
DASIA 2024 – FULL PAPER

TITLE
SSLA: A standardized and reusable software framework for avionics and space
applications

AUTHORS Miguel López1, Alba Rozas1, Jesús Zurera1, Rafael Polonio1, Sergio Ramírez1

PRESENTER /
CORRESPONDING
AUTHOR

Alba Rozas Cid

alba.rozas@aeroespacial.sener

AFFILIATION 1SENER Aeroespacial, S.A. (Severo Ochoa 4, 28760 Tres Cantos, Madrid, Spain)

SESSION SOFTWARE – A06 presenting slot, May 28th 2024.

ABSTRACT

Flight software development and testing has traditionally absorbed a significant part of a mission’s time and

monetary resources. This is mostly due to its lack of modularity and excessive coupling to each mission’s particular

requirements, which hinders its reuse in future projects. In recent years, modular flight software architectures have

emerged to solve this issue and generate more modular and reusable software components for avionics and space

applications. NASA’s core Flight System (cFS) is perhaps the most well-known and used framework for this purpose,

following an open-source approach. Developing flight applications on top of cFS or any of its alternative frameworks,

complying with their interfaces and following their architecture results in more modular, standardized, testable and

ultimately reusable applications, reducing the costs of subsequent missions.

However, these flight software frameworks can still have a steep learning curve for application developers and

mission system engineers, due to its increasing features and somewhat complex software structure. To address this,

we have developed the SENER Service Layer API (SSLA), a new software framework that further abstracts the

application developer from the underlying software and hardware execution platform. In addition to this enhanced

abstraction, SSLA has been designed to cover other necessities of flight software development. For instance, it

provides an innovative feature that supports native integration of FPGA cores and their access from the software

applications. This makes it especially appropriate for its use in projects that use SoC processors with integrated FPGA

fabric, greatly helping the process of allocating functionalities to FPGA cores or software applications depending on

the mission requirements.

SSLA not only includes the abovementioned features built into its API, but also facilitates software creation in a

more pragmatic way by providing a development and testing environment specifically tailored for it. In this paper

we present the SSLA framework, introducing its features and its integration into a complete avionics execution

platform. A quantitative analysis of its performance and some software-related metrics are presented based on a

representative application use case.

1 INTRODUCTION

The development of software for avionics and space missions has usually consumed a great percentage of the
projects’ budget and schedule, requiring a lot of human resources. This is because flight software has traditionally
been created ad hoc to comply with each mission’s requirements and specific characteristics. Thus, it often lacked
modularity and had components that were too tightly coupled to each other, which ultimately prevented or greatly
complicated their reuse in successive missions. In the last decade, several flight software architectures have been
presented to address this problem and facilitate reuse. NASA’s core Flight System (cFS) is arguably the most well-
known in the space industry, with a very active open-source repository and continuous updates and enhancements
to its code base [1]. In the European context, the outpost-core spacecraft platform developed by the German
Aerospace Center (DLR) is also aimed at this modularization and enhanced reusability of space software [2][3]. The
French LVCUGEN framework proposed by CNES is another partial example of these approaches [4].

mailto:alba.rozas@aeroespacial.sener

However, at SENER we have identified some practical limitations in the use of these software frameworks when
working on specific projects. Our conclusions have been focused on NASA’s cFS but they are applicable to other
alternative frameworks, as long as they are similar in their underlaying approach (e.g. heavy modularization of
components, high number of abstraction layers, enhanced parametrization and configurability). While these
features are what actually supports the desired modularity and reusability of applications, they come with a cost in
terms of the steep learning curve that these frameworks require to be proficient in their use. Flight software projects
will benefit from a simplified application interface in which the underlying complexities of these architectures and
frameworks are present and usable, but hidden to the application developer. In this manner, two perspectives can
co-exist during the development of any flight software project. First, the application developer perspective consists
only in having a simplified and abstracted API to build his/her applications that fulfill the mission functionalities,
viewing the rest of the execution platform as a black box. On the other hand, the platform developers require a
deeper knowledge of the underlying features and parameters of the used flight software framework, and even of
the operating system and hardware, in order to fine tune it for the mission requirements. By splitting these
perspectives, the workflow of both teams is greatly eased and expedited, benefitting the whole project.

To support this approach a new software module has been developed at SENER, called SENER Service Layer API or
SSLA, that we present here. SSLA is itself a software component that presents the mentioned API for applications,
but also includes some additional internal services and features that cover some identified necessities in the
development of flight software. It is written in the C-language and is designed to be deployed on top of the sMart
Integrated Avionics (MIA) platform, a software and hardware execution platform architecture also devised by SENER,
acting as a single entry-point for applications. MIA’s fundamental approach is having independent layers that provide
the required execution platform functionalities and can be configured and selected decoupled from one another.
Apart from other selectable software components (e.g. an operating system or a hardware virtualization layer), MIA
supports the concept of a ‘service layer’. This service layer consists of a set of flight-related functionalities (e.g.
TM/TC, housekeeping, task management and data exchange, etc.) that are available to applications, so that they do
not have to be implemented again in every mission. In principle, these service layer functionalities can be fulfilled
by any potential flight software library or framework as long as it provides or can be expanded to support all
expected functions. Specific details of the rest of the software and hardware layers of MIA are out of the scope of
this paper, but an overview will be given in the following section.

