
 

 

Bidding in Local Electricity Markets Considering Low 

Voltage Grid Constraints 

Fernando Lezama, Ricardo Faia, Zita Vale 

GECAD - Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, 

 LASI - Intelligent Systems Associate Laboratory, Polytechnic of Porto, 

Porto, Portugal 

{flz, rfmfa, zav}@isep.ipp.pt 

 

 
Abstract—Local electricity markets give end-users the ability to 

trade electricity at the distribution level. However, distributed 

energy transactions can threaten the correct operation and 

stability of the grid. This article proposes a local market 

framework and analyzes the impact of local energy transactions 

on the grid. A distribution system operator is considered, 

calculating the power losses and voltage limit violations after the 

LEM is cleared. The framework is validated considering 55 users 

and 6 strategic bidders trading energy in a low voltage grid. 

Results show an improvement in costs and incomes for market 

participants and network operation when the islanded LEM is 

considered. Counter intuitively, selecting a plain tariff improves 

local generation guaranteeing smooth grid operation and energy 

transactions but affecting consumers’ costs. These findings show 

that more scrutiny of results is needed when several participants 

with different objectives, including the network operator, are 

considered in local electricity markets. 

Index Terms-- Auction-based market, computational intelligence, 

local electricity markets, low voltage grid, renewable generation. 

I. INTRODUCTION 

Local electricity markets (LEM) are attracting the attention 
of stakeholders at the distribution level, pushing for the 
decarbonization and decentralization of energy systems[1]. 
Furthermore, these new market structures enable the 
participation of end-users as active market players, eager to take 
full advantage of their generation capabilities (in the form of 
renewables or distributed generation) and flexibility [2]. 

While LEMs unlock benefits for several stakeholders (e.g., 
utilities, system operators, and end-users), different challenges 
must be overcome before implementation of such systems in 
practice. Different market structures and frameworks have been 
proposed in the literature to analyze LEM from different 
perspectives. For instance, models focusing on energy 
communities [3], [4], aggregators [2], [5], or DSO-TSO 
coordination [6], [7], have been proposed in an attempt to find 
the best means for exploiting market transactions of end-users. 
From the literature studying LEMs, it is evident that local 
transactions cannot be decoupled from higher levels of the 
electricity grid and their impact, primarily in the distribution 

network (DN), plays a key role in the design and 
implementation of such systems.  

In this article, the interaction between market participants at 
the local level is considered, taking into account the validation 
and needs of the distribution network operator (DSO). The 
proposed framework is constructed following [8], in which 
different types of players, namely consumers, prosumers, and 
combined heat and power (CHP) generators, participate in a 
day-ahead double-auction LEM. In addition to [8], this work 
considers the IEEE European Low Voltage Test Feeder, a radial 
distribution topology with 116 buses and 115 lines [9]. In this 
way, the impact of LEM transactions on the distribution 
network (DN) can be quantified utilizing power flow 
assessment. It is assumed that smart grid technologies (e.g., 
smart meters and management systems) are available for all 
market participants and the DSO, allowing local energy 
transactions and network validation accordingly [10]. 

We formulate a multi-leader single-follower bi-level 
optimization problem for strategic bidding in the LEM with 
these considerations. In such a model, competitive agents 
search for maximization of profits at the upper-level, and the 
LEM maximizes energy transacted at the lower-level. In 
addition, keeping DSO and LEM operation decoupled, a 
postface is considered to quantify DN losses and grid 
constraints violations in function of LEM response. While such 
a scenario can be (not easily) solved to optimality under the (not 
very realistic) assumption of complete perfect information, 
users would like to preserve private information and perform 
strategic bidding according to their interests. Therefore, we use 
the ant colony optimization (ACO) algorithm, a learning 
approach, to determine the best bidding strategies for 
producers. While such a technique is a metaheuristic method, it 
was empirically tested under similar frameworks in [8], [11].  

The main contributions of the article are: i) a model for 
optimization of energy bids in LEM including DN validation; 
ii) Implementation of a framework and simulation environment 
including a learning algorithm (the ACO) for strategic bidding 
in LEMs; iii) Analysis of the impact of LEM transactions on the 
DN and users’ profits considering different grid tariffs. 

This work has received funding from the EU Horizon 2020 research and 

innovation program under project TradeRES (grant agreement No 864276). 

