
In-Graph-Database Implementation of a General,

Reusable Graph Schema and a Modular Data

Preprocessing Pipeline For Eye-Tracking Data

Dominique Hausler∗ Jennifer Landes
0009-0004-2381-133X 0009-0003-1914-598X

University of Regensburg
Data Engineering Group
firstname.lastname@ur.de

December 2024

1 Graph Schema Modelling

In this section we present how CSV files containing eye-tracking data can be used
to generate a specified schema. This general and re-usable schema is beneficial
over the usual handling of CSV files because is enable storing, manipulating
and updating the data in one data model. We choose a graph database, as
eye-tracking data resembles highly interconnected time series data. This data
can be visualized intuitively within Neo4j.

1.1 Modelling Time Series Data

In order to read the eye-tracking data to Neo4j an APOC (Awsome Procedures
On Cypher) function is used (Listing 1 Line 1). Here an example is shown for
the data gained for a specific task of one test person. Each row of the CSV file
is stored in a timestamp labeled node (Line 2), that contains all of the columns
as property keys (Line 3).

Listing 1: Read data from CSV file
1 LOAD CSV WITH HEADERS FROM "file:///data.csv" AS row

2 CREATE (n:Timestamp)

3 SET n = row

Data Cleaning. In a next step, the validity of the data is checked. This
is beneficial in the beginning to increase performance because datasets might
be considerably large. To avoid high-compute all invalid data is first selected

∗Corresponding author.

1



(Listing 2 Line 3-5) and removed (Line 11). Consequently, it does not cause
additional performance for the preprocessing pipeline. A value other than zero
indicate that an error occurred during the eye-tracking experiment.

Listing 2: Check validity

1 MATCH (n:Timestamp)

2 // get all cases where data is invalid

3 WHERE n.ET_ValidityLeft IS NULL OR n.ET_ValidityRight IS NULL

4 OR n.ET_ValidityLeft <> n.ET_ValidityRight

5 OR n.ET_ValidityLeft = n.ET_ValidityRight AND (n.ET_ValidityLeft = "4.0"

AND n.ET_ValidityRight = "4.0")

6 WITH collect(n) AS nonValidNodeIdList

7 // get all nodes with unvalid data by id

8 CALL apoc.nodes.get(nonValidNodeIdList)

9 YIELD node

10 // remove invalid nodes

11 DELETE node

To retrieve the desired general and re-usable graph schema that is applicable
to perform data preprocessing, new labels need to be created (see Listing 3).
Our schema needs the SourceStimuliName, holding the information about the
performed task. As this currently is stored in a property key, we select it and
add it as label to the associated node. First, the desired label is selected in
Line 1, throught the apoc function in Line 3 is used to add new labels to the
nodes selected in Line 1. In the end (Line 8) the results are outputted.

Listing 3: Move property value of ’SourceStimuliName’ to become node label

1 MATCH(n:Timestamp)

2 // dynamically add values of property key ‘SourceStimuliName‘ to ‘Timestamp‘

nodes

3 CALL apoc.create.addLabels(n, [n.SourceStimuliName])

4 YIELD node

5 // dynamically remove property key ‘SourceStimuliName‘ from ‘Timestemp‘

nodes

6 CALL apoc.create.removeProperties(node, [’SourceStimuliName’])

7 YIELD node as my_nodes

8 RETURN labels(my_nodes)

Afterwards, we need to create fixation, saccade and gaze nodes. This is
necessary to specify and give an adequate overview over the stored data. In
Listing 4 this is demonstrated for fixations, meaning all data connected to fixa-
tions is gathered (Line 2-9)and then outsourced by creating new nodes (Line 11)
with all related data as property keys. As copies are created, holding the re-
quired property keys were created in Line 11, these are renamed to fixation in
Line 16. After renaming the labels of the copied nodes, substrings are used to
select the desired property keys (by defining a regex pattern) in Line 23. This
is done because all related property keys start with the substring Fixation (for
saccades the substring would be Saccade and so on). The code snippet in List-
ing 4 can be reused for saccades and gazes by changing the substings (Line 23)
as well as the desired label to give to the newly created nodes (Line 16).