On its early concept, SSLA has been designed to be compliant with a service layer based on NASA’s core Flight
Executive (cFE). This way, in its current version SSLA wraps cFE’s core services and works alongside other cFS
components and applications. However, its design allows it to be ported to work over an alternative flight software
architecture, or even entirely substitute it by internally implementing its own flight-related services. Apart from this
enhanced abstraction, SSLA includes an innovative built-in support for accessing FPGA cores from the software
applications. Also, SSLA is provided alongside a software development kit (SDK) specifically tailored to its
characteristics. Some useful tools of this development environment are an automated tool for auto-coding FPGA
access drivers, and a semi-automated GUI tool for generating applications based on a standard application template.

As of now, the approach and concept of SSLA has been applied and is being successfully implemented in a couple
of real space projects. One of them is the development of an Autonomous Flight Termination Unit, where SSLA-
based applications are in charge of tracking the navigation of a launcher and detecting if/when it should be
terminated based on a series of mission rules. Another example of SSLA usage is to host the data handling system
of a small satellite platform currently under development for on-orbit repair.

This paper is structured as follows. The first section provides an introduction of the context in which the presented
SSLA technology is used. Then, the second chapter briefly reviews some relevant works and the architecture of the
execution platform in which SSLA is currently deployed. The third chapter is the central section of the paper,
explaining the proposed SSLA framework in detail, along with its usage, features and some related development
tools. Finally, some quantitative metrics of SSLA are foreseen to be presented in the fourth section, and some
relevant conclusions will be extracted in the last one.

2 RELATED WORKS AND OVERVIEW OF THE MIA PLATFORM

As described in the introduction, SSLA is a software module designed to be deployed on top of the sMart Integrated
Avionics (MIA) execution platform, serving as the single entry-point for applications into the platform. The MIA
platform is described in detail in [5], and a depiction of its architecture is included in Figure 2-1.

Figure 2-1: MIA Execution Platform Architecture

It is important to note that MIA is conceived as an architecture and framework to combine several software
components into a ready-to-use execution platform in which applications can be run easily. In most contexts (and
throughout this paper), when referring to the MIA platform, the hardware processor in which it is deployed is also
considered part of the platform. A brief overview of the layers from bottom to top is described as follows:

• Hardware layer: it includes the actual hardware physical components in which the upper software layers
are executed. MIA is specially designed to support multi-core execution and systems with an integrated
FPGA, so it is particularly tailored to be deployed in Multi Processor System on Chip (MPSoC) hardware
devices.

• Time and Space Partitioning (TSP) layer: if present, this layer provides the ability to split the missions’
functionalities into different partitions guaranteeing independence between them. The layer’s functionality
is based on a hypervisor that spatially or temporally allocates the hardware resources to each partition.

• Operating System (OS) layer: it supports several operating systems or a bare-metal configuration if no OS
is present.

• Service Layer: it provides generic flight software services and functionalities to the applications, as well as
providing a standardized interface for application development. As of now, this layer is based on NASA’s cFE
and its core services and modules [6], such as the Software Bus (SB), Executive Services (ES), Event Services
(EVS), Message (MSG) and Time modules to name a few. The SSLA module acts as the upper interface of
this layer, enhancing the abstraction to the rest of the platform and wrapping the underlying services and
functions for the applications.

• Application Layer: it contains the applications that provide the mission-specific functionalities. Ideally, this
is the only layer where new software should be implemented from mission to mission.

The MIA approach followed by SENER is thus not focused on covering all the layers functionalities by developing
every software component internally, but rather to support the integration of own and third-party software items.
These software components may be procured in different ways depending on their availability and licensing
characteristics. For instance, a licensed COTS hypervisor, such as the Xtratum Next Generation (XNG) from FentISS
[7] can be deployed on the TSP layer, while a space-qualified open-source operating system such as RTEMS can be
used in the OS layer [8].

As explained in the introduction, it is a task for the platform developer to integrate and configure MIA to fulfill the
requirements of each particular mission and guarantee the compatibility among components. For example, if the
service layer provider is selected to be NASA’s cFE, the platform developer should make sure to select an OS to
which NASA’s Operating System Abstraction Layer (OSAL) is ported (e.g. Linux or RTEMS as of now). Understandably,
this MIA configuration must be done with a top-down approach, starting from SSLA and going down layer by layer.

2.1 Two distinct perspectives: platform architect and mission application developer

As explained, SSLA is the upper layer of the MIA platform and the one that isolates the mission applications in the
top layer from the rest of the platform software components. This allows MIA to support two distinct perspectives
within a project’s software life cycle: the platform architect/maintainer and the mission application developer, as
depicted in Figure 2-2.

The former is in charge of developing, configuring and maintaining all the software layers of the MIA platform below
the applications. Depending on the given project, this role may involve just setting up existing layers to the mission
scenario specification (e.g. selecting an appropriate RTOS and/or configuring an existing hypervisor). On other
projects the platform architect may need to develop new features in any of the layers, to update a given component
to a more recent version or even to decide the FPGA-SW allocation of functionalities.

The latter is the mission application developer and his/her role just consists in implementing high-level applications
to fulfill the mission specification and required functionalities. To do this, the developer only needs visibility of the
SSLA API, seeing the rest of the platform as a black box. The existence of the SSLA layer allows us to provide this
enhanced abstraction and leads to more modular, standardized and ultimately reusable applications. This greatly
reduces the time and budget allocated to the software development task of a given mission.

