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Radiative Equilibrium tn the Outer Layers of a Star: the Tem-
perature Distribution and the Law of Darkem’ng. By E. A.
Milne, B.A., Fellow of Trinity College, Cambridge.

(Communicated by the Director, Solar Physics Observatory, Cambridge.)

§ 1. Object of the IIzvestz'gatz'on.

A mass of material is said to be in radiative equilibrium when
the temperature at each point is steady and when the only agency
effecting the transfer of heat is thermal radiation. 'Heat may be
being generated internally by the liberation of energy, as in the
interior of a star ,- 01' there may be no generation of heat, in which
case the amount of radiant-energy emitted by any portion is equal
to that absorbed. In either case there is no accumulation of heat,
the steady state being preserved by the existence of net currents
of radiation in different directions; and the amounts of these
currents have been shown by Eddington * and JeansT to depend
on the gradients of energy—density in different directions.

The important case in practice is that in Which the medium
has a plane boundary and the surfaces of equal temperature are
parallel planes. (For a star the effect of curvature is usually
negligible.) When this is the case, and when there is 110 internal
generation of energy, the problem of the distribution of tempera-
ture is a perfectly definite one 3 there is at each point a net flow of
energy perpendicular to the boundary and the same for all points.
In the interior at great distances from the boundary the tempera-
ture distribution is quite a simple one, and the complete solution
has been given by Eddington and J eans 5 but near the boundary
the question is more difficult, since the distribution of radiation
must satisfy the condition that at the boundary the entrant
radiation is zero in all directions. The general features of radia-
tive equilibrium near the boundary of a star were first considered
by Schwarzschild, in a classical paper,i and applied to the case
of the sun. Schwarzschild showed that if T1 is the effective
temperature, deduced from the total radiation from the whole
disc with the aid of Stefan’s constant, then the temperature at
the boundary tends to a definite limit which is approximately
Tl/ 3/2(=T1/1'189) ; and he deduced from the temperature
gradients an approximation to the law of darkening of the disc
towards the limb. Sehwarzsehild, in evaluating the temperature
distribution, ignored the dependence of the radiation 011 direction,
and considered the radiation as consisting simply of an inward
and outward stream; Jeans, making a further approximation,
arrived at a different boundary temperature (=T1/1'278) but the

* MM, R.A.S., 77, 16 (1916); 77, 598 (1916); 79, 22 (1918).
1‘ M..N., R.A.S., '78, 28 (1917).
I “Uber das Gleichgewicht der Sonnenatmosphdre,” Gott. Nach., 1906,

p. 41.
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362 Mr. E. A. Milne, Radiative LXXXI. 5,

same law of darkening. Schwarzschild, however, had already*
made a very complete investigation of the analogous problem for
scattering, and we shall show (§ 7) that his solution can be applied
to the absorption ease.

Since the light emitted by a star is radiation derived almost
entirely from the outer layers, the spectral distribution of this light
is governed by the distribution of temperature near the boundary,
and the theoretical distribution for radiative equilibrium is of
some importance. The present paper shows the relation of the
earlier solutions to one another, and carries them to a higher
approximation and it obtains a revised formula for the darkening
towards the limb.

§ 2. The Fundamental Equations.

Consider a medium stratified in planes perpendicular to the
axis of 17:, extending indefinitely on the positive side of its boundary
rc=0. Let I be the intensity of radiation of all wavelengths at
any point in a direction making an angle 9 with the negative
direction of the axis of .7}; I is a. function of .1: and (9 which will
sometimes be written I(w, 6). Let p, T be the density and
temperature at any point]; and let 71; he the coefficient of mass—
ahsorption, supposed independent of wavelength. Lastly, let B
(a function of .7) be the intensity of black—body radiation corre—
sponding to the temperature of the matter at any point a'. By
Ki1chofi"s law the emission per unit volume in all directions at
any point x is 47MB. By eonside1ing in the usual way the gains
and losses of a narrow pencil of radiation during a short stretch
of its paths, it is found that I must satisfy the equation

dI
F = II. I — B . c o oCOS 9017; p( > (1)

T=fkpd13
0

di
cos6—=I— B . . . . (2)

Setting

equation ( I ) becomes

The rate of absorption of energy per unit volume is

APHIdm

equating this to the emission, we have as the condition for radia-
tive equilibrium

2B=fr1si116(10. . . - (3)
U

* “ Uber Diffusion in der Sonnenatmosphtire,” Berlin Site, 1914, p. 1183.

