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 A Pedagogic Application
 of Multiple Regression
 Analysis

 Precipitation in California

 P. J. Taylor

 ABSTRACT. Multiple regression analysis is illustrated in a familiar geographical
 problem for pedagogic purposes. Precipitation patterns in California are related to altitude,
 latitude and distance from the coast. This first model indicates a need to incorporate a
 shadow effect. The model is progressively improved using maps of residuals to the point
 where the third model is deemed to be highly successful.

 Multiple regression analysis is a technique for describing how the variations in one phenomenon
 are related to variations in two or more other phenomena. It is usually assumed that these
 other variables do, in some sense, "determine", "produce" or even "cause" the variations
 observed in the first variable. This way of thinking about the world has always been
 important in geography: for instance, areal variations in vegetation have normally been
 related to areal variation of climatic and soil phenomena. The advent of multiple regression
 analysis has brought to geography a more precise, numerical approach to the age-old problem
 of describing the inter-relationships we observe around us.

 It is the purpose of this paper to describe multiple regression analysis in a completely
 non-technical manner. Descriptions of the technique at various degrees of sophistication are
 readily available in the literature;1 this discussion is intended for those who wish to understand
 the rudiments of the technique but do not wish to follow statistical explanations of the various
 elements of a multiple regression model at this stage. On completing this paper the reader
 should have acquired the skill to understand the meanings and findings of other geographical
 articles that apply multiple regression analysis as a tool in substantive research. In order to
 use the technique in research the reader will have to go to references beyond this paper.

 Although this paper does not have a substantive research purpose it is important to specify
 carefully a "typical" research problem which would be tackled using multiple regression
 analysis. The problem chosen is a simple one, incorporating well-known relationships.
 Nothing new will be discovered in the analyses below, but the technique will be illustrated in
 a situation that is familiar to all readers. An attempt will be made to explain the areal
 variations in average annual precipitation totals in California.2 Thirty meteorological stations
 have been selected from all parts of the state (Table I and Fig. i) to provide a data set. The
 large variations in precipitation recorded in column one of Table I reflect the wide variety of
 environments within California - literally from deserts to coastal mountain ranges. These

 >Dr. P. J. Taylor is Lecturer in Geography at The University of Newcastle upon Tyne.
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 2O4 GEOGRAPHY

 TabU I

 Variables used in the First Model

 Average annual Distance
 precipitation Altitude Latitude from coast

 Station (inches) (feet) (degrees) (miles)

 K Eureka 39-57 43 40-8 1
 2. Red Bluff 23-27 341 40-2 97
 3. Thermal 18-20 4152 33-8 70
 4. Fort Bragg 37-48 74 39-4 1
 5. Soda Springs 49-26 6752 39-3 150
 6. San Francisco 21-82 52 37-8 5
 7. Sacramento 18-07 25 38-5 80
 8. San Jose 14-17 95 37-4 28
 9. Giant Forest 42-63 6360 36-6 145
 10. Salinas 13-85 74 36-7 12
 n. Fresno 9-44 331 36*7 "4
 12. Pt. Piedras 19-33 57 35*7 1
 13. Pasa Robles 15-67 740 35-7 31
 14. Bakersfield 6-oo 489 35-4 75
 15. Bishop 5-73 4108 37-3 198
 16. Mineral 47*82 4850 40-4 142
 1 7. Santa Barbara 17-95 I2° 34*4 1
 18. Susanville 18-20 4152 40-3 198
 19. Tule Lake 10-03 4°3^ 4I#9 H0
 20. Needles 4-63 913 34-8 192
 21. Burbank 14-74 699 34-2 47
 22. Los Angeles 15-02 312 34-1 16
 23. Long Beach 12-36 50 33-8 12
 24. Los Banos 8-26 125 37-8 74
 25. Blythe 4-05 268 33-6 155
 26. San Diego 9-94 19 32-7 5
 27. Daggett 4-25 2105 34-09 85
 28. Death Valley i-66 -178 36-5 194
 29. Crescent City 74-87 35 41-7 1
 30. Colusa 15-95 60 39'2 91

 precipitation figures are located on Fig. 1 which may be regarded as the "problem map"
 (i.e. the pattern of the phenomena to be explained).