Figure 2-2: MIA distinct perspectives: platform architect/maintainer (left), mission application developer (right)

3 SENER SERVICE LAYER API (SSLA)

As described, SSLA has been introduced in the context of the MIA platform as an extra abstraction layer on top of
the core software services. Even though cFE or its alternative flight software frameworks already provide their own
API for application development, the introduction of SSLA has been motivated by the following aspects:

1) Isolate mission applications from changes in the service layer provider. It is the SSLA component the one
that absorbs all these changes. For instance, an already developed and tested application that was deployed
on top of an SSLA configured to be deployed on the Caelum version of cFE (2019), would not have to be
changed at all to work on top of an SSLA ported to the Draco version of cFE (2023). This is especially
important since cFE does not guarantee backwards compatibility in their subsequent releases. This greatly
helps reuse of applications from mission to mission and helps avoid obsolescence.

2) Ability to introduce new services or features not present in the existing flight software frameworks. The
most important example of these innovative features is the native support for FPGA-allocated
functionalities. This is already implemented in the ‘IP drivers’ module, a built-in component of the SSLA
library. In our experience, most recent avionics projects benefit from the existence of MPSoC processors
with FPGA fabric. FPGA cores can implement mission functionalities with strict time execution constraints
or intensive external interfacing (e.g. retrieving data from sensors), this way reducing the load and
simplifying the software applications. However, the co-design and integration of the FPGA-SW interface is a
time-consuming effort in this kind of projects. This built-in module standardizes the access to FPGA cores
greatly facilitating their integration and isolating the workflow of the software and FPGA teams.

3) Enhanced abstraction and simplified application design for app developers. As described, the complexities
of a complete flight software framework such as cFS can seem daunting for new developers and have a
steep learning curve before acquiring all the necessary knowledge to properly use it. With SSLA, the
structure of flight software applications is heavily standardized and simplified for the basic use cases. This
greatly reduces the effort and time needed to have an application coded, running, and tested. In turn, the
ability to customize the application structure and implement more complex functionalities is retained and
can still be used by more expert developers.

4) Support for a Software Development Kit with automated tools. The enhanced standardization provided
by SSLA allows us to generate a set of tools to support the development of flight software in a more practical
way. Some of these tools greatly reduce the development and testing time by automating repetitive time-
consuming tasks.

3.1 SSLA architecture

Since SSLA is designed as a part of the MIA approach, it is especially targeted to MPSoC processing devices. These
devices generally contain multiple CPU processing cores as well as reprogrammable FPGA fabric in a single chip,
with all the required peripherals, memory banks and interconnections. A common naming scheme in these devices
refers to CPU cores as the Processing System (PS) and to FPGA fabric as the Programmable Logic (PL) of the device.
The dual abstraction interface that SSLA presents to software applications that execute on the PS of the device can
be seen in Figure 3-1 . As depicted, SSLA serves as an interface for applications to both the underlaying software
services provider (cFE in the figure), and to the FPGA cores implemented in the PL.

3.1.1 SSLA components

As described, from the application developer’s perspective, SSLA contains all the functionality required to create
complete mission application software. In order to achieve this, the SSLA module is structured in three distinct
components, as depicted in Figure 3-2. It is important to distinguish the scope of the term ‘application’ here,
because a complete ‘mission application’ from the perspective of the whole system (e.g. a ‘mission application’
referring to the whole TM/TC system of a satellite), is almost always composed of several SSLA applications, each
fulfilling part of the mission functionality (e.g. an SSLA app for reading telecommands from an external bus, another

SSLA app to decode these telecommands, another to report telemetry, etc.). For the purposes of this explanation,
the current SSLA version that is compliant with NASA’s cFE and deployed on top of it, will be used.

Figure 3-1: SSLA dual interface for applications: to FPGA and to SW services

Figure 3-2: SSLA components and their architecture

3.1.1.1 SSLA Core

SSLA Core is the main component of the layer. It defines the structure and execution flow of applications, so that
applications are as standard and repeatable as possible. It contains most of the foundation necessary for
applications to be compliant with the underlying service layer, in this case the cFE framework. Thus, this is the
component that is more coupled to the service layer provider. SSLA Core is coded in such a way that generic fixed

structures that individual applications need are initialized there, e.g. list of subscribed messages, housekeeping
packets, etc.

The followed approach requires that each SSLA App is associated with its own instance of SSLA Core by means of an
interface file as shown in Figure 3-2. The SSLA Core is itself an application in context of the underlying cFE Executive
Services (ES) module, and subsequently mapped in the operating system as a single thread. It has the following real-
time execution flow:

1) Upon being loaded by the ES from the startup script (or later if the particular app is not desired to start from
power-on), an Initialize function is executed where:

a. Global variables, handles and counters are initialized or reset.

b. Two cFE Software Bus (SB) reception pipes (buffers) are created and allocated for command and
data messages, respectively.

c. The Setup function of the SSLA application associated to the particular SSLA Core instance is
executed. This Setup function is explained in the following SSLA App subsection since it contains
application-specific code, but in general it consists of declaring and registering SB messages that
the application publishes or is subscribed to.

d. The SSLA Core instance subscribes to every reception message that has been registered in the
previous step.

e. The SSLA Core instance creates and starts any child task that has been registered in the previous
step.

f. A performance monitoring service is started in the context of CFE.