© Royal Astronomical Society 0 Provided by the NASA Astrophysics Data System

1
9
2
1
M
N
R
A
S
.
.
8
1
.
.
3
6
1
M



“’
1

I
N
R
A
S

1
1
’
“

Mar; I92I. Equilibrium m the Outer Layers of a Star. 363

Multiplying (2) by (Zw and integrating over the complete solid
angle, we have on using (3)

d ' ' I
FZE/jleos de—o. . . . (4)

But [I cos 0ch is the net flow of radiation per unit area cross-

ing from the positive side to the negative side of a plane perpen—
dicular to Orv; and by (4) this is constant. Let us denote by
71F the value of this constant net flow which characterises any
given state of radiative equilibrium. Then we have

F=2j1r10030sin6d0 . . - (5)
0

The problem is to obtain the solution 0f(1)subject t0 (3) or its
equivalent (5), and subject to the boundary condition of incident
radiation zero, ’

I(o, 6)=o, (+3;7r<6<7r) . . . (6)

§ 3. Sclzwm’zschild’s and Jeans’ Solutions.

Schwarzsehild’s early method is equivalent to the following.
\Vhen §2~7r<0<713 put ¢=7r~6, I(:‘c,6)=1'(cc, 11D), and retain the
symbol I for o<6<§+m Now make the assumption that it will
be sufficient, in finding the temperature distribution, to suppose
that I and 1’ me independent of direction. In this case, multiply-
ing (2) by den and integrating over the regions0 <0< §7T, 0 <¢<l071-
in turn, we find

585:1 1; 4;ng1' . . (7)

and from (3) and (5)

2B=I+Ily F=I-1, - - ' (8)

It is seen that equations (7) are the same as we should have found
if we had assumed the radiation to be confined to an inward and
outward stream parallel to 0:1: with a coefficient of absorption twice
the true value 3 it is often sufficient, in fact, to use these equations
of linear flow for rough investigations of the effects of scattering,
selective absorption,* etc. 'From (7) and (8) With the boundary
condition IO’ = o it is found that

1— M11+,T) 1’=F1- 13: §F<1+21> . (9)
If T0 is the bounda1y temperature, T1 the effective tempeiature
deduced fiom the total radiation, then

T14/T04 = wF/vrBO 2 2 . . . (Io)

* E.g. Schuster, Astroplzys. Jamn, 21, 1, 1905.
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.364 Mr. E. A. Milne, Radiative ‘ LXXXI. 5,

The temperature distribution thus found may now be introduced
into the exact equation (2). Integrating this equatien and putting
7-: o, it is found that

I(o, 0>=%F(I+ZCOSH) . . . (II)

This gives the law of darkening of the apparent disc, as 6 varies
from 0 at the centre to §7r at the limb ; it corresponds to a coefficient
of darkening of f. But this law of darkening as found by
Schwarzschild is inconsistent with the fundamental property of a ‘
net flux of 7rF. Instead, it gives for the total radiation escaping
at the surface

£1:

27] 1(0, 6) cos 9 sin 940 = 771%} + g),
0 e

or g of its required amount.
The same applies to Jeans’ solution. He obtains a next

approximation by assuming that for the determination of the tem-
perature distribution I may be taken to be a linear function * of
cos 6, instead of Schwarzsehild’s assumption. It is then found
that the solution analogous to (9) is

I=B+§Fcos6, B=a+%er . . (12)

where a is a constant. This is, in fact, the solution appropriate to
the interior, as found by Eddington and Jeans. From somewhat
complicated considerations Jeans adopts for a: the value §F (in
our notation). Inserting now the value