 The multivariate context

 Let us consider what variables should be included in the analysis in order to explain this
 variation in precipitation. We will start with the orographie component in the precipitation
 by specifying altitude above sea level in feet as our first explanatory variable. (In statistical
 terminology this is often referred to as the independent variable in contrast to the phenomena
 we are attempting to explain which is the dependent variable.) This new variable is added to
 Table I as column 2 and it can be seen that generally speaking, precipitation does increase
 with altitude among the stations. However, the relationship is by no means a simple direct one.
 For example, compare Bishop (station 15) and Mineral (16). Both are at approximately the
 same altitude but experience vastly different levels of precipitation. A glance at Fig. 1 will
 give a good clue as to why this is the case - the stations lie on very different latitudes. Clearly
 altitude alone does not determine precipitation; we must also consider latitude. Degrees of
 latitude north is our second independent variable and is shown on column 3 in Table I.

 The influence of the new independent variable can be broadly seen by scanning columns 1
 and 3 of Table I. The more northerly a station is, the more likely it will fall along or near to
 westerly-moving storm tracks and so usually it is found to receive more precipitation. Once
 again, however, this is not always the case. Consider Fort Bragg and Colusa, which are at
 similar latitudes and yet have very different levels of precipitation. This difference cannot be
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 PEDAGOGIC APPLICATION OF MULTIPLE REGRESSION ANALYSIS 2O5

 Fig. 1 . - Average annual precipitation levels (inches) over thirty stations in California.

 put down to altitude, since both stations are at similar heights above sea level. Once again a
 brief glance at Fig. i suggests an additional independent variable to account for this precipi-
 tation difference. Whereas Fort Bragg is on the coast, Colusa is nearly ioo miles inland.
 A third independent variable has therefore been added to Table i in column 4, namely
 distance from the coast in miles. It is expected, and generally borne out in comparing columns
 1 and 4, that precipitation declines with distance from the coast as moisture-laden air has
 progressively less rain to deposit as it moves inland.

 The above arguments have a two-sided purpose. First, we have selected in a quite logical
 manner a set of independent variables which would seem to be pertinent to our goal of
 explaining variations in California precipitation. We have, in fact, produced three variables
 describing the situation of each station which act as surrogates for the physical processes
 which underlie the actual precipitation. Second, we have been able to derive our set of
 explanatory variables by showing how one often confounds the effects of another. Put simply,
 to explain precipitation we need to know the altitude and latitude and distance from the coast
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 2O6 GEOGRAPHY

 of a station. Knowledge of one of these variables without knowledge of the other two is not
 particularly helpful. Such a statement is to argue for a multivariate analysis in preference to a
 simple bi-variate analysis. The latter consists of pair-wise comparisons of variables as, for
 instance, in a simple correlation study. Our argument above suggests that such correlation
 coefficients will be of limited utility and may even be misleading since they cannot unravel
 the confounding effects of one independent variable on another. If we wish to relate precipi-
 tation to altitude, for instance, we cannot adequately do this without taking into account
 latitude and distance from the coast. A multivariate analysis allows us to do just this;
 variables are considered not in isolation from one another but jointly operating on precipi-
 tation together. The multiple regression technique is a common means for carrying out a
 multivariate analysis. By using this technique we are setting out our research problem
 realistically in a multivariate context.

 The multiple regression technique
 What, then, does the multiple regression technique do? It is that multivariate procedure
 which is used to relate one variable (known as the dependent) to a set of other variables
 (known as independent or explanatory) . Hence our choice of the technique for the problem
 stated above, where precipitation becomes the dependent variable and altitude, latitude and
 distance from the coast are three independent variables. The purpose of the whole exercise
 is to derive an equation which precisely specifies the relationship between dependent and
 independent variables. The technique is designed to generate that equation which best
 describes the pattern of relationships to be found in the data.
 The form which the equation takes must be decided upon beforehand. In most analyses,
 including those described below, a linear form is used. This assumes that changes in the
 dependent variable relating to changes in the independent variables are constant for all
 values of all variables. This simply means that if an increase in altitude from 500 to 1000 feet
 is associated with precipitation rising 10 inches, then similarly an identical increase of altitude
 from 2000 to 2500 feet will be associated with a 10 inch rise in precipitation. Given this
 assumption the equation for a multiple regression analysis will be of the form