2) After initialization, the Main application function is executed. It is based on a cyclic executive pattern, so
after the first trigger it will continue running forever, unless the processor is powered off, reset, or the ES
service or the operating system kill the application (not foreseen unless in FDIR circumstances).

a. The Main execution flow is based on a while loop that contains a ‘receive message’ callback from
the Software Bus component. Thus, the execution of the main thread gets halted pending the arrival
of any command SB message that the application is subscribed to (through the command pipe
created in step 1.b).

i. When a command message arrives, it gets processed, and the Core goes back to waiting for
command messages. The processing function dispatches each incoming message to a
specific module, either the ground commands handler or the inter-application command
handler. These components contain app-specific functions coded by the mission developer
and mapped to each command that’s registered in the Setup function of the SSLA App
associated to the SSLA Core instance in question. In this manner, the SSLA Core structure
guarantees that the reception of a specific command message triggers the immediate
execution of a specific function or piece of code from the application domain.

b. For data messages, the reception does not affect the execution flow. Whenever a new data message
arrives, the SB module itself just stores the incoming message in the Data pipe of the Core instance
(as long as the specific data message ID was registered in step 1.c). Thus, the arrival of data
messages does not trigger any synchronous execution, and SSLA Apps have to read them
asynchronously from the data pipe at any moment they consider appropriate.

3) If the Setup step has registered any child task for the application, it is mapped to its own operating system
thread and started at the end of the Initialize function. Thus, for SSLA Apps that use child tasks, the
functionality is divided into the main thread and as many child threads as created. The execution flow of
child tasks is not SSLA Core mandated, and each developer may code it in the way that his or her desired
behavior requires. For instance, a child task may be started to periodically poll for the value of a certain
sensor.

This dynamic behavior is heavily dependent on the structure and functions provided by the NASA CFE Executive
Services module. Thus, when porting SSLA to a different service layer framework, the SSLA Core would be subjected
to most of the modifications.

3.1.1.2 SSLA Apps

SSLA Apps define the specific mission functionality, split between them to maximize modularity and have a robust

and deterministic dynamic behavior in execution time. As explained, they are tailored to the execution flow of their

SSLA Core instance, so they all have a Setup function where the application-related data structures of the Core are

filled. This Setup function allows each application to:

• Register RX Ground Commands to subscribe to. In the context of SSLA and cFE, ground commands are an

abstraction for any message that arrives from outside the platform (e.g. the actual ground segment in a

space mission or a different unit or subsystem in the spacecraft). The physical particularities of how this

message actually arrives to the avionics platform is out of the scope for the SSLA App. The subscription

process determines an ID and payload content for the message, as well as a function callback to be executed

when the command arrives.

• Register RX Inter-application Command messages to subscribe to. These are the commands exchanged from

one SSLA App to another. As with ground commands, this subscription maps a specific function to be

executed when the subscribed message arrives.

• Register RX Inter-application Data messages to subscribe to. Similarly to the above bullet, but for data

messages instead of commands. This subscription functionality does not map any function to each

registered message.

• Register TX Inter-application Command messages to publish. Each app is allowed to declare a configurable

number of transmitted command-type messages, determining an ID and custom payload structure for each

one.

• Register TX Inter-application Data messages to publish. Analogously, each app is allowed to declare a

configurable number of transmitted data-type messages, determining an ID and custom payload structure

for each one.

• Register child tasks to be created upon the initialization of the application. As explained in the Core section,

specific mission functionality may be allocated to any number of child tasks in the context of each SSLA App.

Their usage is up to the mission planner or developer, but in general they may be used when an application

needs to implement an internal behavior not easily translated to the reception of an external command

(e.g. a periodic monitoring task).

3.1.1.3 SSLA Lib

The SSLA Lib (library) defines all the services and functions that are potentially necessary for an SSLA App, exposed

in a controlled way. This is the component that generates the mentioned two-way abstraction interface for

applications: first a simplified API to the service layer below, and secondly a way to access to the FPGA cores and

other hardware peripherals through standard drivers.

3.1.1.3.1 FPGA (IP) drivers

As mentioned in the introduction of section 3, native access to the FPGA is a fundamental feature of the MIA

platform and SSLA layer, given its increasing usage in flight software and time-critical applications. This way, the

mission developer or flight software architect can easily allocate functionalities either to the FPGA or to the

embedded C software applications. In general, repeatable mechanical operations with a strict time deadline are

better handled in the FPGA. On the other hand, complex sequential processes or functions that depend on

changeable data from external equipment are more easily coded in C. Every functionality that is allocated in the

FPGA leads to a lighter less-constrained software with less CPU and memory load. FPGA-implemented functions are

also faster than their software equivalents.

Two types of drivers are currently supported within the SSLA Lib to access and exchange data with the FPGA cores

implemented in the programmable logic part of the hardware MPSoC. The first one is dedicated to exposing

individual AXI-bus-addressed registers from every FPGA core to the software executing in the CPU processors, so

that their values can be read or written. The second driver type is dedicated to configuring a specific DMA engine

core, implemented in the FPGA, so that high-rate data sources from the programmable logic can directly write their

data to the shared volatile memory of the MPSoC without CPU or software intervention.