B=§F<I+27> . . . . (13)

in (2) and integrating, we have

I(o, 6)=~§F(1+2eos6) . . . (14)

Thus the temperature distribution and the law of darkening are
identical With Sehwarzschild’s save as to a numerical factor, but
the total escaping radiation is now

m} §T(o, 6) cos 6 sin m = g—WF,
0

instead of 7F. The approximation is thus only a slightly better
one. The boundary temperature is now given by

T14/T04 = n‘F/WBO = §— . . . (15)

We shall now investigate closer approximations, and in
particular approximations (which it is very convenient to have)
which give the correct flux at the boundary.

* I.e., the first two terms of an expansion in spherical harmonics.
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§4. An Integral Equationfor the Temperature Distribution.

Solving equation (2) for I in terms of B, we have

I: —eTse°9/ Bsec6e‘fseced'r . . (16)

As before, write I’(T, 5b) for I(r, 6) when §7r<6<723 where
¢=r-6. On adjusting the constant of integration in (16) so
that I’(o, 4/) = o for all 30, and so that I/I’e I as ~r——> 00, we find

I(T,6)=873309/BSBCQB’TSGCGdT . . (I7)

I’(1-, 6;) = e‘—” sec $1713 sec 51/ 67 39" ‘M’r . . (1 8)
0

Inserting these in the equation of radiative equilibrium (3) we
have

er w
2B(T)=L eTseCQSin6d6/ B(z‘)sec6e'tse‘39dt

er w
+/ 6‘75904’sin gl/dl/I/ B(t)etsec¢’dt . (19)

0 ‘ 0

Write t= r + 3/ cos 6 in the first integral, t: 7- —— y cos 6 in the
second, and put cos 6 =,u. Then

1 0° 1 7/1“
213(7):!) d’ufo B(r+y,u)e‘ydy+/O dp. 0B(*r—y,u)e‘%ly.

We now change the orders of integration. The second integral,
which is the double integral of B(r— yp)e‘y over the shaded area

p
p=l #3“?-

i /
O y=T '9

FIG. I.

 
 

in fig. 1, must be split up into an integral over a, rectangle and one
over a curvilinear area. We have altogether

oo 1 T 1

213(7):] 8””dg/f B<T+2j,u)dp+/ e‘ydyf B(T—ylufli'p.
0 0 0 .10

°° » 7/31
+/ e‘l/dy B(T—yluflllu, . (20)

'r 0

Now put

[TB(7)dT = C(T), B(T) = 0(7).
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366 Mr. E. A. Milne, Radiative LXXXI. 5,

Performing the integrations in (20) with respect to ,u, we have

.00

 20(7) = _/0 Cliff 3/) “ C<T)e‘”dy — )0 C(T:____3/£" C(T)e‘ydy + C(r)f 5313/,
.7/

01'
fl)

cm = [791213.12 :Cfifle-ydy +1 C(T+y> —y0 2y .T Te d_z/ . (21)

This gives the temperature distribution as the solution of a
certain integral equation; this equation holds in the interior
and right up to the boundary. It appears to be of simpler form
than equations hitherto given.

It is interesting to consider for a moment the limiting form of
this equation for large values of 7. It is seen to be

C'(r)=/O C<T+y>2;C(T_-y>e‘ydy . . (22)

A solution of this, as is readily verified, is given by

0(7) 2 617' + (9T2, B(O) = C'(T) = a + 251' . (23)

where a, Z) are arbitrary constants. The corresponding solutions for
I and I', for T large, are found to be

1(7, 19) = B(r) + 25 cos 6, I’(r, 3b) = B(r) — 25 cos 5b (24)

and insertion in the flux equation (5) gives

19:313. . . . . (25)

We‘have again the solution for the interior given by Eddington
and Jeans. It may be observed that the method they use, that of
spherical harmonics, would be equivalent in the present analysis
to expanding C(r+y) and C(T—y) in (22), formally, in Taylor’s
series, and integrating term by term. Thus

