
Deep learning introduction



Deep Learning, Machine Learning, and 
Artificial Intelligence

● Artificial intelligence (AI): programs 
mimicking the behaviour of intelligent 
biological systems

● Machine learning (ML): where a computer 
can “learn” patterns in data, usually by being 
shown numerous examples to “train” it

● Deep learning (DL): one of many techniques 
collectively known as machine learning

The image above is by Tukijaaliwa, CC BY-SA 4.0, via Wikimedia Commons, original source

https://en.wikipedia.org/wiki/File:AI-ML-DL.svg


Artificial Neural Networks (ANNs)
Are (Loosely) Inspired By The Brain

● Multiple inputs: A single neuron 
(brain cell) receives electrical inputs 
from many other neurons

● Input strength: Some inputs are 
stronger than others

● If sum(input) > threshold:
○ Output electrical signal to 

downstream neuron(s) 

Image-source:https://www.researchgate.net/figure/Comparison-between-bi
ological-neuron-and-artificial-neuron-40_fig4_351372032 

https://www.researchgate.net/figure/Comparison-between-biological-neuron-and-artificial-neuron-40_fig4_351372032
https://www.researchgate.net/figure/Comparison-between-biological-neuron-and-artificial-neuron-40_fig4_351372032


The Perceptron - Single Artificial Neuron

● The perceptron: 1st artificial neural network 
(Rosenblatt, 1959). Consists of one artificial 
neuron

● Inputs xi are weighted by wi — controlling 
strength of each input

● Nonlinear activation function: step fxn

● Binary output: - 1/+1 or 0/1

● Bias term: Allows us to shift the activation 
function along the x-axis – changing the 
threshold of the neuron



The Perceptron - Binary Classification
● Inputs: Inputs are features of a tabular dataset

● Goal: Determine weights that allow us to 
separate two classes based on each class’s 
pattern of input features

● Method: Train the model on many observations 
of cats and dogs, and adjust weights until 
classification accuracy stops improving

Tail Length (in) Weight (lbs) Class

12.2 10.1 Cat (+1)

… … …

9.1 55.4 Dog (-1)



Exercise



Key Limitation of the Perceptron

● Perceptrons can only produce 
linear classification boundaries 

● A single observation (row in data table) 
belongs to 1 of 2 classes based on…

1. weighted sum of inputs
2. threshold of the activation function 

(bias weight) 

● Tensorflow playground - perceptron

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=&seed=0.60090&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Multilayer Perceptrons (MLP) - More Advanced ANN

● Multiple neurons arranged in 
“hidden” layers connected 
together in a feedforward manner

● Combines multiple linear models 
together to get a nonlinear model

● Universal approximation theorem: 
An MLP with just one hidden layer 
of neurons, given enough neurons, 
is capable of approximating any 
arbitrary nonlinear function



Why bother with multiple layers?

● Each neuron acts as a pattern recognizer tuned to detect a specific pattern presented in 
the input data

● Neurons use the outputs of previous layers to build even more sophisticated pattern 
recognition capabilities (i.e., via pooling lower-level patterns detected)

● Altogether, the network forms what’s called a hierarchical feature representation of the 
input data

image from: 
https://www.frontiersin.org/articles/10.3389/fncom.2014.00135/full 

https://www.frontiersin.org/articles/10.3389/fncom.2014.00135/full
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Training an MLP

● Goal: Learn a classification or regression 
function from labelled data

● How: Minimize the prediction error (loss)
○ Loss function is non-convex 

(has multiple local minima)

Iterative Optimization Terms

● Epoch: One complete pass 
through the entire training 
dataset — helps find the lowest 
loss possible

● Batch size: Number of samples 
used to measure loss before 
updating the weights



Training a Multilayer Perceptron
Key Terminology

● Epoch: One complete pass 
through the entire training 
dataset — helps find the lowest 
loss possible

● Batch size: Number of samples 
used to measure loss before 
updating the weights

Procedure

1. Prepare data
2. Initialize weights randomly 
3. Forward propagation: calculate model outputs 

of N=batch_size training data samples
4. Measure average loss (prediction error) 

of samples in batch
5. Backpropagation & update weights
6. Repeat 2-4 for multiple epochs
7. Model evaluation using validation data
8. Hyperparameter tuning (adjust number of 

layers, neurons, learning rate, ect.)
9. Final testing using test data



Exercise

● Given an MLP with 1 hidden layer, how 
many neurons will be needed in the 
hidden layer to accurately classify the 
following data cloud

○ Red & blue represent two classes

● Test your theory using the Tensorflow 
playground. 