Access to individual registers addressed in the AXI bus

This native driver framework is dedicated to FPGA designs in which cores are connected and accessed through the

Advanced eXtensible Interface (AXI) bus. This is an on-chip communication protocol part of the Advanced

Microcontroller Bus Architecture (AMBA) specification. In MPSoC systems that use this protocol (e.g. ARM

architectures), the AXI bus is the common data bus connecting the programmable logic (FPGA) and the processing

system (CPUs) where software is executed.

For AXI-compliant FPGA designs, each core may declare any number of registers whose value can be accessed at a

specific AXI bus address. This way, reading or writing the value of an FPGA register from the software consists of an

AXI bus transaction controlled with a specific handshaking using some control signals. In the transaction the

accessing software driver first has to specify the address of the register in a dedicated address channel. Then for

write accesses from software to FPGA, the software specifies the value to be written in a data channel. Oppositely

the data channel is populated by the FPGA core with the requested value, in read accesses from software to FPGA.

Figure 3-3: SSLA native access to FPGA core registers

For each FPGA core, SSLA Lib assumes that at the ‘base address’ of the core an ID register exists. Then at a

subsequent address a readback register is set where the driver can be used to test the correct functioning of the

AXI access (a value written to that register is then read to check the proper working of both the hardware and the

driver). Then individual registers for mission-specific functionality exist, up to the FPGA developer and flight

software architect decisions. This access is represented in Figure 3-3. Since the AXI bus register access involves a

complex transaction and specially to decouple FPGA workflow from software development, the actual coding of this

read/write AXI register drivers is done automatically by means of a script as explained in section 3.2.1.

Management of Direct Access Memory (DMA) transfers between the FPGA and the volatile memory

Very frequently in space and avionics applications, it is necessary to capture data from external sources (e.g. sensors

or secondary processors) at a very high rate. As described above, having the FPGA handle the low-level acquisition

of these data leads to a lighter software which is also less coupled to external equipment and manufacturers. When

these data sources have to be read at a high rate, the previously mentioned individual register access becomes

inefficient and, in some cases, inadequate. To solve this, the FPGA design can make use of the DMA engine provided

by most processors, that allows unattended access to the volatile memory without CPU intervention. Manufacturers

of MPSoC and FPGAs provide specific IP cores dedicated to handling this DMA access.

The current version of SSLA supports the configuration and management of a specific AXI-DMA IP core provided by

an FPGA manufacturer through integrated drivers in the SSLA Lib. These drivers provide a method for setting up the

FPGA DMA core for unattended transfers in both directions: from the FPGA to the volatile memory or from the

volatile memory to the DMA. More specifically, the drivers support the configuration of DMA transfers in two

modalities:

• Direct register mode: this method requires the software application to ask the FPGA DMA core to initiate

each individual data transaction. Even if the CPU has to actively request each transaction, the data transfer

itself then occurs unattended, so this scheme still reduces the CPU load of the processor for external data

acquisition/sending.

• Scatter/gather support: this advanced DMA mode further offloads the CPU of DMA management. In this

case, the driver just configures the DMA core at initialization for the expected frequency and length of the

transactions as well as the destination/source address of the data in memory. Once this is set up, all the

DMA transactions (data and control handshaking) occur unattended without CPU intervention.

3.1.1.3.2 Ground command driver

A driver component exists in SSLA Lib that provides an abstracted use of ground command reception and sending

to applications. In the context of SSLA, ground commands refer to any TC message that arrives to the MIA platform

from any external agent and is ultimately made available to any of its running applications. It does not have to

actually come from a ground segment in the specific sense, it can come from any other equipment or unit in the

spacecraft. This terminology has been inspired by the cFE framework, but it has been extended in the case of SSLA

to also include any TM message sent from MIA to the outside of the unit (which would be called ground telemetry).

The incoming ground command support provided by cFE is very debug/test oriented, and it is directly coupled to

reception through a networked UDP/IP connection. In cFE ground commands are received by a specific application,

that implements the UDP reception and then forwards incoming messages to the internal software bus. This

configuration is rigid and requires a physical processing platform with traditional networking capabilities, which is

not always available in every space/avionics scenario. In resource-constrained devices and equipment, lighter

communication protocols such as traditional serial buses (CAN, SPI, I2C, UART) or avionics-oriented protocols

(SpaceWire, 1553) are much more common in our experience.

The SSLA Lib includes its own ground command support component to overcome these limitations, providing a

layered physical/logical set of driver components. This way, the actual physical bus or communication device

through which the data is sent/received in the platform is not known at the upper driver layers. This results in

enhanced portability and support for a greater variety of communication methods. E.g., a ground command may be

received at the platform from a UART port or from a dedicated RF transceiver and this would be unknown at the

logical level of the ground command driver, and ultimately will be seen by the individual application(s) without any

distinguishable difference.

For explanation purposes, Figure 3-4 shows the particular configurations of the ground command driver set when

the physical layer consists of a UART port (left), and when it consists of a CAN bus connection (right).

Figure 3-4: Layered structure of the ground command driver set

From the bottom-up, each of the layers provides abstraction to the one on top, and has the following purpose:

• Physical device layer: this driver implements the specific characteristics of the hardware peripheral in charge

of communications. For instance, in case of an on-chip UART controller peripheral, this is the driver that

would set the relevant values in the peripheral configuration registers to: enable the port, set its clock line,

configure its baudrate, set the format of the data, determine which in/out pins it uses, setup interrupts, etc.