00 e—y7 3

0(7): 1 { yC'(T)+3—‘C"'(T)+ . . .}+dy,
0 3- 3/

0r

o=3§B"('r)+%—B(4’(r)+%~B(‘”(T)+ . .. . . (25a)

a linear equation of infinite order with constant coefficients.
Formal methods of solving this do not lead to a solution other
than (2 3) 3 and it appears probable,* though I have not succeeded
in constructing a rigorous proof, that (23) is the general solution

’* Note added April 2. ——Mr. R. H. Fowler has kindly drawn my atten-
tion to a recent paper by Schiirer, Leipzig Berichte, 70, ii. 185 (1918), from
one of the theorems in Which it follows that (23) is the only solution of equa-
tion (2 5a).
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Mar. 1921. Equilibrium in the Outer Layers of a Star. 367

of (22). In that case there are 110 higher harmonics in I than
the first.

Returning to the general equation (21), we notice that it
defines the nature of the singularity at the origin. The value of
the gradient B’(7) must be logarithmically infinite as 7—> o 3 for,
differentiating (21) with regard to 1- and putting 7-: 0, we have

‘ B
B’(o)= ,0 Te ydy . . . (26)

and B(o) is not zero.

§ 5. Solutions by Successive Approximation.

Equation (21) is suitable for solution by successive approxima-
tion 3 taking an approximate temperature distribution to start
with, we can insert the corresponding C(T) in the right—hand side
of (21), and the result of the integration will be a new approxi—
mation for C'(T) or B(T). The accuracy can be checked by testing
the constancy of flux, 6.9. by comparing the flux at the boundary
with the flux as -r ——> oo ,- or by testing for radiative equilibrium, of
which (21) is the direct expression. The process can be repeated
if necessary. We can, however, go further. If we adopt as a first
approximation the solution for the in terior,

B(T)=C'(T)=a+2br . . . (23)

the second approximation will contain the constants a and Z) 3 Z) is
given by (25), in order that the flux may be correct in the interior,
but a is still arbitrary, the boundary temperature being unknown.
\Ve can therefore choose a so that in this second approximation
the total flux at the boundary is the required amount 7F, and we
can hope that the solution giving the correct flux for 1-: o and for
T—> 00 will be a good approximation throughout. Alternatively,
we could choose a so that the condition of radiative equilibrium is
satisfied at the boundary, which would be the same thing as
choosing a so that the third approximation gave the same boundary
temperature as the second. One would expect, however, that the
former approximation was the better, the constancy of flux being
so characteristic of radiative equilibrium, whilst mere consistency
between successive approximations to the boundary temperature
might be expected to be of secondary i1np01tance. The device of
choosing a is perhaps arbitrary to this extent, that if a long seiies
of successive approximations a1e carried out staiting from solution
(2 3) the limiting app1oximation is independent of a but it is
convenient to adopt it.

Inserting (2 3) in the left—hand side of (21) and integrating, we
find as a second approximation

13(7): C'(T) = (1+ 257' + %e—T(b — a ~— br)+12*(a'r+ 572)/w8_—y dg/ . (27)
. T y
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368 M73 E. A. Milne, Radiative . LXXXI. 5,

This has the same form as (23) for 7' large, and exhibits the loga-
rithmic singularity in B'(1-) for 1-: o. For the radiation escaping
at the boundary we have from (I 7) on putting cos 0: ,u,

I(o, e) = / B(T),i-Ie—r/Mdr
0

= (a + 25p.) + —I/ (Z? — a -— br)e‘7(1+1/“)drr
2p, 0

+if <aT+bT2>6_T/Md7f deflj.
2H0 ’1' y

The last term is easily evaluated on setting 3/: 1-2 and changing the
order of integration, and we find finally

 

I(o, 6)=%(a+ b) + bM+M§a+bm10gM+ I . (28)
ILL

The corresponding flux at the boundary is found to be

,3”
27r [(0, 0)si11 6 cos 6076: 7r[a(% + g 10g 2) + %b] . (29)

0

and this should be equal to 7rF 0r gwb. Again, we find
1r/2

4) I(o, 6) sin Ode =ga + 5(ng + 715. 10g 2) . . (30)

and by the condition of radiative equilibrium (3) this should be
equal to 13(0) or §(a + b). .