The authors acknowledge the work facilities and equipment provided by 
GECAD research center (UIDB/00760/2020) to the project team. 



 

 

II. PROBLEM FORMULATION  

We consider a LEM in which consumers, prosumers (with 
PV generation), and CHP producers transact energy aiming at 
minimizing costs (in the case of consumers) and maximizing 
incomes (in the case of prosumers and producers). The 
innovation of this work is to consider a DSO for the validation 
of DN constraints. Thus, assuming a sequential interaction 
between the LEM operator and the DSO, the losses in the DN 
are considered, searching for energy transactions that favor 
market participants and guarantee a reduction of DN losses 
(something in which the DSO is naturally interested). Figure 1 
illustrates the scenario considered in this article. 

 

Figure 1.  LEM, retailer and DSO interactions. 

A. Mathematical model 

The modeling of the problem considers a set of consumers 
𝐼 = {1,2, … , 𝑁𝑐}, and producers 𝐽 = {1,2, … , 𝑁𝑝}. Prosumers 

act as consumer when their PV generation is not enough to 
satisfy their total consumption, or as a producer in the periods 
where they have PV generation surplus. Thus, a bi-level model 
for strategic bidding is proposed as follows: 

1) Upper-level (multiple-followers): The upper-level 

models the independent costs/profits that market participants 

expect by putting bids/offers in the LEM. Consumers’ bids are 

characterized as a tuple (𝑠𝑖,𝑡 , 𝑑𝑖,𝑡), where 𝑠𝑖,𝑡 is a price bid for 

energy 𝑑𝑖,𝑡 at time 𝑡. Consumers’ minimization of costs is 

modelled as: 

min
𝑠𝑖,𝑡,𝑑𝑖,𝑡

𝐶𝑖 =∑(∑𝑐𝑝𝑡 ∙ 𝑥𝑗,𝑖,𝑡 + 𝑐𝑡
grid

∙ 𝐸𝑖,𝑡
buy

𝑗

)

𝑇

𝑡=1

 (1a) 

st.  

𝑑𝑖,𝑡
Total = ∑ 𝑥𝑗,𝑖,𝑡 + 𝐸𝑖,𝑡

buy

𝑗,𝑗≠𝑖

        ∀𝑡 ∈ 𝑇 (1b) 

0 ≤ 𝑐𝑡
F ≤ 𝑐𝑝𝑡 ≤ 𝑠𝑖,𝑡 ≤ 𝑐𝑡

grid
      ∀𝑡 ∈ 𝑇 (1c) 

where 𝑥𝑗,𝑖,𝑡 is the energy bought by agent 𝑖 from agent 𝑗 in the 

LEM (kWh); 𝐸𝑖,𝑡
buy

 is the energy bought by agent 𝑖 from the grid 

(kWh); 𝑐𝑝𝑡  is the LEM clearing price (EUR/kWh); and 𝑐𝑡
grid

 is 

the grid tariff (EUR/kWh). (1b) guarantees that the total 

demand of agent 𝑖 (𝑑𝑖,𝑡
Total) is supplied either by the LEM or the 

grid; (1c) guarantees that the LEM 𝑐𝑝𝑡  is higher than the feed-

in tariff 𝑐𝑡
F, and lower or equal to the bid price 𝑠𝑖,𝑡 and the grid 

tariff 𝑐𝑡
grid

 (making the LEM profitable for consumers). All 

variables are considered non-negative. 

On the other hand, producers’ incomes are calculated in 
function of their offers modeled as a tuple (𝑠𝑗,𝑡 , 𝑔𝑗,𝑡), where 𝑠𝑗,𝑡 
is a price offer for energy 𝑔𝑗,𝑡 at time 𝑡. Thus, producers 

maximize incomes as: 

max
𝑠𝑗,𝑡,𝑔𝑗,𝑡

𝐼𝑛𝑗 =∑(∑𝑐𝑝𝑡 ∙ 𝑥𝑗,𝑖,𝑡 + 𝑐𝑡
F ∙ 𝐸𝑗,𝑡,𝑠

sell

𝑖

− 𝐂𝑗,𝑡
total)

𝑇

𝑡=1

 

(2a) 

st.  