2



Listing 4: Create fixation nodes for each unique FixationStart value
1 CALL {

2 // get all nodes with unique values for the property key ‘FixationStart‘

3 CALL{

4 MATCH (n:Timestamp)

5 WITH DISTINCT n ORDER BY n.‘Fixation Start‘

6 WITH n.‘Fixation Start‘ AS fixationStart, collect(n)[0] AS

distinctFixationStartNodes

7 WITH collect(distinctFixationStartNodes) AS

distinctFixationStartNodeList

8 RETURN distinctFixationStartNodeList

9 }

10 // copy nodes with unique ‘FixationStart‘ value

11 CALL apoc.refactor.cloneNodes(distinctFixationStartNodeList)

12 YIELD input, output

13 WITH input AS distinctFixationStartNodes, collect(output) AS

fixationNodes, output

14
15 // rename label of copied nodes to ‘Fixation‘

16 CALL apoc.refactor.rename.label("Timestamp", "Fixation", fixationNodes)

17 YIELD batches, total, timeTaken, committedOperations

18 RETURN batches, total, timeTaken, committedOperations

19 }

20 MATCH (n:Fixation)

21 WITH n, collect(n) as fixationNodes

22 //only retrieve keys without the substring ‘Fixation‘ by using regex

23 WITH n, fixationNodes, [key IN keys(n) WHERE key =~ ’^(?!Fixation)[^$]*’] AS

fixationKeys

24 // remove all keys found by regex to only keep property keys with

25 CALL apoc.create.removeProperties(fixationNodes, fixationKeys)

26 YIELD node RETURN node

Besides creating the schema by adding fixation, saccade and gaze node, they
also need to be connected to the associated nodes they retrieved their data
from (see Listing 5). To be able to retrieve this information the outsourced
property keys, here fixation start, holding the same information as the newly
created fixation nodes were not deleted in Listing 4. This enables the creation
of associated relationships (Line 23). After selecting and ordering both the
timestamp nodes (Line 2-8) and the fixation nodes (Line 10-15) by fixation
start, those are unwinded (Line 17-18). In Line 21 identical values fixation
start are searched between timestamp and fixation nodes to create relationships
connecting them in Line 23. The last part of the code is used to detect all
property keys starting with the substing Fixation (Line 25) to delete these
property keys from the timestamp nodes (Line 28). Otherwise unnecessary
duplicated would occur.

Listing 5: Create realtionship between Fixation and Timestemp labeld nodes
depending on identical FixationStart propery values
1 // a list with all timestemp nodes is created and ored by the ‘Fixation

Start‘ values

2 CALL {

3 MATCH (n:Timestamp)

4 WITH DISTINCT n ORDER BY n.‘Fixation Start‘

5 WITH collect(n) AS timestampNodes

3



6 RETURN timestampNodes

7 }

8 WITH [x in range(0, size(timestampNodes)-1) | timestampNodes[x]] AS

timestampNodesOrdered

9 // all fixation nodes are collected and ordered by the ‘Fixation Start‘

value

10 CALL {

11 MATCH (m:Fixation)

12 WITH m ORDER BY m.‘Fixation Start‘

13 WITH collect(m) AS fixationNodes

14 RETURN fixationNodes

15 }

16 WITH timestampNodesOrdered, fixationNodes

17 UNWIND timestampNodesOrdered AS tsNode

18 UNWIND fixationNodes AS fixNode

19 // check unwinded node lists for identical ‘Fixation Start‘ values

20 WITH tsNode, fixNode

21 WHERE tsNode.‘Fixation Start‘ = fixNode.‘Fixation Start‘

22 // add new relationships

23 MERGE (tsNode)-[:IS_PART_OF]->(fixNode)

24 // select all property keys starting with Fixation from timestamp nodes

25 WITH tsNode, [key IN keys(tsNode) WHERE key STARTS WITH ’Fixation’] AS

fixationKeys

26 WITH collect(tsNode) AS tsNodeList, fixationKeys

27 // remove all properties starting with Fixation from timestamp nodes

28 CALL apoc.create.removeProperties(tsNodeList, fixationKeys)

29 YIELD node RETURN node

2 Data Prepossessing Steps

In this section we present our modular, adaptable, extendable and customizable
preprocessing pipeline. This can be done by freely combining the operators
that are available here. Moreover, it the pipeline can easily be extended or
combinations can be tested.

2.1 Feature Selection

First all irrelevant features, in order to prepare the data for machine learning
based analysis or classification, are deleted from the dataset. Due to name
conventions, we rename a property key in Listing 6. This enables us to faster
delete unnecessary properties while keeping the data about the pupil size.

