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A Pedagogic Application
of Multiple Regression
Analysis

Precipitation in California

P. J. Taylor

ABSTRACT. Multiple regression analysis is illustrated in a familiar geographical
problem for pedagogic purposes. Precipitation patterns in California are related to altitude,
latitude and distance from the coast. This first model indicates a need to incorporate a
shadow effect. The model is progressively improved using maps of residuals to the point
where the third model is deemed to be highly successful.

Multiple regression analysis is a technique for describing how the variations in one phenomenon
are related to variations in two or more other phenomena. It is usually assumed that these
other variables do, in some sense, ‘“‘determine”, “produce” or even “cause’ the variations
observed in the first variable. This way of thinking about the world has always been
important in geography: for instance, areal variations in vegetation have normally been
related to areal variation of climatic and soil phenomena. The advent of multiple regression
analysis has brought to geography a more precise, numerical approach to the age-old problem
of describing the inter-relationships we observe around us.

It is the purpose of this paper to describe multiple regression analysis in a completely
non-technical manner. Descriptions of the technique at various degrees of sophistication are
readily available in the literature;! this discussion is intended for those who wish to understand
the rudiments of the technique but do not wish to follow statistical explanations of the various
elements of a multiple regression model at this stage. On completing this paper the reader
should have acquired the skill to understand the meanings and findings of other geographical
articles that apply multiple regression analysis as a tool in substantive research. In order to
use the technique in research the reader will have to go to references beyond this paper.

Although this paper does not have a substantive research purpose it is important to specify
carefully a “typical” research problem which would be tackled using multiple regression
analysis. The problem chosen is a simple one, incorporating well-known relationships.
Nothing new will be discovered in the analyses below, but the technique will be illustrated in
a situation that is familiar to all readers. An attempt will be made to explain the areal
variations in average annual precipitation totals in California.? Thirty meteorological stations
have been selected from all parts of the state (Table I and Fig. 1) to provide a data set. The
large variations in precipitation recorded in column one of Table I reflect the wide variety of
environments within California—literally from deserts to coastal mountain ranges. These

» Dr. P. J. Taylor is Lecturer in Geography at The University of Newcastle upon Tyne.
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204 GEOGRAPHY

Table 1
VARIABLES USED IN THE FIRsT MODEL
Average annual Distance
precipitation Altitude  Latitude from coast
Station (inches) (feet) (degrees) (miles)
¥ Eurcka 3957 43 408 1
2. Red Bluff 2327 341 402 97
3. Thermal 18-20 4152 338 70
4. Fort Bragg 3748 74 39'4 1
5. Soda Springs 4926 6752 39 150
6. San Francisco 21-82 52 37 5
7. Sacramento 18-07 25 385 8o
8. San Jose 14°17 95 37°4 28
9. Giant Forest 4263 6360 36-6 145
10. Salinas 13-85 74 367 12
11. Fresno 9'44 331 36-7 114
12. Pt. Piedras 1933 57 357 1
13. Pasa Robles 1567 740 357 31
14. Bakersfield 6-00 489 354 75
15. Bishop 5'73 4108 373 198
16. Mineral 4782 4850 404 142
17. Santa Barbara 17°95 120 34°4 1
18. Susanville 18-20 4152 40°3 198
19. Tule Lake 1003 4036 419 140
20. Needles 463 913 348 192
21. Burbank 1474 699 34'2 47
22. Los Angeles 1502 312 341 16
23. Long Beach 12:36 50 338 12
24. Los Banos 8-26 125 378 74
25. Blythe 405 268 336 155
26. San Diego 9'94 19 32°7 5
27. Daggett 425 2105 34°09 85
28. Death Valley 166 —178 365 194
29. Crescent City 74°87 35 417 1
30. Colusa 1595 60 39'2 91

precipitation figures are located on Fig. 1 which may be regarded as the ‘““problem map”
(i.e. the pattern of the phenomena to be explained).