First let us select a so_ that the flux condition at the boundary
is satisfied. This gives

a(%+%‘} 10% 2)+-i—35=%b,
a 13#=_______~_- '6 . . .
b 4+810g2 I3 2 (31)

With this value B(o)=%(a+b)=1'181b, whilst the right—hand
side of (30) is 1'158b, an error of 2'0 per cent. The boundary
temperature is given by

T14/T04=F/B(o) =gb/1-1815= 2-258, 13/11): 1'226 (32)

Alternatively, if we select a so that the radiative equiiibrium
condition is satisfied at the boundary, we have

%a+b(%%+log 2)=%<a+b>,
a _ 8 log 2 — 2

73— 3
With this value the boundary flux is 2'5i47rb or '9461rF instead
of 72-F, an error of 5'4 per cent. The boundary temperature is
given by

T14/T04=%/I'°9Ib=2'444’ Ti/T0=I'254 - (34>

=I'I82 . . . (33)
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Mar. 1921. Equilibrium in the Outer Layers of a Star. 369

For completeness we will now obtain briefly the corresponding
first approximations. In this case the temperature distribution is
taken to be

B(T)=a+2b7 , . . ° (35)

and the corresponding escaping radiation is given by

I(o, 6)=a+2bcost9 . . . (36)

The corresponding flux at the boundary is

gm
27/ I(o, 6) sinOCOS 6d6=7r(a+-§b) . . (37)0 i

which should be equal to 7F or gwb ; and by the condition of
radiative equilibrium at the boundary the expression

1”
15/0 I(o,0)sin0d6=§(a+b). . . (38)

should be equal to 13(0) or a. If we select a so that the flux
condition is satisfied, we find a/b=§, which makes the value of
(38) gr!) instead of $5, an error of 12'5 per cent,- and the
boundary temperature is given ,by

T14/T04=2: Tl/To=1'189' - - (39)

If we select a so that the radiative equilibrium condition is
satisfied, we find a/b=1, which gives a flux 'of gm]? instead
of 7rF, an error of again 12-5 per cent.; and the boundary
temperature is given by

’1‘14/1‘04 = %: Tl/TO = 1'2 78 - ' (4°)

This latter is identical with Jeans’ approximation.
It appears that the second approximations are distinctly more

accurate than the first, and that of them the former (adjusted
to give the right boundary flux) is the better. It must be
remembered that the tests of accuracy we have been applying are
definite tests of convergency to a limit; the right—hand side of
(30), for example, is precisely the value of B(o) that would be
obtained from a third approximation, so that with a/b= I‘I8I a
third approximation would give _

-T14/T04=§’b/I'158b=2‘3o3, Tl/TO=I°232.

It would appear that, as regards the first approximations, there
is nothing to choose between Jeans’ approximation (a/b=1)
and its analogue (a/b=§)3 however, the latter is much closer
to the asymptote to the better of our second approximations

26
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370 Mr. E. A. Milne, Radiative LXXXI. 5,

(a/b=1'362), and, as we shall see later, it gives a better law

of darkening.
The function occurring in (27) is tabulated* in Table I. for

the two values a/b=1'362, a/b=1'182, I) being put equal to

unity; the graph in the case a/b: 1362 is shown in fig. 2, with

the asymptote B(T>=a+ZbT also. The curve has a vertical
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FIG. 2,—E11ergy-density Distribution (T4) in Radiative Equiliblium.

tangent at 7:0, and crosses its asymptote near 7:0'5; beyond

7' = 0'2 it departs very little from its asymptote. We may assume

that this curve represents the actual distribution of energy-density

B(T) in radiative equilibrium With fair accuracy. (The column (17)

will he explained in § 7.)