𝑔𝑗,𝑡
Total =

{
 
 

 
 ∑ 𝑥𝑗,𝑖,𝑡 + 𝐸𝑗,𝑡

sell

𝑖,𝑗≠𝑖

    for PV

∑ 𝑥𝑗,𝑖,𝑡
𝑖,𝑗≠𝑖

     for CHP
  ∀𝑡 ∈ 𝑇 (2b) 

0 ≤ 𝑐𝑡
F ≤ 𝑠𝑗,𝑡 ≤ 𝑐𝑝𝑡 ≤ 𝑐𝑡

grid
      ∀𝑡 ∈ 𝑇 (2c) 

where 𝑥𝑗,𝑖,𝑡 is the energy sold by agent 𝑗 to agent 𝑖 in the LEM 

(kWh); 𝐸𝑗,𝑡
sell is the energy sold by agent 𝑗 to the grid (only PV 

generation can be injected into the grid) in kWh; 𝑐𝑝𝑡  is the LEM 

clearing price (EUR/kWh); 𝑐𝑡
F is the feed-in tariff (EUR/kWh); 

and 𝐂𝑗,𝑡
total is the total production cost of local generation. 

Constraint (2b) is used to guarantee that PV generation of 
player 𝑗 is transacted in the LEM and fed into the grid, or that 
CHP production is limited to the one transacted in the LEM; 
constraint (2c) bounds producers’ offers 𝑠𝑗,𝑡 between the feed-

in tariff 𝑐𝑡
F and the grid tariff 𝑐𝑡

grid
. All variables are non-

negative. The production cost 𝐂𝑗,𝑡
total is 0 for PV generation and 

(2 ∙ 𝑏𝐶𝐻𝑃 ∙ √𝐺𝑗,𝑡  ) for CHP producers, where 𝑏CHP is a cost factor 

and 𝐺𝑗,𝑡 is the energy produced by the CHP unit. 

2) Lower-level (single-follower): The expected costs and 

incomes of the upper-level problem are directly related to the 

LEM clearing price 𝑐𝑝𝑡 . To solve the lower level problem 

efficiently, we modelled it as a symmetric pool-based market 

mechanism [12]. In a first step, the supply curve is obtained by 

defining 𝐺𝐸 containing the offers of energy (𝑠𝑗,𝑡 , 𝑔𝑗,𝑡) in 

ascending order of price, and the demand curve 𝐷𝐸 containing 

the bids for energy (𝑠𝑖,𝑡 , 𝑑𝑖,𝑡) in descending order of price. The 

price at which supply equals demand is known as the 

equilibrium price (or clearing price) and can modelled as: 

max
𝑑𝑖
∗,𝑔𝑗

∗
∑𝜆𝑖

d ∙ 𝑑𝑖
∗

𝑁𝑐

𝑖=1

−∑𝜆𝑗
g
∙ 𝑔𝑗

∗

𝑁𝑝

𝑗=1

 (4a) 

st.  

∑𝑑𝑖
∗

𝑁𝑐

𝑖=1

−∑𝑔𝑗
∗

𝑁𝑝

𝑗=1

= 0            ∶ 𝑐𝑝𝑡(dual variable) (4b) 

0 ≤ 𝑑𝑖
∗ ≤ 𝐷𝐸𝑖 , 𝑖 = 1,… , 𝑁𝑐 (4c) 

0 ≤ 𝑔
𝑗
∗ ≤ 𝐺𝐸𝑗, 𝑗 = 1, … , 𝑁𝑝 (4d) 



 

 

where 𝑑𝑖
∗ and 𝑔𝑗

∗ are the demand bids and supply offers ordered 

by price (i.e., belonging to the sets 𝐷𝐸𝑖  and 𝐺𝐸𝑗), and  𝜆𝑖
d and 

𝜆𝑗
g
 are their corresponding bid/offer prices. Eq. (3a) maximizes 

the social welfare of players; Eq. (3b) is the balance equation 
from which the clearing price 𝑐𝑝𝑡  can be obtained taking its 
corresponding dual variable; Equations (3c) and (3d) 
guarantees that generation/consumption limits are respected. 
Any commercial mathematical software can solve the 
corresponding linear model. A reverse procedure is 
implemented to determine the corresponding LEM transactions 
𝑥𝑖,𝑗  and 𝑥𝑗,𝑖 from the accepted 𝑑𝑖

∗ and 𝑔𝑗
∗. 