 X1 = ±a±b2Xi±bzX9,...,±bnXn±e

 where the X's refer to a set of n variables (one dependent and n - 1 independent) and a and
 the è's are the parameters of the equation. The final term, ey includes those aspects of the
 dependent variable not accounted for by the independent variables. It is the X's which
 constitute the data (i.e. Table I in our problem) and the parameters which are estimated
 by the technique. Hence the basic results of a multiple regression analysis are a set of estimated
 parameters (a and b's) which can then be set out as an equation in the form shown above.
 They are interpreted as follows: (i) a is the base constant and is an estimate of the value of the
 dependent variable when all the independent variables are zero. In our example it is level
 of precipitation associated with zero altitude, latitude and distance from the coast: (ii) the
 b's are regression coefficients which relate each independent variable to the dependent variable.
 They are simple gradients and are therefore also in units of the dependent variable. They
 tell how much change in the dependent variable is associated with a change of one unit of
 aji independent variable. In our example the regression coefficient that relates altitude to
 precipitation is an estimate of how much precipitation increased in inches for an increase of
 one foot of altitude.

 Finally we should mention that these results are only "estimates". Our analysis is based
 upon a sample of 30 stations so that the results are only estimates of the true parameters (for
 all locations in California) based upon this partial evidence. The procedures of inferential
 statistics to cope with this situation are not described here. In fact our "simple" physical
 problem produces highly significant results even though based upon just thirty observations.
 We are now in a position to begin assessing these results.
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 PEDAGOGIC APPLICATION OF MULTIPLE REGRESSION ANALYSIS 2<>7

 The first model

 Our first model of California precipitation is simply precipitation as a function of altitude,
 latitude and distance from the coast. This is calibrated as "Precipitation at a station equals
 (0*004 x altitude of the station) -f (3*4536 x latitude of the station) - (0*1426 x the distance
 of the station from the coast) - 102*5314 (which is the base level)." If we label our variables
 Xly X2, Xz and Xé respectively we can write the above formulation much more succinctly as

 Xx = 0-004X5 + 3-4536X3 -0-1426*4- 102-5314.

 For any particular station we can predict what the precipitation should be given the altitude,
 latitude and distance from the coast. At Eureka (1)

 Xx = (0-004 x 43) + (3*4536 x 40-8) - (0-1426 x 1) - 102-5314 = 38-4076.

 This prediction can be compared with the actual precipitation recorded for Eureka which
 was 39*57. The difference between these two values, the prediction and the actual, is the
 error or residual. In this case the residual is (39*57 - 38-4076) which equals 1*1624. Thk is
 interpreted as our equation underpredicting precipitation at Eureka by just over 1 inch.
 Table II shows all 30 predictions and residuals plus the original values from Table I for
 comparison. Where the residuals are negative it means that precipitation at that station is
 over-predicted .

 Table II

 Predictions and Residuals from the First Model

 Actual Predicted

 Station precipitation precipitation Residuals

 1 39*57 38*4076 I#rô24
 2 23-27 23-8550 -0-5850
 3 i8-2o 21-1133 -2-9133
 4 37*48 33*6988 3*7812
 5 49-26 39*2784 9*9816
 6 21-82 27-5129 -5*6929
 7 18-07 19-1227 -1-0527
 8 14-17 23-0258 -8-8558
 9 42-63 29-0716 13*5584
 10 13-85 22-8050 -8-9550
 11 9*44 9*3018 0-1382
 12 19-33 20-8513 -1*5213
 13 15-67 I9-35Ï8 -3-6818
 14 6-OO 11-0181 -5-0181
 15 5-73 14-7640 -9*0340
 16 47-82 36*4777 11*3423
 17 17-95 1 6-6 1 80 1*3320
 18 18-20 25-3039 -7*1039
 19 10-03 38-6306 -28-6006
 20 4-63 -6-0172 10-6472
 21 14-74 11-7223 3'0i77
 22 15-02 14-2238 0-7962
 23 12-36 12*6919 -0-3319
 24 8-26 17-9680 -9-7080
 25 405 -7*5089 11*5589
 26 9-94 9*7653 0-1747
 27 4-25 I4-44I7 -10-1917
 28 1-66 -4*8715 6-5315
 29 74*87 41*4833 33*3o67
 30 15-95 20-1136 -4-1636