Listing 6: Rename property keys of right and left pupile

1 MATCH (n:Timestamp)

2 WITH collect(n) AS nodes

3 // rename ‘ET_PupileRight‘ to ‘PupileRight‘

4 CALL apoc.refactor.rename.nodeProperty("ET_PupilRight", "PupilRight", nodes)

5 YIELD batches, total, timeTaken, committedOperations

6 // rename ‘ET_PupileLeft‘ to ‘PupileLeft‘

7 CALL apoc.refactor.rename.nodeProperty("ET_PupilLeft", "PupilLeft", nodes)

8 YIELD committedOperations AS results

9 RETURN results;

4



To minimizes data complexity, focusing only on the most informative fea-
tures related to gaze behavior, we now delete unnecessary data (Listing 7). All
irrelevant, unnecessary features are delete by searching for substrings (Line 3).

Listing 7: Remove unnecessary features

1 // remove all property keys starting with substring ‘ET_‘, ‘Event‘ or ‘

Interpolated‘

2 MATCH (n)

3 WITH n, [key IN keys(n) WHERE key STARTS WITH ’Event’ OR key STARTS WITH ’

ET_’ OR key STARTS WITH ’Interpolated’] AS etKeys

4 WITH collect(n) AS nodes, etKeys

5 CALL apoc.create.removeProperties(nodes, etKeys)

6 YIELD node RETURN node

2.2 Data Preparation

In this section a variety of data preparation algorithms implemented in-graph-
database are available. Either one algorithm can be selected or the results can
be compared to each other, depending on one’s needs.

2.2.1 Data Cleaning

Data Cleaning is performed right after reading the CSV file to Neo4j (see List-
ing 2). The substring search presented for the feature selection (Listing 4
Line 23) can be reused to e.g., remove whitespace. This could be done by search-
ing for property keys starting with a whitespace similar to Listing 5 Line 25.

2.2.2 Missing Value Imputation

Handling missing values is important to prepare the data for further analysis.
In this paper we present four different methods to handle null values. In the first
code fragment interpolation [2] is shown, all null values of Gaze X are selected
(Listing 8 Line 3). Then the predecessor and successor nodes are searched by
their ids in Line 5. Between those two the mean is calculated and set as new
value for the former null value (Line 12). By replacing the the property key
where null values need to be handled (like Gaze X in Listing 8 Line 3) and the
selected label Timestamp (Line 1) the code can be reused to perform missing
value imputation on other properties of differently labeled nodes as well. In
this code snippet the data is directly replaced. By using the SET command the
method used to do so can be stored in a the value interpolation in a property
key like missing value imputation method

Listing 8: Option A1: Interpolation for Gaze X

1 MATCH (n:Timestamp)

2 //search if any mandatory property key is empty

3 WHERE n.‘Gaze X‘ IS NULL OR n.‘Gaze Y‘ IS NULL OR n.‘Gaze Velocity‘ IS NULL

OR n.‘Gaze Acceleration‘ IS NULL

4 //get all ids

5



5 WITH ID(n)-1 AS predecessorNode, ID(n) AS nodeId, ID(n)+1 AS successorNode,

n, collect(n) AS nodes

6 // get gaze x values of following nodes

7 CALL apoc.nodes.get([successorNode])

8 YIELD node AS nextNodeList

9 // get ‘Gaze X‘ values of foregoing nodes

10 CALL apoc.nodes.get([predecessorNode])

11 YIELD node AS predecessorNodeList

12 CALL apoc.create.setProperty(nodes, ’Gaze X’, (toFloat(successorNodeList.‘

Gaze X‘) + toFloat(predecessorNodeList.‘Gaze X‘))/2)

13 YIELD node RETURN node

The second options would be deleting properties containing null values [6].
How this can be accomplished is shown in Listing 9.

Listing 9: Option B: delete values
1 MATCH (n:Timestamp)

2 //search if any mandatory property key is empty

3 WHERE n.‘Gaze X‘ IS NULL OR n.‘Gaze Y‘ IS NULL OR n.‘Gaze Velocity‘ IS NULL

OR n.‘Gaze Acceleration‘ IS NULL

4 DETACH DELETE n

The third operator, implemented by us is locf (last observed carried forward)
[7]. As a fourth option the code can also be adjusted to nocb (next observed car-
ried backward). The following code in Listing 10 illustrates locf for the property
key Gaze X of Timestamp labeled nodes. By simply using the successorNode

instead of predecessorNode in Line 10 this can be adjusted to nocb. Here the
property keys null value is replaced by the newly calculated one (Line 10).