The multivariate context

Let us consider what variables should be included in the analysis in order to explain this
variation in precipitation. We will start with the orographic component in the precipitation
by specifying altitude above sea level in feet as our first explanatory variable. (In statistical
terminology this is often referred to as the independent variable in contrast to the phenomena
we are attempting to explain which is the dependent variable.) This new variable is added to
Table I as column 2 and it can be seen that generally speaking, precipitation does increase
with altitude among the stations. However, the relationship is by no means a simple direct one.
For example, compare Bishop (station 15) and Mineral (16). Both are at approximately the
same altitude but experience vastly different levels of precipitation. A glance at Fig. 1 will
give a good clue as to why this is the case—the stations lie on very different latitudes. Clearly
altitude alone does not determine precipitation; we must also consider latitude. Degrees of
latitude north is our second independent variable and is shown on column 3 in Table I.
The influence of the new independent variable can be broadly seen by scanning columns 1
and 3 of Table I. The more northerly a station is, the more likely it will fall along or near to
westerly-moving storm tracks and so usually it is found to receive more precipitation. Once
again, however, this is not always the case. Consider Fort Bragg and Colusa, which are at
similar latitudes and yet have very different levels of precipitation. This difference cannot be
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Fig. 1.—Average annual precipitation levels (inches) over thirty stations in California.

put down to altitude, since both stations are at similar heights above sea level. Once again a
brief glance at Fig. 1 suggests an additional independent variable to account for this precipi-
tation difference. Whereas Fort Bragg is on the coast, Colusa is nearly 100 miles inland.
A third independent variable has therefore been added to Table 1 in column 4, namely
distance from the coast in miles. It isexpected, and generally borne out in comparing columns
1 and 4, that precipitation declines with distance from the coast as moisture-laden air has
progressively less rain to deposit as it moves inland.

The above arguments have a two-sided purpose. First, we have selected in a quite logical
manner a set of independent variables which would seem to be pertinent to our goal of
explaining variations in California precipitation. We have, in fact, produced three variables
describing the situation of each station which act as surrogates for the physical processes
which underlie the actual precipitation. Second, we have been able to derive our set of
explanatory variables by showing how one often confounds the effects of another. Put simply,
to explain precipitation we need to know the altitude and latitude and distance from the coast
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of a station. Knowledge of one of these variables without knowledge of the other two is not
particularly helpful. Such a statement is to argue for a multivariate analysis in preference to a
simple bi-variate analysis. The latter consists of pair-wise comparisons of variables as, for
instance, in a simple correlation study. Our argument above suggests that such correlation
coefficients will be of limited utility and may even be misleading since they cannot unravel
the confounding effects of one independent variable on another. If we wish to relate precipi-
tation to altitude, for instance, we cannot adequately do this without taking into account
latitude and distance from the coast. A multivariate analysis allows us to do just this;
variables are considered not in isolation from one another but jointly operating on precipi-
tation together. The multiple regression technique is a common means for carrying out a
multivariate analysis. By using this technique we are setting out our research problem
realistically in a multivariate context.

The multiple regression technique

What, then, does the multiple regression technique do? It is that multivariate procedure
which is used to relate one variable (known as the dependent) to a set of other variables
(known as independent or explanatory). Hence our choice of the technique for the problem
stated above, where precipitation becomes the dependent variable and altitude, latitude and
distance from the coast are three independent variables. The purpose of the whole exercise
is to derive an equation which precisely specifies the relationship between dependent and
independent variables. The technique is designed to generate that equation which best
describes the pattern of relationships to be found in the data.

The form which the equation takes must be decided upon beforehand. In most analyses,
including those described below, a linear form is used. This assumes that changes in the
dependent variable relating to changes in the independent variables are constant for all
values of all variables. This simply means that if an increase in altitude from 500 to 1000 feet
is associated with precipitation rising 10 inches, then similarly an identical increase of altitude
from 2000 to 2500 feet will be associated with a 10 inch rise in precipitation. Given this
assumption the equation for a multiple regression analysis will be of the form

Xl = ia iijgib'Xs, ceey ib”X”iJ

where the X’s refer to a set of n variables (one dependent and n—1 independent) and a and
the b’s are the parameters of the equation. The final term, ¢, includes those aspects of the
dependent variable not accounted for by the independent variables. It is the X’s which
constitute the data (i.e. Table I in our problem) and the parameters which are estimated
by the technique. Hence the basic results of a multiple regression analysis are a set of estimated
parameters (a and b’s) which can then be set out as an equation in the form shown above.
They are interpreted as follows: (i) a is the base constant and is an estimate of the value of the
dependent variable when all the independent variables are zero. In our example it is level
of precipitation associated with zero altitude, latitude and distance from the coast: (ii) the
b’s are regression coefficients which relate each independent variable to the dependent variable.
They are simple gradients and are therefore also in units of the dependent variable. They
tell how much change in the dependent variable is associated with a change of one unit of
an independent variable. In our example the regression coefficient that relates altitude to
precipitation is an estimate of how much precipitation increased in inches for an increase of
one foot of altitude.