B. Network Constraints 

The LEM transactions occur at the distribution level, and 
therefore, decisions on the traded volumes have an impact on 
the DN performance. Using MATPOWER, we perform a 
power flow analysis after LEM response to determine DN 
current and voltages after CHP local production has been 
committed. It is assumed that the DSO aims at the minimization 
of voltage violations and network losses as: 

min
𝑔𝑗
CHP

𝐷𝑁impact =∑(∑ 𝐵𝑡,𝑏
𝑏∈Ω𝑏

+ ∑ 𝜃𝑡,𝑏
𝑏∈Ω𝑏

+ ∑ 𝐿𝑡,𝑙
𝑙∈Ω𝑙

𝑇

𝑡=1

+∑ 𝑃𝑡,𝑙
loss

𝑙∈Ω𝑙

+∑ 𝑄𝑡,𝑙
loss

𝑙∈Ω𝑙

) 

(5) 

where 𝐵𝑡,𝑏/ 𝜃𝑡,𝑏/𝐿𝑡,𝑙 are set to 1 if a voltage/angle/line limit 

violation occur in bus 𝑏 or line 𝑙; 𝑃𝑡,𝑙
loss and 𝑄𝑡,𝑙

loss are the active 

and reactive power (kWh) in line 𝑙; and 𝐷𝑁impact is a unitless 
measure of the status of the network. We are aware that this 
value is not a realistic measure of how DSO validate network 
status but has been used in this work as a simplistic and easy-
to-integrate measure of DN status. 

III. SIMULATION AND VALIDATION FRAMEWORK 

The resulting bi-level problem with network validation 
involves different actors with different objectives and private 
information. To keep all optimization procedures separately 
(i.e., profits maximization of agents, transacted energy 
maximization of LEM, and network losses minimization of 
DSO), we implemented a simulation and validation framework 
using the ACO algorithm for the strategic bidding of players, a 
linear-programming (LP) model for market-clearing, and 
MATPOWER software for DSO power flow validation. The 
different blocks and their implementation are explained in the 
following subsections. 

A. Metaheuristics for strategic bidding 

Players need to find the best strategy for bidding in the LEM 
and maximize profits. For this first step in the decision process, 
we define a set of players 𝐾 = {1,2, … , 𝑁𝑘} in which each 
player 𝑘 is either a consumer or producer. Each player then 

defines a tuple (𝑞𝑘,𝑡 , 𝑝𝑘,𝑡)∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 representing 

bids/offers of quantity and price, i.e., (𝑠𝑖,𝑡 , 𝑑𝑖,𝑡) or (𝑠𝑗,𝑡 , 𝑔𝑗,𝑡) 
depending if the player is a consumer or producer in that time 
step. A sign convention is used to differentiate energy offers 
(negative value for selling energy) from bids (positive value for 

buying energy) in variable 𝑞𝑘,𝑡.  Thus, a complete solution to 

our problem is a vector 𝑥⃗ = {[𝑞𝑘,𝑡] ∪ [𝑝𝑘,𝑡]}, including all 

bids/offers registered. We use a distributed ACO algorithm to 
learn/improve players decisions over time. ACO is a swarm 
intelligence approach that mimics the social behavior of ant 
species. To do so, learning matrices are programmed to 
represent the process of ants depositing pheromone on the 
ground to mark clear paths to food. In other words, ACO 
exploits a problem-solving mechanism by reinforcing paths 
(solutions) that show good performance in a given fitness 
function [13]. The details on the implementation of distributed 
ACO for this problem are omitted due to space constraints but 
can be found in [8]. 

Important to recall the following: each prosumer 𝑘 with PV 
surplus is forced to inject this energy into the grid at the feed-in 
tariff; CHP offer price  𝑠𝑗,𝑡 is adjusted to be higher or equal than 

the resulting 𝑔𝑗,𝑡 production cost (or set to 0 otherwise); 

consumers are price takers (𝑠𝑖,𝑡 = 𝑐𝑡
grid

) and inelastic loads 

(𝑑𝑖,𝑡 = 𝑑𝑖,𝑡
Total); we only focus on the learning process of CHPs. 

After having all bids and offers from market participants, the 
lower-level problem is solved by first performing a merit order 
procedure and solving the LP model from Eq. (4). The results 
from this step are the accepted bids/offers 𝑥𝑖,𝑗,𝑡/𝑥𝑗,𝑖,𝑡 and 

clearing price 𝑐𝑝𝑡. 