Listing 10: Option C: locf – last observed value backward – or nocb – next
observed carried backward)
1 MATCH (n:Timestamp)

2 //search if any mandatory property key is empty

3 WHERE n.‘Gaze X‘ IS NULL OR n.‘Gaze Y‘ IS NULL OR n.‘Gaze Velocity‘ IS NULL

OR n.‘Gaze Acceleration‘ IS NULL

4 //get all ids

5 WITH ID(n)-1 AS predecessorNode, ID(n) AS nodeId, ID(n)+1 AS successorNode,

n, collect(n) AS nodes

6 // get gaze x values of foregoing nodes

7 CALL apoc.nodes.get([predecessorNode])

8 YIELD node AS predecessorNodeList

9 // add property ‘Gaze X‘ to selected nodes

10 CALL apoc.create.setProperty(nodes, ’Gaze X’, toFloat(predecessorNodeList.‘

Gaze X‘))

11 YIELD node RETURN node

2.2.3 Outlier Detection

Another important preprocessing step is the detection and handling of outliers
to prepare the data for ML-based analysis. We show three operators to do so:
Setting a threshold [8, 1], using the z-score [3] and the interquantil range [5].
Listing 11 demonstrates how datatypes can be changed. In this case the fixation
duration is changed form a string to a float.

6



Listing 11: Change datatype (here from string to float)
1 MATCH (n:Fixation)

2 SET n.‘Fixation Duration‘ = toFloat(n.‘Fixation Duration‘)

After the datatype was changed, we can start with the outlier detection. The
first operator uses a threshold, here a score under 60 milliseconds (Listing 12
Line 3), to identify if any fixation nodes were labeled falsely. If that is the case
their label is changed to saccade in Line 5.

Listing 12: Treshold based approach for Fixation nodes
1 MATCH (n:Fixation)

2 // set a treshold

3 WHERE n.‘Fixation Duration‘ < 60

4 WITH collect(n) AS outlier

5 CALL apoc.refactor.rename.label("Fixation", "Saccade", outlier)

6 YIELD batches, total, timeTaken, committedOperations

7 RETURN batches, total, timeTaken, committedOperations;

Another option is the z-score. As there is no predefined function to calcu-
late the z-score (see Listing 13 Line 17), the variance (Line 8) and the standard
derivation (Line 9) for the desired property key needs to be calculated before-
hand. Each of these interim results could also be added as property keys to later
reuse this value by using the SET command (Line 10). In this example only the
z-score is stored, if an outlier was found (Line 17). Values out of a range be-
tween +3 to -3 are outliers which could be deleted (Listing 9) or handled with
locf (Listing 10).

Listing 13: Z-score
1 // Calculate average of fixation duration

2 MATCH (n:Fixation)

3 WITH avg(n.‘Fixation Duration‘) AS mean

4
5 // Calculate standard deviation

6 MATCH (n:Fixation)

7 WITH mean, collect(n.‘Fixation Duration‘) AS fixationDuration

8 WITH mean, reduce(s = 0.0, x IN fixationDuration | s + (x - mean) ^ 2) /

size(fixationDuration) AS variance

9 WITH mean, sqrt(variance) AS stdev

10 //SET n.stdev = stdev

11
12
13 // Calculate z-score for each fixation duration

14 MATCH (n:Fixation)

15 WITH n, mean, stdev

16 // add z-sore value to each fixation node

17 SET n.z_score = (n.‘Fixation Duration‘ - mean) / stdev

18 MATCH (n:Fixation)

19 // filter for outliers

20 WHERE n.z_score > 3 OR n.z_score < -3

21 // return outliers or add code to handle outliers here

22 RETURN n AS outlier

The last algorithm is the interquantil range (IQR). Just like for the z-score
there is no predefined function. Consequently, all four percentiles are calculated

7



with the predefined function apoc.agg.percentiles in Line 2 of Listing 14. Af-
ter the outlier is detected in Line 8 for example locf or nocb could be performed
(see Listing 10).