Finally we should mention that these results are only ‘“‘estimates”. Our analysis is based
upon a sample of 30 stations so that the results are only estimates of the true parameters (for
all locations in California) based upon this partial evidence. The procedures of inferential
statistics to cope with this situation are not described here. In fact our “simple” physical
problem produces highly significant results even though based upon just thirty observations.
We are now in a position to begin assessing these results.
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The first model

Our first model of California precipitation is simply precipitation as a function of altitude,
latitude and distance from the coast. This is calibrated as ‘‘Precipitation at a station equals
(0-004 x altitude of the station) + (3:4536 x latitude of the station) — (0-1426 x the distance
of the station from the coast) —102:5314 (which is the base level).” If we label our variables
X;, X, X3 and X, respectively we can write the above formulation much more succinctly as

X, = 0:004X, + 34536 X3 — 01426 X, — 102°5314.

For any particular station we can predict what the precipitation should be given the altitude,
latitude and distance from the coast. At Eureka (1)

X, = (0°004 % 43) + (3°4536 x 40-8) — (0°1426 x 1) —102:5314 = 38:4076.

This prediction can be compared with the actual precipitation recorded for Eureka which
was 39'57. The difference between these two values, the prediction and the actual, is the
error or residual. In this case the residual is (39-57 —38'4076) which equals 1-1624. This is
interpreted as our equation underpredicting precipitation at Eureka by just over 1 inch.
Table II shows all g0 predictions and residuals plus the original values from Table I for
comparison. Where the residuals are negative it means that precipitation at that station is
over-predicted.

Table II
PrEDICTIONS AND RESIDUALS FROM THE FIRsT MODEL
Actual Predicted

Station precipitation precipitation Residuals
1 3957 38-4076 1-1624
2 23-27 23-8550 —o0-5850
3 18-20 21°1133 —2-9133
4 3748 33-6988 37812
5 4926 39-2784 99816
6 21-82 27°5129 — 56929
7 18-07 19°1227 —1°0527
8 14°17 23-0258 —8-8558

9 42:63 29-0716 1355
10 13-85 22-8050 —8-9550
11 9'44 9-3018 0-1382
12 19°33 20-851 —1-5213
13 1567 19°351 —3-6818
14 6-00 11-0181 —5-0181
15 573 14°7640 —9°0340
16 4782 36'3777 11-3423
1 g 1 g-gs 16-6180 1-3320
1 18-20 253039 —7-1039
19 1003 38-2306 —28-6006
20 463 —6-0172 106472
21 14°74 11-7223 3-0177
22 1 5-02 14-2;38 0-7962
23 12°3 12:6919 —0-3319
24 8-26 17-9680 —g-7080
25 405 —7°5089 11°5589
26 994 97653 01747
27 4-22 14°4417 —10°1917
28 I —4-8715 6-5%5
29 7487 414833 333867
30 15°95 201136 —41636

These errors or residuals indicate that precipitation is not perfectly determined by our
three independent variables. We do not have an exact deterministic relationship but instead
we have an empirical statistical relationship where only part of the original problem map is
explained. The amount that is explained is indicated by the multiple correlation coefficient which
in the case of the perfect relationship (no errors) would equal unity. On the other hand, if
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the multiple correlation coefficient is zero there is no linear relationship whatsoever between
X, and X,, X; and X,. In this case the coefficient is a relatively high 0-7708. The square of
this value, 0°5942, is termed the coefficient of determination which tells us how much of the
variation in the original problem map is accounted for by our three explanatory variables.
This is because this coefficient is measuring the ratio of the variation in predicted values to
that of the actual values. In this example the coefficient is informing us that the variation in
the values predicted by our equation is nearly 6o per cent of the original variation in the
dependent variable. Hence we can state that 59 per cent of the variation of precipitation is
accounted for by our three independent variables. Fully 41 per cent still remains (in the
residuals) to be explained.