With all this information, we calculate the costs and 
incomes for each player using Eqs. (1a) and (2a) as: 

𝑈𝑘,𝑡 = {
−𝐶𝑖,𝑡 if 𝑘 is a consumer agent

𝑃𝑗,𝑡 if 𝑘 is a generator agent
 (6a) 

𝑈𝑘
total =∑𝑈𝑘,𝑡

𝑇

𝑡=1

 (6b) 

where 𝐶𝑖,𝑡 and 𝑃𝑗,𝑡 are the objectives of each player optimized 

independently. The total profits of all agents can be later 

recorded in a vector 𝐴profit = [𝑈1
total, … , 𝑈𝑘

total, … , 𝑈𝑁𝑘
total], 

used for performance calculation. 

B. Distribution network validation 

After players’ bids/offers are set and the LEM has been cleared, 
we use power flow calculations to determine the DN state in 
buses and lines. We applied MATPOWER at each iteration, 
varying the CHP generation in function of the LEM results. 
Notice that, since consumers are considered inelastic loads, and 
prosumers are forced to inject their total PV generation into the 
LEM or grid, the CHP production is the only distributed 
generation affecting the DN constraints. This also makes the 
DN validation a very fast procedure since market clearing 
results can be easily implemented. The results of power flow 
validation include voltage limit violations in buses and lines, 
angles, and active and reactive power losses. We define a 
penalty function using Eq. (5) to define 𝑝𝑡

DN = 𝐷𝑁impact. The 
LEM results and DN validation are combined in the fitness 
function to have a complete picture of the performance of a 
solution.  



 

 

C. Fitness function including network losses 

The fitness function is modelled to reflect the performance of a 
solution taking into account the objectives of all the involved 
players. While this performance metric is not realistic in 
practice (since players might not be able to share private 
performance information), it gives you a sense of profit 
maximization, LEM performance, and DN validation all at 
once. Thus, the fitness function is defined as: 

𝐹𝑖𝑡(𝑥⃗) = −𝐦𝐞𝐚𝐧(𝐴profit) + 𝐬𝐭𝐝(𝐴profit) +∑𝑝𝑡
LEM

𝑇

𝑡=1

+∑𝑝𝑡
DN

𝑇

𝑡=1

 

(7) 

where 𝐴profit = [𝑈1, … , 𝑈𝑘 , … , 𝑈𝑁𝑘] is the vector with the 

profits of players; 𝐦𝐞𝐚𝐧() and 𝐬𝐭𝐝() are functions that return 

the mean and standard deviation values; ∑ 𝑝𝑡
LEM𝑇

𝑡=1  is a penalty 

added to the fitness when the LEM is not cleared (𝑝𝑡
LEM = 1𝑒4, 

in this work to make pressure towards solutions that clear the 

LEM); and ∑ 𝑝𝑡
DN𝑇

𝑡=1  is a penalty related to the DN constraints 
defined in Eq. (5). The implementation of this framework can 
be found at https://fernandolezama.github.io/publication. 

IV. CASE STUDY  

We tested the model in an environment considering 61 
players bidding in an hourly day-ahead LEM. From the 
61players, 13 are consumers, 6 are CHP producers, and 42 are 
prosumers (with PV generation). The peak power consumption 
in the network is approximately 140.49 kW with a peak power 
PV generation of 193.69 kW. The CHP generators have a 
maximum capacity of 10kW, and a factor 𝑏𝐶𝐻𝑃 = 0.20 
EUR/kWh used to calculate their production cost (Eq. (3)). 

Regarding tariff limits, we assume a flat feed-in tariff of 𝑐𝑡
F =

0.045 ∀𝑡 ∈ 𝑇, and two retail tariffs, namely a plain tariff of 
0.158 €/kWh a bi-hourly tariff of 0.1023 €/kWh in off-peak 
periods, and 0.1924 €/kWh in peak periods (i.e., from 9 to 22).  

 

Figure 2.  Equivalent model of the IEEE low voltage test feeder adapted 

from [9]. 