Listing 14: Interquartile range

1 MATCH (n:Fixation)

2 WITH apoc.agg.percentiles(n.‘Fixation Duration‘, [0.25, 0.5, 0.75, 1.0]) AS

percentiles

3 WITH percentiles[0] AS Q1, percentiles[2] AS Q3

4 WITH Q1, Q3, Q3 - Q1 AS iqr

5 WITH Q1, 1.5*iqr-Q1 AS lowerBoundary,1.5*iqr+Q3 AS upperBoundary, iqr

6 MATCH (n:Fixation)

7 WHERE n.‘Fixation Duration‘ < lowerBoundary OR n.‘Fixation Duration‘ >

upperBoundary

8 // return outliers or handle them by using locf, nocb ...

9 RETURN n AS outlier

2.3 Normalization

The last step of the preprocessing pipeline is the normalization of the data. We
implemented the min-max [4] as well as the z-score normalization [3] because we
mainly encounter floats or integers. The min-max normalization is demonstrated
in Listing 15. Here the datatype change is included in the code snippet in Line 3.
The normalized value is stored in an additional property (Line 6) together with
the used method (Line 7).

Listing 15: Min-max normalization

1 MATCH (n:Fixation)

2 WHERE n.‘Fixation Duration‘ IS NOT NULL

3 SET n.‘Fixation Duration‘ = toFloat(n.‘Fixation Duration‘)

4 WITH min(n.‘Fixation Duration‘) AS minValue, max(n.‘Fixation Duration‘) AS

maxValue

5 MATCH (n:Fixation)

6 SET n.normalized_value = (n.‘Fixation Duration‘ - minValue) / (maxValue -

minValue)

7 SET normalization_method = ’min-max’

The second operator is the z-score normalization in Listing 16. Storing
specific results in property keys comes in handy at this point, showing the
benefit of this so-called property storage. We can make use of the standard
derivation (stdev) from the z-score calculation in Listing 13.

Listing 16: Z-score normalization

1 MATCH (n:Fixation)

2 WITH avg(n.‘Fixation Duration‘) AS avg

3 SET n.normalized_value = (n.‘Fixation Duration‘ - avg) / stdev

4 SET normalization_method = ’z-score’

8



References

[1] Taisir Alhilo and Akeel Al-Sakaa. “Handling Noisy Data in Eye-Tracking
Research: Methods and Best Practices”. In: 2023 International Workshop
on Biomedical Applications, Technologies and Sensors (BATS). 2023, pp. 39–
44.

[2] Mariska E. Kret and Elio E. Sjak-Shie. “Preprocessing pupil size data:
Guidelines and code”. In: Behavior Research Methods 51.3 (June 2019),
pp. 1336–1342.

[3] Ivan Miguel Pires et al. “Homogeneous Data Normalization and Deep
Learning: A Case Study in Human Activity Classification”. In: Future In-
ternet 12.11 (Nov. 2020). Number: 11 Publisher: Multidisciplinary Digital
Publishing Institute, p. 194.

[4] Zulfikar Setyo Priyambudi and Yusuf Sulistyo Nugroho. “Which algorithm
is better? An implementation of normalization to predict student perfor-
mance”. In: AIP Conference Proceedings 2926.1 (Jan. 2024), p. 020110.

[5] H. P. Vinutha, B. Poornima, and B. M. Sagar. “Detection of Outliers Using
Interquartile Range Technique from Intrusion Dataset”. In: Information
and Decision Sciences. Ed. by Suresh Chandra Satapathy et al. Singapore:
Springer, 2018, pp. 511–518.

[6] Shichao Zhang, Zhi Jin, and Xiaofeng Zhu. “Missing data imputation by
utilizing information within incomplete instances”. In: Journal of Systems
and Software 84.3 (Mar. 2011), pp. 452–459.

[7] Yifan Zhang and Peter J. Thorburn. “Handling missing data in near real-
time environmental monitoring: A system and a review of selected meth-
ods”. In: Future Generation Computer Systems 128 (Mar. 2022), pp. 63–
72.

[8] Jun Zhao, Wei Wang, and Chunyang Sheng. “Data Preprocessing Tech-
niques”. In: Data-Driven Prediction for Industrial Processes and Their
Applications. Ed. by Jun Zhao, Wei Wang, and Chunyang Sheng. Cham:
Springer International Publishing, 2018, pp. 13–52.

9