As expected, this layer is completely coupled with the processor and manufacturer.

• Logical device type layer: this driver provides an enhanced abstraction on top of the previous one, absorbing

the manufacturer-specific characteristics and presenting them in a generic way to the upper layer. Following

with the UART example, in this case the logical device-type would be a serial port, which would have generic

functions to configure settings present in all serial ports, e.g. data character length, number of stop bits,

parity and baud rate, and then read and write functions.

• Ground command upper abstraction: finally, the ground command driver provides the high-level

receive/send functions for TM/TC that applications can directly use. At SSLA Lib initialization, the three

layers are initialized with their proper values and configurations. From this point on, any reception/sending

of a ground command/telemetry is done using the complete driver set.

In addition, to provide a seamless integration with the software bus and the ground commanding scheme present

in cFE, a couple of SSLA applications are optionally provided: a command ingest app (ssla_gnd_ci_app) and a

telemetry output app (ssla_gnd_to_app). The first of these applications is in charge of polling the external ground

command driver interface for incoming TCs, and then forwarding them to the software bus. This way, subscribed

applications (which have registered this specific ground command ID in their Setup function) can receive them in

a straightforward way from the software bus without having to even interact with the ground command driver. The

second application provides the opposite functionality by polling the software bus for outgoing messages that are

directed to the outside of the unit, and then relaying them using the ground command driver set. As can be seen,

these optional applications absorb most of the external interfacing of the unit, so that the rest of the apps can be

more decoupled of the characteristics of each mission scenario. However, since the SSLA Lib is accessible by all SSLA

Apps, individual managing of the ground command driver by any specific app is permitted.

3.1.1.4 SSLA Software Bus Usage

SSLA makes an intensive use of the underlying cFE Software Bus module and, in its current form, is heavily coupled

to its existence. The SB is probably the most important service in the cFE layer because it ensures the portability of

cFE-compliant applications between different RTOS and processors. It’s also the main responsible for the enhanced

application reusability and modularity achieved with SSLA and MIA. This is because it abstracts the apps from the

way the actual information is shared in the hardware. It also provides a standard way for implementing inter-

application information exchange which fosters the creation of hyper-specialized applications with a very clear and

reduced objective.

An example of this could be a specific app for decoding incoming telecommands of a particular kind or source. In

the SSLA approach, this specialized app would subscribe to the arrival of these TCs through the SB (which in turn

may have been actually read from an external bus by another app). Once received and decoded, the app would

publish the relevant parsed data contained in another custom message to the SB, which would be further read by

any application that needs it. This approach allows SSLA apps to be very decoupled from the mission-specific

behavior and, consequently, to be easily reused from mission to mission.

When using the SB, SSLA classifies exchanged messages in two different types: command or data. As explained in

the above subsections, these two different messages are stored in two different pipes as depicted in Figure 3-5. The

SSLA framework makes sure that depending on the message ID, this classification is done properly. The SSLA Core

component also guarantees that the reception of a command message is immediately followed by the execution of

a specific registered function, while the data pipe must be polled by the application asynchronously.

With this approach, the complete mission behavior can be translated into apps and inter-app messages in a

straightforward manner. Command messages may be used to strictly determine the order of execution of different

apps to achieve a desired sequential behavior, by having each app subscribed to a command from the previous app

in the sequence, thus making sure that an app is not executed until its required inputs are ready and updated. Data

messages are used for any other behavior that has to be done asynchronously or with a lower priority (e.g. regularly

polling a sensor value which may be an input for any other function in the system, but does not need to be read at

every execution cycle). Considering this scheme, the assignment and definition of message IDs and payloads has to

be done in a centralized way by the mission developer when defining the complete SSLA applications architecture.

Figure 3-5: SSLA Software Bus usage

3.2 SSLA Software Development Kit

The abovementioned standardized structure allows us to provide an SDK for SSLA application developers, aimed at
expediting and facilitating their workflow. Two semi-automated tools of this SDK stand out for their usefulness
during development.

3.2.1 Automated FPGA driver generation

A script-based tool has been generated with the main objective of isolating the workflow of the FPGA and SW teams
in a given project. The tool parses the source files of a complete FPGA project (e.g. the HDL files, TCL scripts and
block descriptions) but not the actual implemented bitstream. With this, the script automatically learns what FPGA
registers are exposed through the AXI bus, and in what addresses. Then, it generates the corresponding drivers into
the SSLA Lib module, to read and write from the discovered registers, as well as a set of explanatory documents (see
Figure 3-6).

This is very useful during development time for the SW team, since it avoids having to have an active and continuous
interaction with the FPGA team about possible changes in their project’s structure and components. It is also
compatible with any kind of automated continuous integration scheme.

Figure 3-6: SSLA Automatic FPGA driver generation

3.2.2 Application generator

Figure 3-7: SSLA application generator tool

Another useful tool contained in the SDK is related to automate the generation of SSLA applications, to take
advantage of their abovementioned standard structure. The tool is based on having a template or skeleton for SSLA
Apps in which the standard structures are pre-written with default values. The application developer, through a
graphical menu (Figure 3-7), introduces the actual mission values (e.g. name and ID of some message for the
application to subscribe to). The tool then fills these mission-related values into the app template and adds it to the
project’s code structure, as well as modifying the compilation flow accordingly so that the app is built and linked
into the final executable.