 These errors or residuals indicate that precipitation is not perfectly determined by our
 three independent variables. We do not have an exact deterministic relationship but instead
 we have an empirical statistical relationship where only part of the original problem map is
 explained. The amount that is explained is indicated by the multiple correlation coefficient which
 in the case of the perfect relationship (no errors) would equal unity. On the other hand, if
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 2O8 GEOGRAPHY

 the multiple correlation coefficient is zero there is no linear relationship whatsoever between
 Xx and X2, Xz and XA. In this case the coefficient is a relatively high 07708. The square of
 this value, 0*5942, is termed the coefficient of determination which tells us how much of the
 variation in the original problem map is accounted for by our three explanatory variables.
 This is because this coefficient is measuring the ratio of the variation in predicted values to
 that of the actual values. In this example the coefficient is informing us that the variation in
 the values predicted by our equation is nearly 60 per cent of the original variation in the
 dependent variable. Hence we can state that 59 per cent of the variation of precipitation is
 accounted for by our three independent variables. Fully 41 per cent still remains (in the
 residuals) to be explained.
 The multiple correlation measure tells us how important our variables are; an alternative
 statistic is the standard error of estimate which tells us how good a predictor our equation is.
 It is literally a measure (standard deviation) of the spread of the residuals in Table II. It is
 interpreted as indicating the range of error you can expect when using the equation to
 predict: approximately two- thirds of predictions will have a residual less than one standard
 error away from the true value and about 95 per cent will be within two standard errors of
 the correct answer. For this model the standard error is 1 1*1825; m other words, we expect
 two-thirds of our predictions to be within 1 1 inches of the true level of precipitation. In
 Table II 25 out of 30 residuals are less than one standard error, which is slightly better than
 expected. In general we would consider this model a poor predictor, for this standard error
 is far too large to place much reliance on the predictions. This point is emphasised by three
 stations (20, 25 and 28) where the model predicts the impossible - negative rainfall.8

 The second model

 Table III

 The Shadow Effect, Predictions and Residuals from the Second Model

 Shadow Actual Predicted
 Station effect precipitation precipitation Residuals

 1 o 39*57 43*2121 -3*6421
 2 1 23*27 20*6225 2*6475
 3 1 18*20 7#8397 10*3603
 4 o 37*48 38-3934 -0*9134
 5 o 49*26 44*6183 4*6417
 6 o 21*82 32*5565 -10*7365
 7 i 18*07 I4-8945 3*1755
 8 i 14*17 13*8967 0*2733
 9 o 42*63 34*6i75 8*0125
 10 i 13*85 12*2372 1*6128
 11 i 9*44 7*5089 1*9311
 12 o 19*33 25*4467 -6*1167
 13 i 15*67 9*1893 6*4807
 14 1 6*oo 5*3289 0*0711
 15 1 5*73 »3*3347 -7*6047
 16 o 47*82 44-8022 3*0178
 17 o 17*95 21*0454 -3*0954
 18 1 18*20 23*8966 -5*6966
 19 1 10*03 32*2326 -22*2026
 20 1 4*63 -1*9120 6*5420
 21 o 14*74 19*2057 -4*4057
 22 o 15*02 19*6331 -4*6131
 23 o 12*36 18*2329 -5*8729
 24 I 8*26 12*9763 -4*7163
 25 i 4*05 -5*5642 9*6142
 26 o 9*94 14*6906 -4*7506
 27 i 4*25 0*5233 -2*2733
 28 1 i*66 1*5827 0*0773
 29 o 74*87 46'3354 28*5346
 30 1 15*95 16*8420 -0*8926
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 PEDAGOGIC APPLICATION OF MULTIPLE REGRESSION ANALYSIS 2Og

