, p_detection) are increased and decreased by 0.25 to determine whether the parameter is elastic. An elasticity value > 1 indicates elasticity. An elasticity value between 0 and 1 is inelastic.


Elasticity Analysis

## [[1]]
## Warning: Removed 16 rows containing missing values
## (`geom_point()`).

## 
## [[2]]

## 
## [[3]]

## Warning: Removed 16 rows containing missing values
## (`geom_point()`).

Version

The version (sha) of https://github.com/CefasRepRes/NIS-intro-detect-sim repository used was: 258f4915f50668b7331476970d16316401077ccf

## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19043)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8 
## [2] LC_CTYPE=English_United Kingdom.utf8   
## [3] LC_MONETARY=English_United Kingdom.utf8
## [4] LC_NUMERIC=C                           
## [5] LC_TIME=English_United Kingdom.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods  
## [7] base     
## 
## other attached packages:
##  [1] dplyr_1.1.2       data.table_1.14.8 ReIns_1.0.12     
##  [4] EnvStats_2.7.0    patchwork_1.1.2   ggplot2_3.4.2    
##  [7] gtools_3.9.4      reshape2_1.4.4    truncnorm_1.0-9  
## [10] here_1.0.1        yaml_2.3.7       
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.0  xfun_0.39         bslib_0.5.0      
##  [4] splines_4.2.2     lattice_0.20-45   colorspace_2.1-0 
##  [7] vctrs_0.6.2       generics_0.1.3    htmltools_0.5.5  
## [10] utf8_1.2.3        survival_3.4-0    rlang_1.1.1      
## [13] pillar_1.9.0      jquerylib_0.1.4   glue_1.6.2       
## [16] withr_2.5.0       foreach_1.5.2     lifecycle_1.0.3  
## [19] plyr_1.8.8        stringr_1.5.0     munsell_0.5.0    
## [22] gtable_0.3.3      codetools_0.2-18  evaluate_0.21    
## [25] labeling_0.4.2    knitr_1.43        fastmap_1.1.1    
## [28] doParallel_1.0.17 parallel_4.2.2    fansi_1.0.4      
## [31] highr_0.10        Rcpp_1.0.10       scales_1.2.1     
## [34] cachem_1.0.8      jsonlite_1.8.5    farver_2.1.1     
## [37] digest_0.6.31     stringi_1.7.12    cowplot_1.1.1    
## [40] grid_4.2.2        rprojroot_2.0.3   cli_3.6.1        
## [43] tools_4.2.2       magrittr_2.0.3    sass_0.4.6       
## [46] tibble_3.2.1      crayon_1.5.2      pkgconfig_2.0.3  
## [49] Matrix_1.5-1      rmarkdown_2.22    rstudioapi_0.14  
## [52] iterators_1.0.14  R6_2.5.1          compiler_4.2.2