~ w —x

* The exponential integral function E73902] :3de is tabulated by
{U

Glaisher, Phil. Towns, 160, 367 (1870), and by Jahnke and Emde, Funk-

timwntafeln (Leipzig, 1909, p. 21). What we have denoted by E??(m) these

writers call — E75( -w).
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TABLE I.

Second Approm‘matz’mzs t0 Energy-densz’ty Distribution.

a=I-352,b=1. (8). a=1'182,b=1. (e).

0'0 1'181 1362 1091 1182 1'15

0'02 I '261 I '402 I '163 I '222

0'05 1'353 1°462 1°248 1'282

0'1 1'486 1'562 1'371 1'382

0'2 1701 1762 I '573 I '582 I '69

0'4 2154 2162 2009 1'982 2'16

0'6 2566 2562 2413 2382 2'59

0'8 2969 2962 2'808 2782 2'99

I '0 3370 3362 3 '204 3°182 3 '42

1'2 3771 3762 4'600 3'582 3'83

I '4 4'169 4'162 3 '997 3'982 4'25

I '6 4'567 4'562 3'394 4'382 4'65
2'0 5366 5362 5190 5182 5'47

3'0 7364 . 7'362 7'184 7'182 7'53
4'0 9'362 9'362 9‘182 9182 9'61

§ 6. The Law of Darkem'ng.

Each of the approximations to the temperature distribution
provides a definite law of darkening over the disc. .[f {1 denotes
the ratio of the intensity of radiation escaping in direction 6 to
that escaping normally (9:0), we have for Schwarzsehild’s
approximation, from (I 1)

=I+2300895 . . ' . (41)

for the analogue of Jeans’ approximation ((36) with a/b=§) we
have

2 + 3 cos 6
: _________._“ , . . a g 42 ,5 < >

and for Jeans’ approximation itself ((36) with a/b = I)

I + 2 cos 0
= _'_—'—, o a c I 43 ( 3)

the same as Schwarzschild’s; and for our second approximations
we have from (28)

_%(a+b)+bc036+0036(§a+bcosO)10g{(1 +cos€)/cos€}
(1— §a+§b+(§a+b)10g2
 (44)

with a/b= 1362, 1182 in turn. Let us denote these five laws of
darkening by (a), (,8), ('y), (8), (e) 3 they are shown tabulated in
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372 Mr. E. A. Milne, Radiative LXXXI. 5,

Table II. The coeificient 0f darkening n being defined by the
equation

g=1~u+ucos9 . . . . (45)

it is clear that (a), (,8), (7) correspond to coefficients of darkening
of 737, g, g respectively. The equivalent mean coefficients of
darkening 72 for (3) and (e) are tabulated also ,- this is defined as
that giving the same ratio of average intensity over the disc to
intensity at the centre as the actual law, and is given by

 

mo 0) h - — ‘, cos Gsin 6d6=f (I —u+ucos 0)cos 6s1n 0d9= %(I — 3554).
o I(o, o) 0

TABLE II.

Darkem’ng towards the Limit.

Cos 9. Sin 0. (a). (B). (y). (8). (e). (n).

I ‘O O I '000 I '000 I '000 I '000 I '000 I '00

0 '9 o '436 '933 '940 '933 “940 '938

0'8 0'600 '867 '880 '867 '879 '875 '875

0'6 0‘800" '733 ‘760 '733 '758 '750 '755

 

0.4 o -915 '600 '640 '600 '635 '623 '625

0'2 0'978 '467 '520 '467 '507 '494 '495
0‘1 0'995 '400 '460 '400 '439 '418

0'0 1 '000 '333 '400 '333 '353 ’342 '34

27, '667 '600 '667 '609 '628 '627

The column headed sinO gives the fraction of the radius of the
disc measured from the centre.