 Our first model does indicate that we have made a reasonable start to explaining precipitation
 variation in California, but it also shows that we have not yet produced a satisfactory model.
 The first place to look in order to improve our model is at the residuals. These are plotted
 in Fig. 2. This map shows us where our predictions are good and where they are poor,
 where we under-predict and where we over-predict. It is from this map of residuals that we
 hope to find clues as to other possible explanatory variables to add to our analysis. In fact
 Fig. 2 shows a fairly consistent pattern. On the westward-facing slopes the residuals are
 invariably positive, while to the leeward side the residuals are typically negative. In other
 words, to the lee of the mountains our first model over-predicts precipitation, while on the
 other side of the mountains it under-predicts. This suggests a very clear shadow effect of the
 mountains, for which California is well known. We can add this to the model by incorporating
 a further variable which we will term shadow effect. This will be what statisticians refer to

 as a "dummy variable" taking only the values o and i. All stations in the lee of mountains
 will score i, other stations score o. This new variable is listed in the first column of Table III.
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 210 GEOGRAPHY

 When this is added to our multiple regression analysis as X5 we obtain the following equation

 Xx = 0-002 1X2 + 3*4893^3- 0-6518^4 - 1 6- 1 660^5 - 99*1909.

 This reads that precipitation at a station will be equal to (0*0021 x altitude of the station)
 + (3-4893 x the latitude of the station) - (0-6518 x distance of the station from the coast)
 - ( 1 6- 1 660 if the station is in the lee of mountains) -99*1909 (the base level). The addition
 of our extra variable has been quite successful, because the multiple correlation coefficient
 has risen to 0-8587 which indicates that we can now account for 0*7374 °f ^e variation
 in precipitation in the multiple coefficient of determination. Although the level of explana-
 tion has risen appreciably the standard error of estimate is still relatively high at
 9-1732. The residuals from this new equation are shown in Table III. It is instructive to
 compare these with our original residuals to see what effect our new variable has had on
 predictions. Normally the effect is beneficial; for instance adding a shadow effect to San Jose
 (8) reduces the residual from -8-8558 to +0-2733 inches. On some occasions, however,
 predictions have become worse. San Francisco (6), for example, had a negative residual in
 the first model ( - 5*6929) but is not in the lee of mountains, so that the addition of the shadow
 effect (for which San Francisco scores o) increases the residual to - 10*7365.
 To summarise the second model, we can say that our level of explaining is much better
 than the first model but that the improvement in predictions is much more slight.

 The third model

 Let us look at the distribution of residuals from the second model in Fig. 3 to see whether any
 further explanatory variables suggest themselves. Unlike Fig. 2 there is no clear-cut pattern
 among this set of residuals. This suggests that the unexplained variation in our precipitation
 data does not relate to any broad structural variables of the sort dealt with so far. It is more
 likely that the remaining unexplained variation (the residuals) relate to micro-climatic
 processes associated with the particular sites of the meteorological stations. It will be difficult
 to incorporate such details into a broad state-wide modelling exercise such as is attempted here.

 There are two stations that do stand out, however, as truly exceptional. In the far north of
 the state, Crescent City (29) has had by far the largest positive residual and Tule Lake (19)
 has had by far the largest negative residual for both models developed so far. These residuals
 are so much larger than all other residuals recorded in this study that we suspect they indicate
 a different mixture of effects from our explanatory variables. They clearly affect precipitation
 differently in the far north than elsewhere. This warrants further investigation not necessarily
 using multiple regression analysis. In the present context, however, we can proceed as follows.
 We argue that our variables behave differently in the extreme north and so we cannot expect
 to model that region within the same analysis as the rest of the state. Hence we will omit these
 two stations and proceed with a third model incorporating just 28 stations. Such a strategy is
 certainly controversial, for a researcher should not pick and choose what observations to
 include in this way other than in exceptional circumstances. The residuals for stations 19
 and 29 are exceptional. (A useful next stage would be to collect data for Washington and
 Oregon and see whether these two stations fit consistently into a new "north-west region"
 multiple regression equation.)