X1

X
2

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=&seed=0.60090&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=&seed=0.60090&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Deep Neural Network (DNN) Applications

● 2010: improvements in computing power and the algorithms for training 
the networks made much larger and more powerful networks practical

● Deep = 3+ hidden layers (in most contexts). 10+ layers is more common

● Exceptional at approximating many functions









DNN: What is it good for?

What sort of problems can deep learning solve?

● Generating new data that looks similar to the training data, often used to 
create synthetic datasets, art, or deepfake videos. A recent famous 
example: chatGP



What are examples that you have of deep learning 
applied to research?



When to avoid deep learning
• Lack of abundant data (< 1000). Ideally > 10,000 samples. 

Data requirements depend on…
– Problem complexity

– Data quality & diversity

– Number of weights

– Number of layers

• Tasks requiring an explanation of how the answer was arrived at.

• Cases already handled by traditional algorithms



Too little data?
1. Collect more data! … not always feasible… 

2. Find and use a pretrained network trained on a similar problem 

3. Use data augmentation techniques to expand your dataset (e.g., mirroring 

images when classifying cats vs dogs) 

4. Resort to other machine learning models which are still very useful!



Exercise
Which of the following would you apply Deep Learning to? 

1. Recognizing whether or not a picture contains a bird. 

2. Calculating the median and interquartile range of a dataset. 

3. Identifying MRI images of a rare disease when only one or two 

example images available for training. 

4. Identifying people in pictures after being trained only on cats and 

dogs. 

5. Translating English into French



Deep Learning Workflow

1. Formulate/ Outline the problem → prediction or classification?
2. Identify inputs and outputs → e.g., pixel data and image-labels for image classification
3. Prepare data → read in, clean, and sometimes standardize data
4. Choose a pre-trained model or build a new architecture from scratch
5. Choose a loss function and optimizer → hyperparameter that controls how the model is 

trained 
6. Train or “fit” the model  → optimize the model’s weights (parameters) by giving it 

labelled data to learn from
7. Perform a prediction/classification
8. Measure performance
9. Tune hyperparameters & Repeat steps 6-8

10. Share model



Exercise

Think about a problem you’d like to use deep learning to solve. 

1. What do you want a deep learning system to be able to tell you? 
2. What data inputs and outputs will you have? 
3. Do you think you’ll need to train the network or will a pre-trained network be 

suitable? 
4. What data do you have to train with? What preparation will your data need? 

Consider both the data you are going to predict/classify from and the data 
you’ll use to train the network. 



Deep Learning Libraries (“Frameworks”)

● Most popular choice overall, especially in 
industry & production environments

● Low-level API; tedious to use, but can 
customize models more

● Versatile and capable of more than deep 
learning. 

● Most popular choice in research domains 
(e.g., NLP, Computer Vision)

● Lower-level API but can customize models 
more

● Feels more “pythonic” (numpy w/ GPUs)



Keras

● Keras is not actually a framework on it's own. 

● High-level API that sits on top of other supported deep learning frameworks 
(typically TensorFlow). 

○ Currently does not support PyTorch.

● Save time coding; quickly build models and run experiments

● Slower to run than Tensorflow and PyTorch

● Difficult to build highly customized models with novel architectures 
(typically only a problem for ML researchers building new models)



Code Along: Training A Classifier

● Using penguin dataset — published in 
2020 by Allison Horst 

● Contains data on three different species of 
the penguins — Chinstrap, Gentoo, Adélie

● Use a DNN to classify penguin species 
based on their physical characteristics 
○ bill length and depth
○ flipper length
○ body mass

Artworks by @allison_horst