‘ Averaged over the disc, it is seen that the simple coefficient of
darkening $3?— is much better than the Schwarzschild-Jeans value gr 3
the true fall of intensity, which may be taken to be something

between columns (8) and (5), lies between u=§ and u=§3 it
agrees closely With u='§— up to about 98 per cent. of the radius,
thereafter falling rapidly to a value little different from that given
by u=% 3 this sudden fall close to the limb corresponds to the
kink 0n the temperature curve near 1-: o.

The observed intensity—distribution over the solar disc corre-

sponds much better to u=§ than to 26:? Table III. gives the
average of the determinations by Secchi, Vogel, Langley, and

TABLE III.

Sin 0. 0'0. 0'2, 0'4. io'6. 0'7. 0'8. 0'9. 0'96. 0'98. I'oo.

Observed 1'00 '99 '97 '92 '87 '81 '70 '59 '49 ('40)
u= g 1 '000 ‘987 '949 '880 '828 ‘760 '662 '568 '51 9 '400

“=3 I'ooo '986 '943 '867 '809 '733 '624 '520 '466 .333
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Frost.* The more recent results of Abbot, Fowle, and Aldrich]L give
the distribution of intensity for various wave-lengths separately 5
a few of the corresponding figures for integrated light are given
by Abbot in his book The Sun (1912), p.110, but it is convenient
to avail ourselves of Lindblad’si integrations of Abbot’s observa-
tions,- these are quoted in Table IV. (Abbot’s observations, it

TABLE IV.

Sin 0. 0'00. 0'40. 0'55. 0'65. 0'75. 0'825. o'875. 0'92. 0'95.

Observed I '00 0'95 0'91 0°87 0'82 0'78 071 0°66 0'60

u=% I'ooo '949 '90I ‘856 '797 '739 '690 '635 '587
u=§ I '000 '943 '890 '840 7 '774 '710 '656 '595 '541

should be remembered, are corrected for the loss in transmission
through the earth’s atmosphere for each wave-length separately.)
Abbot’s results show somewhat less darkening even than corre‘
sponds to‘ u=%, the average value of u as given by them being
about 0'56.

§ 7. Comparison with Schwarzschz‘ld’s Solution for Scattering.

A different form of the integral equation for the temperature
distribution can be obtained. Equation (19) may be written, by
an obvious transformation,

213(7): [00:13amf—dy+fB(t)dtfwtg—yd%
01‘

13(7) =1fwB(t)E¢(t—T)dt+1fo B(t)Ez‘(—r—t)dt . (46)

”6—?! 006—23]

E7} 2 =/ = d
< ) z 3/ 1 y y

We may write this more compactly in the form

B<T>=1f0wB(t)E¢<lt—rl>dt- . . (47>
This form suggests the integral equation used by Schwarzschild
in the second paper cited, in his treatment of scattering. Assum-
ing that a scattering particle scatters uniformly in all directions,
the equations for the distribution of radiation in the case of pure
scattering are formally similar to those for radiative equilibrium,
the function B(r) being replaced by a function J(7) Which though,

Where

    

* As quoted by Miiller, Photometrie der Gestw716,by Pringsheim, Physih
dea Sonne (p. 394), and by Schwaizschild, Gott. Notch.., 1906, p. 52.

1‘ Annals Astrophys. Obs. Smithson. [72:9t., 3, 157 (1913).
I Lindblad, Uppsala Universitets Arsskrift, 1920, 1, 29.
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like B(T), measuring the energy-density distribution, has no longer
any significance in connection with temperature ; the boundary
conditions are, however, difi’erent, for since there is no emission
the radiation must be supposed provided by an external source.
For a plane slab of scattering material; of optical thickness 7-1 in
front of a uniformly radiating surface (intensity I1), Schwarzschild
finds the equation

J<T>= %/71J<t)E¢(lt—Ti W + sIlEam— 2» . <48)

where Ei1(z) is defined by

Y 00 6—1, 00 e-gyE- =4 _d 4 “d.7“1(3) 2 y2 y i y2 ?/

Equation (48) tends to the form (47) as 7-1—9 00. The radiation
escaping from, the front surface is given by