The multiple correlation measure tells us how important our variables are; an alternative
statistic is the standard error of estimate which tells us how good a predictor our equation is.
It is literally a measure (standard deviation) of the spread of the residuals in Table II. Itis
interpreted as indicating the range of error you can expect when using the equation to
predict: approximately two-thirds of predictions will have a residual less than one standard
error away from the true value and about g5 per cent will be within two standard errors of
the correct answer. For this model the standard error is 11-1825; in other words, we expect
two-thirds of our predictions to be within 11 inches of the true level of precipitation. In
Table II 25 out of 30 residuals are less than one standard error, which is slightly better than
expected. In general we would consider this model a poor predictor, for this standard error
is far too large to place much reliance on the predictions. This point is emphasised by three
stations (20, 25 and 28) where the model predicts the impossible—negative rainfall.3

The second model
Table 111
THE SHADOW EFFECT, PREDICTIONS AND RESIDUALS FROM THE SECOND MODEL
Shadow Actual Predicted
Station effect precipitation precipitation Residuals
1 o 3957 432121 —36421
2 I 2327 20-6225 2:6475
3 1 1820 78397 10°3603
4 o 37°48 38'2934 —0'9134
2 o 4926 61 46417
o 21-82 32°5565 —10-7365
7 1 18-07 148945 31755
8 1 14°17 138967 02733
9 o 4263 346175 8-012
10 1 13-85 122372 1-612
11 1 944 7'5 19311
12 o 19° 3 254467 —6-1167
13 1 g 91893 6-&807
14 1 5'32 06711
15 1 53 13'3347 —7-6047
16 o . 448022 30178
1 o 17°95 21°04 — 3095
1 1 1820 23¢ ~5°6:
19 1 1003 32-2326 —22:2026
20 1 463 —1-9120 65420
21 o 14°74 19°2057 -4%&;7
22 o 1502 13-633| —4'6131
23 [ 12:36 18-2329 —58729
24 1 8-26 12'9763 —4-(75163
2 1 4'05 —5‘% 96142
27 i k] "*”§°6
¥ '5233 —2°2733
28 1 1-62 15827 342
29 o 74°87 463% 28'39
30 1 15°95 16+ -0
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Fig. 2.—Residuals from the first model.

Our first model does indicate that we have made a reasonable start to explaining precipitation
variation in California, but it also shows that we have not yet produced a satisfactory model.
The first place to look in order to improve our model is at the residuals. These are plotted
in Fig. 2. This map shows us where our predictions are good and where they are poor,
where we under-predict and where we over-predict. It is from this map of residuals that we
hope to find clues as to other possible explanatory variables to add to our analysis. In fact
Fig. 2 shows a fairly consistent pattern. On the westward-facing slopes the residuals are
invariably positive, while to the leeward side the residuals are typically negative. In other
words, to the lee of the mountains our first model over-predicts precipitation, while on the
other side of the mountains it under-predicts. This suggests a very clear shadow effect of the
mountains, for which California is well known. We can add this to the model by incorporating
a further variable which we will term shadow effect. This will be what statisticians refer to
as a “dummy variable” taking only the values o and 1. All stations in the lee of mountains
will score 1, other stations score 0. This new variable is listed in the first column of Table III.
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When this is added to our multiple regression analysis as X; we obtain the following equation
X, = 00021.X; + 3°4893 X5 — 0-6518X, — 16-1660X; — 99-190Q.

This reads that precipitation at a station will be equal to (0-0021 x altitude of the station)
+(3°4893 x the latitude of the station) —(0-6518 x distance of the station from the coast)
— (16-1660 if the station is in the lee of mountains) —gg-19og (the base level). The addition
of our extra variable has been quite successful, because the multiple correlation coefficient
has risen to 0-8587 which indicates that we can now account for 0-7374 of the variation
in precipitation in the multiple coefficient of determination. Although the level of explana-
tion has risen appreciably the standard error of estimate is still relatively high at
9-1732. The residuals from this new equation are shown in Table III. It is instructive to
compare these with our original residuals to see what effect our new variable has had on
predictions. Normally the effect is beneficial; for instance adding a shadow effect to San Jose
(8) reduces the residual from —8-8558 to +0-2733 inches. On some occasions, however,
predictions have become worse. San Francisco (6), for example, had a negative residual in
the first model (—5-6929) but is not in the lee of mountains, so that the addition of the shadow
effect (for which San Francisco scores 0) increases the residual to — 10-7365.

To summarise the second model, we can say that our level of explaining is much better
than the first model but that the improvement in predictions is much more slight.