4 QUANTITATIVE ANALYSIS AND METRICS

4.1 SSLA source files

The different services and components of SSLA presented in the previous chapter are actually coded and structured

in several header and source code files, written in the C language. Figure 4-1 shows the files corresponding to each

SSLA App, where as depicted, each different functionality is written in its specific source file. It is important to remark

that the SSLA structure and SDK already provides pre-filled templates for all these source files. Thus, a mission

developer only has to add and modify a very low percentage of the code to implement its desired functionalities.

For instance, if an app is required to perform a mathematical calculation upon the reception of a specific inter-

application command, then its developer will have to provide the format and payload of that command as well as

the function for the needed calculation in the ssla_app_rxMidCmds.c/.h files. The message ID for this

command message will have to be declared in the ssla_app_msgids.h header. Finally, the Setup function of

ssla_app.c will have to be updated with the corresponding register function for that inter-application command

message. Anything apart from this is already contained either in the SSLA Core and SSLA Lib components code, or

is already provided in the SSLA App template. This results in a drastic reduction of the time needed to deploy and

set up each individual application, which can be further reduced making use of the above automated application

generator.

Figure 4-1: SSLA source code structure

4.1.1 SSLA code metrics

In a given project, the complete SSLA code base is composed by the SSLA Core and SSLA Lib modules, and as many

SSLA Apps as the mission requires. To have an overview of their size and complexity, Table 4-1 shows their values in

terms of lines of code, with comments or blank lines being removed.

Table 4-1: Files and lines of code of SSLA components

Component Files Lines of Code

SSLA Core 6 571

SSLA Lib 9 760

SSLA App (base template with no included functionality) 16 216

TOTAL 31 1547

4.2 Example mission scenario

An example mission scenario has been selected to perform a quantitative analysis of the effects and overhead
introduced by the SSLA layer. This scenario is a simple but representative one in which two applications co-exist with
the following behavior:

• SENSOR Application: this app reads data from an emulated sensor at 1 Hz. The value from the sensor is
emulated to be incrementing by 1 at each reading. Once the sensor is read, the application sends its value
through the software bus in a predefined message.

• CALCULATOR Application: this application is subscribed to the message from the sensor app. Upon receiving
this message, it extracts the sensor value from the message’s payload and multiplies it by two. This
calculated value is then reported through the standard output.

This example scenario applications have been implemented in two distinct manners in the MIA execution platform.
In the first way, the apps are implemented directly on top of cFE, i.e. without using SSLA. The second manner uses
the SSLA layer and components, implementing the scenario apps as two SSLA applications. Examining the results of
both implementations allows us to have a quantitative measure of the effects and overheads introduced by our
proposed SSLA layer. Figure 4-2 shows the standard output of the MIA platform during the execution of both
approaches, to demonstrate their equivalent behavior.

Figure 4-2: On target execution traces of the two implementations of the example scenario: without SSLA (left), using SSLA (right)

4.2.1 Results and discussion

The main advantage of the SSLA layer has to do with its standardized execution flow and its provided code template

for applications, based on the SSLA Core module and the SSLA App interface. When using SSLA, the total number of

lines of code of the example scenario implementation is higher than in the case of not using SSLA (because of the

inclusion of all files described in Table 4-1). However, from this total number of lines, the ones that are actually

required to fulfill the mission implementation (functionality-specific code) are 133, which is about 7% of the

complete code of the mission. Since the SSLA code is already provided to mission application developers, and can

be used as is without modification, this means that for the given example scenario, the developer would have to

write a much more reduced set of code to implement its required functionality compared to the case in which SSLA

was not used. This result can be seen in Table 4-2 and Figure 4-3, where the orange part of the columns corresponds

to the functionality-specific code under comparison.

Table 4-2: Comparison of lines of code required in both implementations of the example mission scenario

Scenario
Base code (SSLA Core + Lib +

App templates)
Functionality-specific

code
TOTAL

Without SSLA - 570 570

Using SSLA 1763 133 1876

Figure 4-3: Comparison of lines of code required in both implementations of the example mission scenario

The footprint of the different program segments on the target’s memory is also different in the two implementations

under review. Table 4-3 shows the most relevant segments and their variation from the case of not using SSLA to

the case of using it. For reference, the .text section refers to the compiled code in the form of instructions. The

.data corresponds to the area where initialized global and static variables are stored. Finally, the .bss segment

stores uninitialized global and static variables and structures.

Table 4-3: Comparison of memory footprint in bytes in both implementations of the example mission scenario

Section Without SSLA Using SSLA Variation (abs) Variation (%)

.text 109148 B 105188 B -3960 B -3.63%

.data 1908 B 1900 B -8 B -0.42%

.bss 1274172 B 1275964 B + 1792 B + 0.14%

As can be seen, the memory footprint of the code section is reduced in the case of using the SSLA layer. This is

because even if the total lines of code of all the source files are higher when the SSLA layer is included, the code

that ends up being used (and thus compiled and linked into the executable file) in this particular mission scenario

implementation is much less than the total code base. This is generally true for any other mission or implementation

in the sense that the complete SSLA code base is provided as a full component of which particular mission

implementations just use a part. For instance, the complete set of SSLA Lib functions is not meant to be used in full

in most missions. Additionally, even if a separate instance of the SSLA Core has to be associated with each

implemented SSLA App, their code is exactly the same, so the instructions stored in the .text section are not

incremented with every included application.