I(o, 0)=Ile—szec"+/71J(t)e~73909sec6d6 . (49)
0

Schwarzschild proves that the solution of (48) is of the ferm

J('r) = 11%——————+T + 11(7) - - - (5°)
71+I

where |L(7') {<1}, and that L(r) tends to a definite limit function
as 1-1 -> oo . He evaluates L(T) approximately, for 71: I, 2, 4, 8,
by the usual method of writing down and solving a sufficient
number of the ordinary simultaneous equations of which (48) is the
limit; for 71: 8 there were twenty such equations required. The
results for 71 = 8, which may be taken as an approximation to those
for 7'1—>oo , are given in Tables I. and II. above, in the column
headed (77). Those in Table II. are taken directly, but for those in
Table I. it was necessary to multiply Schwarzschild’s tabulated
values by a certain factor (2'13 5), this factor (which was found
by integrating his numerical values for I(o, 6)) being chosen to
give the appropriate net flow.*

It will be seen that these figures, both as regards the function
B(T) and the law of darkening, are in good agreement with our
approximations (3) and (e) 5 further, the boundary temperature
corresponding to (n) is given by

T14/T04=%/I'15=2'32a Tl/TO=I‘2321

Which lies between our determinations (32) and (34).

*‘ This factor cannot be found directly, but it can be seen from (50) that
its limiting value as 1-1—3» 00 is 2.
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§ 8. Summary.

An integral equation is obtained for the density of radiant
energy in radiative equilibrium and solved by successive approxi-
mation. The various approximations involve an arbitrary constant,
which can be chosen in various ways so as to improve the
accuracy of the solution. It is shown that the density-gradient
taken With respect to the optical thickness (dB<T>/d7‘> has a
iogarithmic infinity at the boundary, and approximations are
obtained for the boundary temperature To111 terms of the effective
temperature T1. The temperature distribution thus found is
applied to deduce the law of darkening of a stellar disc towards
the limb 5 it is shown that the value 3,} for the coefficient of darken-
ing is a better approximation than the Schwarzsehild-Jeans value
g,- the distribution of intensity over the disc corresponds to a
mean coefficient of about 0'61 or 0'62, but there is a more sudden
drop in intensity very close to the limb.

 

Radiative Equilibrium and Spectral Dislm’butz’on.
By E. A. Milne, B.A., Fellow of Trinity College, Cambridge.

(Communicated by the Director, Solar Physics Observatory, Cambridge.)

§ I. Introductory.

In the investigation of radiative equilibrium it is necessary to
exercise care in assuming that the radiation Will possess certain of
the properties of black-body radiation. For example, the density
of radiant energy for isotropic black-body radiation is aT4, Where
a, is Stefan’s constant and T is the temperature 3 but it is not
necessarily true that the energy—density in radiative equilibrium
is equal to that of black-body radiation corresponding to the
temperature of the matter at the oint considered.

This point is of importance if one attempts to investigate the
spectral distribution of the radiation.* The radiation differs from
isotropic black—body radiation in that both the intensity and the
spectral distribution vary from direction to direction, and the
spectrum in any particular direction (for a given total intensity)
will not in general be that of the corresponding black-body radia-

‘°‘ When writing this paper the author was unaware that the question of
the spectial distiibution 0f the light in 1adiative equilibiium had been
previously discussed, but since the papei was finished his attention has been
diawn to a pape1 by Lindblad, “The Distiibution 0f Intensity1n the Con-
tinuous Spectra of the Sun and Fixed Stais,” Uppsala Univmsitets A°1sslcmft,
I, 1920, Which discusses ve1y fully the the01etica1 spect1um for ladiative
equilibiium and the valiation of coloui ovei the disc, 111th detailed compaiison
with the observations of Abbot, Fowle, and Aldrich. Howeve1, it seems
worth while making the p1esent com munication, as the method of calculation
and the method of expressing the results are somewhat different.
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