Fig 2 presents the single line diagram of the IEEE European 
LV test feeder [9]. The radial network has base frequency of 50 
Hz, 55 loads, 114 buses, and 115 lines. It is connected to a 
medium voltage transformer of 0.8 MVA stepping the voltage 
from 11kV to 416 kV. For simulations, 42 PV generators are 
installed in load buses simulating prosumers that use such PV 
for self-consumption, selling the excess to the grid or the LEM. 
Finally, 6 CHP units are included in buses 18, 27, 28, 70, 79, 
and 108. 

Table I summarizes the case studies defined to evaluate 
players’ performance under different situations. Base case 1 
and Base case 2 are used to quantify the total costs for market 
participants under two different tariffs when no LEM and DN 
constraints are considered (i.e., the base cases). Case 1 and Case 
2, on the contrary, are defined to analyze the impact of the 
optimization model and results when LEM and DN constraints 
are considered. 

TABLE I.  ANALYSED CASES IN THIS ARTICLE. 

  LEM DN Tariff 

Base case 1 no no Plain 

Base case 2 no no Bi-hourly 

Case 1 yes yes Plain 

Case 2 yes yes Bi-hourly 

 

Finally, the ACO parameters 𝜌, 𝛼, 𝛽 are set equal to [8]. The 
number of iterations and ants (solutions) is set to 500 and 20 
respectively. All iterations are performed for the same day with 
the same network and load initial values. We performed 10 runs 
for each experiment due to the stochastic nature of the 
optimizer, reporting the best value found of the metrics. The 
experiments were implemented in MATLAB 2018a in a 
computer with Intel (R) Core (TM) i7-8650U CPU@1.90GHz 
processor with 16GB of RAM running Windows 10. 

V. RESULTS AND DISCUSSION 

Table II shows the results in terms of profits by type of 
players and in total, the fitness value (Eq. (6b)), the execution 
time for Base cases 1 and 2, and the best solution found over 10 
runs of the ACO. Notice that Base cases 1 and 2 do not include 
producers’ profits since CHP participation is only allowed 
when LEM are considered. Also, while ACO is a metaheuristic 
providing different results in each run, we reported just the best 
value found for the sake of clarity in analyzing the values and 
plots obtained. The results from Table II indicate that the cost 
of consumers and prosumers decreases w.r.t. the two base 
cases, achieving the minimum value when the bi-hourly tariff 
is considered (i.e., Case 2). In fact, the best incomes for 
consumers and prosumers are also achieved for Case 2, 
improving by around 2 EUR compared to Case 1 (plain tariff) 
and up to 7 EUR compared to Base case 1 and 2 (when no LEM 
is considered). Analyzing the producer’s performance, Case 1 
and Case 2 result in similar profits (a difference of just some 
cents), yet the incomes perceived by the CHP generators are 
much higher in Case 1 (around 65 EUR higher than Case 2) 
which indicates CHP produce more in Case 1 (which is actually 
counterintuitive). While total costs, incomes, and profits impro-  

https://fernandolezama.github.io/publication


 

 

  

ve in Case 2 w.r.t. Case 1, the fitness value actually increases 
from 18.52 to 46.83, indicating that the solution found presents 
higher penalties than the one of Case 1. 

To corroborate this, Table III summarizes the limit 
violations and the losses found on the DN for each case 
analyzed. Here we can see that Base cases 1 and 2, which are 
actually equivalent from the perspective of the network, present 
14 limit violations in buses 101, 108, 110, and 114 (depicted 
these violations in Fig. 2 with red circles) and active power 
losses of 48.36 kWh.  When the LEM and a plain tariff are 
considered (i.e., Case 1), the active power losses are reduced to 
only 10.57 kWh, and all buses limit violations are mitigated 
(remember that this is achieved considering a plain tariff that 
results in higher costs for consumers and prosumers as shown 
in Table II). When the bi-hourly tariff is considered (i.e., Case 
2), the limit violations in buses cannot be fully mitigated, and 
power losses increase w.r.t. Case 1, confirming that less CHP 
generation is actually unfavorable from the DSO perspective. 

TABLE III.  DN CONSTRAINTS RESULTS OBTAINED IN EACH CASE. 