In case of the .data and .bss sections, the difference between both approaches (with or without using SSLA) is

arguably negligible. The .bss section is slightly increased in the case of including the SSLA layer due to the number

of message and register data structures that the SSLA Core component introduces.

The complete size of the executable binary file produced for this example mission scenario is 2.406 MB in the case

of not using SSLA and 2.399 MB in case of using the SSLA layer, an insignificant difference. Both binary files include

the complete MIA software layers, containing the RTEMS kernel as well as the OS for this specific mission scenario.

In summary, the conclusion that can be extracted from this quantitative analysis is that the SSLA layer has a

negligible impact in terms of the memory and performance of the resulting program, but a significant effect in

reducing the development, deployment and testing time of mission software.

5 CONCLUSIONS

The presented work introduces SSLA, an enhanced abstraction and framework for the development of flight
software developed at SENER Aeroespacial. In its current version, it works on top of the well-known NASA’s cFS
architecture, keeping its features but simplifying its exposed interface and providing a standard structure for the
execution flow of applications. SSLA also provides a set of new services not present in the reviewed flight
architectures, especially the native support for FPGA core access from the software applications.

In summary, the proposed SSLA architecture improves the standardization and modularity of mission applications,
greatly increasing their reusability, which ultimately reduces the cost and time of software development in space
and avionics projects.

ACKNOWLEDGEMENTS

This work is carried out in the frame of the SAFEST Project in which SENER Aeroespacial is the coordinator of a joint
effort of many individuals and organizations. This project has received funding from the European Union’s Horizon
Europe research and innovation programmed under grant agreement No 101082662. We greatly thank of the great
work of all the consortium members, the European Commision officers and reviews and the business development
department from SENER Aeroespacial, which have believed in and firmly committed to the project.

The preliminary design and architecture of SSLA was supported by a prior R&D project called MFOC (Madrid-Flight-

On-Chip). It was publicly funded by Comunidad de Madrid and the European Union, under contract No

49/520608.9/18. The authors want to thank Santiago Lozano and Carlos Rodríguez who participated in the design

and implementation of this preliminary version of SSLA.

REFERENCES

[1] D. C. McComas, “Increasing Flight Software Reuse with OpenSatKit,” Nasa.gov, Mar. 03, 2018.
https://ntrs.nasa.gov/citations/20180001888 (accessed Feb. 07, 2024).

[2] German Aerospace Center (DLR), “Open modUlar sofTware PlatfOrmfor SpacecrafT (OUTPOST).”
https://github.com/DLR-RY/outpost-core (accessed Feb. 07, 2024).

[3] F. Dannemann and F. Greif, “Software Platform of the DLR Compact Satellite Series,” Proceedings of 4S
Symposium 2014. 4S Symposium, 26-30 May 2014, Mallorca, Spain.

[4] J. Galizzi, P. Arberet, J. Damery, C. Guy, A. Crespo, M. Masmano, F. Roubert, “LVCUGEN – Ready for Flight?”
Proc. ‘DASIA 2015’, DAta Systems In Aerospace, Barcelona, Spain, 19–21 May 2015 (ESA SP-732, September
2015).

https://ntrs.nasa.gov/citations/20180001888
https://github.com/DLR-RY/outpost-core

[5] S. Lozano, J. Fombellida, C. Rodríguez, C. Tato, J. Carretero, “MFOC Project: MPSoC-Based Multi-Purpose
Execution Platform”, III Congreso de Ingeniería Espacial: El espacio, la última frontera, Madrid, Spain, 2020,
27-29 October. ISBN: 978-84-09-31948-0. pp. 120-122.

[6] E. Geist, “Core Flight System Training - cFS Draco,” Nasa.gov, Jan. 19, 2024.
https://ntrs.nasa.gov/citations/20240000217 (accessed Feb. 07, 2024).

[7] M. Masmano, I. Ripoll, A. Crespo, J. Metge, “Xtratum: a hypervisor for safety critical embedded systems.” In
11th Real-Time Linux Workshop, vol. 9, September 2009.

[8] “RTEMS Qualifies for the Space Domain | RTEMS Real Time Operating System (RTOS),” Rtems.org, 2022.
https://www.rtems.org/node/139 (accessed Feb. 07, 2024).

https://ntrs.nasa.gov/citations/20240000217
https://www.rtems.org/node/139

	Abstract
	1 Introduction
	2 Related works and overview of the MIA platform
	2.1 Two distinct perspectives: platform architect and mission application developer

	3 SENER Service Layer API (SSLA)
	3.1 SSLA architecture
	3.1.1 SSLA components
	3.1.1.1 SSLA Core
	3.1.1.2 SSLA Apps
	3.1.1.3 SSLA Lib
	3.1.1.3.1 FPGA (IP) drivers
	3.1.1.3.2 Ground command driver

	3.1.1.4 SSLA Software Bus Usage

	3.2 SSLA Software Development Kit
	3.2.1 Automated FPGA driver generation
	3.2.2 Application generator

	4 Quantitative analysis and metrics
	4.1 SSLA source files
	4.1.1 SSLA code metrics

	4.2 Example mission scenario
	4.2.1 Results and discussion

	5 Conclusions
	Acknowledgements
	References