 Our third model is highly successful. The multiple correlation coefficient is very high at
 0*9392, which means that we now account for 88 per cent of the variation of precipitation
 (coefficient of determination is 0*8821). More significant is the new, relatively low, standard
 error of estimate of only 4*966 1 . This dramatic improvement indicates that the poor predictive
 abilities of our previous models were largely due to the two northern stations, as in fact the
 residuals indicated. Our new final equation is

 Xx = 0*0033^2 + 3*0655^3 -o-O546Ar4- 1 1*5771^5-87*7331

 which by now can be left to the reader to translate into English.
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 PEDAGOGIC APPLICATION OF MULTIPLE REGRESSION ANALYSIS 2 1 1

 Fig. 3. - Residuals from the second model.

 Conclusions

 Our models have become increasingly better as we have proceeded through the analyses.
 This is because we have used the method of residuals which cumulatively attempts to incor-
 porate part of the unexplained variation in each succeeding model. In this case the strategy
 has been very successful, leaving only 12 per cent of the variation unaccounted for in the
 final model. All the results are summarised in Table IV.

 The first three rows of Table IV show the cumulative improvement of our models. The
 second three rows show the changing magnitude of the regression coefficients which are
 interesting in the way they reflect the modelling sequence. The addition of the shadow effect
 variable in the second model reduces by about one half the regression coefficients for altitude
 and distance from the coast. This means that in the first model the shadow effect, although
 not explicitly modelled, was implicitly confounded with the altitude and distance variables.
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 212 GEOGRAPHY

 Table IV

 Summary of Results

 First model Second model Third model

 Multiple correlation 0-7708 0-8587 0-9392
 Multiple determination 0*5942 o*7374 0-8821
 Standard error of estimate 1 1 * 1 825 9- 1 732 4*966 1
 Regression coefficient for altitude 0-0041 0-0021 0-0033
 Regression coefficient for latitude 3*4536 3*4893 3*0655
 Regression coefficient for distance from coast - o- 1 426 - 0-05 1 8 - 0-0546
 Regression coefficient for shadow effect - - 1 6- 1660 - 1 1-5771
 Base constant -102-5314 -99*1909 -87-7331

 As we might expect it was not confounded with latitude. In the second model this confounding
 is solved by allowing the shadow effect to have its own separate regression coefficient. Latitude,
 on the other hand, is affected by omitting the two northern stations in creating the third
 model. It is the regression coefficients in this third model which produce the high level of
 explanation and relatively accurate predictions.
 The discussion presented above has not added anything substantively new to our knowledge

 of California climates. It has illustrated the multiple regression model, however, in a situation
 relatively well known to most geographers. By observing use of the technique to replicate the
 familiar, the reader should now be able to understand the technique when it is used to unravel
 the less well known.

 One final point is worthy of note. The above presentation has concentrated upon the
 explanatory role of multiple regression (i.e. explaining known precipitation levels). Suppose
 that we wish to know the level of precipitation at an ungauged site to see whether there is
 sufficient precipitation to build a dam. In this situation we could use our regression equation
 in an applied predictive role (i.e. estimating unknown precipitation). This would merely
 require the input of the values of the independent variables for the new site. This example
 gives a brief glimpse of the potential application of what has become a standard statistical
 technique in modern geography.

 REFERENCES

 1 See, for example, P. J. Taylor, Quantitative Methods in
 Geography, Houghton Mifflin, Boston, 1976.

 R. J. Johnston, Multivariate Statistical Analysis in
 Geography, Longmans, London, 1978.

 R. Ferguson, "Linear regression in geography",
 CATMOG, i«s, Geo-Abstracts, Norwich, 1078.

 • The data for the analyses are from E. L. Felton,
 California's Many Climates, Pacific Books, Palo Alto,
 1965-

 8 We can "force" the model to predict only positive
 precipitation values by using the logarithm of
 precipitation rather than the raw precipitation
 totals in our model. Logarithms, and therefore
 predictions of logarithms, can only be positive.
 This strategy is not employed here but could be
 considered a logical next step.
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