The third model

Let us look at the distribution of residuals from the second model in Fig. g to see whether any
further explanatory variables suggest themselves. Unlike Fig. 2 there is no clear-cut pattern
among this set of residuals. This suggests that the unexplained variation in our precipitation
data does not relate to any broad structural variables of the sort dealt with so far. It is more
likely that the remaining unexplained variation (the residuals) relate to micro-climatic
processes associated with the particular sites of the meteorological stations. It will be difficult
to incorporate such details into a broad state-wide modelling exercise such as is attempted here.

There are two stations that do stand out, however, as truly exceptional. In the far north of
the state, Crescent City (29) has had by far the largest positive residual and Tule Lake (19)
has had by far the largest negative residual for both models developed so far. These residuals
are so much larger than all other residuals recorded in this study that we suspect they indicate
a different mixture of effects from our explanatory variables. They clearly affect precipitation
differently in the far north than elsewhere. This warrants further investigation not necessarily
using multiple regression analysis. In the present context, however, we can proceed as follows.
We argue that our variables behave differently in the extreme north and so we cannot expect
to model that region within the same analysis as the rest of the state. Hence we will omit these
two stations and proceed with a third model incorporating just 28 stations. Such a strategy is
certainly controversial, for a researcher should not pick and choose what observations to
include in this way other than in exceptional circumstances. The residuals for stations 19
and 29 are exceptional. (A useful next stage would be to collect data for Washington and
Oregon and see whether these two stations fit consistently into a new “north-west region”
multiple regression equation.)

Our third model is highly successful. The multiple correlation coefficient is very high at
0-9392, which means that we now account for 88 per cent of the variation of precipitation
(coefficient of determination is 0-8821). More significant is the new, relatively low, standard
error of estimate of only 4-9661. This dramatic improvement indicates that the poor predictive
abilities of our previous models were largely due to the two northern stations, as in fact the
residuals indicated. Our new final equation is

X; = 0°0033X, +30655X3 —0'0546 X, — 11:5771.X; — 877331

which by now can be left to the reader to translate into English.
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Fig. 3.—Residuals from the second model.
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Figures refer to residuals from the second model.
Negative residuals are circled. Shading indicates

Our models have become increasingly better as we have proceeded through the analyses.
This is because we have used the method of residuals which cumulatively attempts to incor-
porate part of the unexplained variation in each succeeding model. In this case the strategy
has been very successful, leaving only 12 per cent of the variation unaccounted for in the
final model. All the results are summarised in Table IV.

The first three rows of Table IV show the cumulative improvement of our models. The
second three rows show the changing magnitude of the regression coefficients which are
interesting in the way they reflect the modelling sequence. The addition of the shadow effect
variable in the second model reduces by about one half the regression coefficients for altitude
and distance from the coast. This means that in the first model the shadow effect, although
not explicitly modelled, was implicitly confounded with the altitude and distance variables.
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212 GEOGRAPHY
Table IV
SuMMARY OF RESULTS
First model Second model  Third model
Multiple correlation 0-7708 08587 09392
Multiple determination 05042 07374 0-8821
Standard error of estimate 11-1825 91732 4-9661
Regression coefficient for altitude 00041 00021 0°0033
Regression coefficient for latitude 34536 3-4893 3-0655
Regression coefficient for distance from coast —0°1426 —0°0518 —0-0546
Regression coefficient for shadow effect — —16-1660 —11-5771
Base constant —102°5314 —99°1909 —87-7331

As we might expect it was not confounded with latitude. In the second model this confounding
is solved by allowing the shadow effect to have its own separate regression coefficient. Latitude,
on the other hand, is affected by omitting the two northern stations in creating the third
model. It is the regression coefficients in this third model which produce the high level of
explanation and relatively accurate predictions.

The discussion presented above has not added anything substantively new to our knowledge
of California climates. It has illustrated the multiple regression model, however, in a situation
relatively well known to most geographers. By observing use of the technique to replicate the
familiar, the reader should now be able to understand the technique when it is used to unravel
the less well known.

One final point is worthy of note. The above presentation has concentrated upon the
explanatory role of multiple regression (i.e. explaining known precipitation levels). Suppose
that we wish to know the level of precipitation at an ungauged site to see whether there is
sufficient precipitation to build a dam. In this situation we could use our regression equation
in an applied predictive role (i.e. estimating unknown precipitation). This would merely
require the input of the values of the independent variables for the new site. This example
gives a brief glimpse of the potential application of what has become a standard statistical
technique in modern geography.
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totals in our model. Logarithms, and therefore
predictions of logarithms, can only be positive.
This strategy is not employed here but could be
considered a logical next step.
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