 Limit violations (number) Losses (kWh) 

  Lines Buses Angles Active Reactive 

Base Case 1 0 14 0 48.36 8.74 

Base Case 2 0 14 0 48.36 8.74 

Case 1 0 0 0 10.57 1.92 

Case 2 0 5 0 30.71 5.57 

 

Fig. 3 shows the LEM clearing prices obtained in the 
reported Case 1 and Case 2 results to go further into the details. 
We confirmed that, when the plain tariff is used (Fig. 3a), the 
LEM is cleared in all the periods, with most values near or equal 
to the grid tariff, which is beneficial for CHPs and prosumers. 
We can also see that periods 11,14-16 are cleared with low 
prices (equal to the feed-in tariff), which can be explained by 
the preference of buying the excess of PV generation in those 
periods due to its 0 production cost. On the other hand, Fig. 3b 
shows that LEM is not cleared in periods 1-8 and 23-24. This 
can be explained by the settings of the CHP production cost, 
which results in a higher cost than the maximum price they can 
get from the LEM market in those periods (remember that 
players attending the LEM are not willing to pay a higher cost  

 

 

than the one set by the grid tariff). The low price of the bi-hourly 
tariff, in combination with no PV production, makes the LEM 
useless affecting the performance of the DN. 

Finally, Fig. 4 contrasts the energy bought and sold from the 
grid and LEM and depicts the PV and CHP generation for Cases 
1 and 2. The figure supports our previous statements, showing 
in Fig. 4b that there is no CHP and PV production in periods 1-
8, 23-24 for Case 2, resulting in 0 energy traded in the LEM 
market, and also showing that the excess of PV generation in 
periods 11-16 affect the CHP production. This situation applies 
to both Cases (see Fig. 4a and Fig. 4b). 

VI. CONCLUSIONS 

This paper proposes a framework for strategic bidding in 
LEM considering DN constraints. We assume that market 
participants do not share private information, resulting in a 
competitive LEM with agents striving to maximize profits. We 
also assume that consumers are inelastic loads and price takers, 
focusing on the strategic bidding of CHP producers. The results 
show that the LEM is advantageous for market players and the 
operation of the DN, minimizing losses and voltage limit 
violations. Surprisingly, the results also show that the grid tariff 
(an upper level for the price that CHP producers can offer) 
limits the participation of local producers in some periods due 
to the low cost of imported energy from the grid. These results 
make evident the need of further studies in the design and 
implementation of LEMs involving the objectives of a variety 
of market participants. For instance, while the fitness function 
(that measures the performance of a solution) was utilized in the 
simulation environment, in practice, agents do not have access 
to such performance measure. In any case, it is desired that all 
players search for the maximization of social welfare, so 
coordination between market participants, LEM operator, and 
DSO could be a good avenue for future research. In fact, the 
interconnection of the LEM with the larger system and other 
markets, and how LEM can provide flexibility to those while 
not while not violating distribution network constraints is an 
important topic to study in the future. Another line of research 
could be related to the analysis of the relation between local 
production cost, network losses cost, and LEM clearing price to 
find the best compromise between the involved players. Finally, 
future work must consider other distributed energy resources 
(e.g., EVs or storage systems) and time horizons to fully unlock 
the benefits promised by LEM in practice. 

TABLE II.  OVERALL COSTS/INCOMES/PROFITS, FITNESS, AND EXECUTION TIME IN EACH CASE. 

 

Consumers & prosumers (EUR) Producers (EUR) Total (EUR) 

Fitness 
Time 

(mins) Cost Income 
Profit 

(lossa) 
Cost Income 

Profit 

(lossa) 
Cost Income 

Profit 

(lossa) 

Base 

case 1 
-217.33 13.43 -203.89 - - - -217.33 13.43 -203.89 81.41 - 

Base 

case 2 
-203.69 13.43 -190.26 - - - -203.69 13.43 -190.26 80.95 - 

Case 1 -209.44 18.79 -190.65 121.58 148.37 26.79 -209.44 45.58 -163.86 18.52 53.48 

Case 2 -193.44 20.21 -173.23 56.44 82.81 26.37 -193.44 46.58 -146.86 46.83 57.27 

a. Profits are calculated as Incomes minus Costs. Thus, a negative value of profits indicates a loss (i.e., costs are higher than incomes) 
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(a) 
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Figure 3.  Obtained clearing prices in the LEM. (a) Case 1 – plain tariff; (b) Case 2 – bi-hourly tariff. 

 
(a) 

 
(b) 

Figure 4.  Energy transacted in the LEM and grid as well as PV and CHP production. (a) Case 1 – plain tariff; (b) Case 2 – bi-hourly tariff. 


