
Deep learning introduction

Deep Learning, Machine Learning, and
Artificial Intelligence

● Artificial intelligence (AI): programs
mimicking the behaviour of intelligent
biological systems

● Machine learning (ML): where a computer
can “learn” patterns in data, usually by being
shown numerous examples to “train” it

● Deep learning (DL): one of many techniques
collectively known as machine learning

The image above is by Tukijaaliwa, CC BY-SA 4.0, via Wikimedia Commons, original source

https://en.wikipedia.org/wiki/File:AI-ML-DL.svg

Artificial Neural Networks (ANNs)
Are (Loosely) Inspired By The Brain

● Multiple inputs: A single neuron
(brain cell) receives electrical inputs
from many other neurons

● Input strength: Some inputs are
stronger than others

● If sum(input) > threshold:
○ Output electrical signal to

downstream neuron(s)

Image-source:https://www.researchgate.net/figure/Comparison-between-bi
ological-neuron-and-artificial-neuron-40_fig4_351372032

https://www.researchgate.net/figure/Comparison-between-biological-neuron-and-artificial-neuron-40_fig4_351372032
https://www.researchgate.net/figure/Comparison-between-biological-neuron-and-artificial-neuron-40_fig4_351372032

The Perceptron - Single Artificial Neuron

● The perceptron: 1st artificial neural network
(Rosenblatt, 1959). Consists of one artificial
neuron

● Inputs xi are weighted by wi — controlling
strength of each input

● Nonlinear activation function: step fxn

● Binary output: - 1/+1 or 0/1

● Bias term: Allows us to shift the activation
function along the x-axis – changing the
threshold of the neuron

The Perceptron - Binary Classification
● Inputs: Inputs are features of a tabular dataset

● Goal: Determine weights that allow us to
separate two classes based on each class’s
pattern of input features

● Method: Train the model on many observations
of cats and dogs, and adjust weights until
classification accuracy stops improving

Tail Length (in) Weight (lbs) Class

12.2 10.1 Cat (+1)

… … …

9.1 55.4 Dog (-1)

Exercise

Key Limitation of the Perceptron

● Perceptrons can only produce
linear classification boundaries

● A single observation (row in data table)
belongs to 1 of 2 classes based on…

1. weighted sum of inputs
2. threshold of the activation function

(bias weight)

● Tensorflow playground - perceptron

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=&seed=0.60090&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Multilayer Perceptrons (MLP) - More Advanced ANN

● Multiple neurons arranged in
“hidden” layers connected
together in a feedforward manner

● Combines multiple linear models
together to get a nonlinear model

● Universal approximation theorem:
An MLP with just one hidden layer
of neurons, given enough neurons,
is capable of approximating any
arbitrary nonlinear function

Why bother with multiple layers?

● Each neuron acts as a pattern recognizer tuned to detect a specific pattern presented in
the input data

● Neurons use the outputs of previous layers to build even more sophisticated pattern
recognition capabilities (i.e., via pooling lower-level patterns detected)

● Altogether, the network forms what’s called a hierarchical feature representation of the
input data

image from:
https://www.frontiersin.org/articles/10.3389/fncom.2014.00135/full

https://www.frontiersin.org/articles/10.3389/fncom.2014.00135/full

Lo
ss

Training an MLP

● Goal: Learn a classification or regression
function from labelled data

● How: Minimize the prediction error (loss)
○ Loss function is non-convex

(has multiple local minima)

Iterative Optimization Terms

● Epoch: One complete pass
through the entire training
dataset — helps find the lowest
loss possible

● Batch size: Number of samples
used to measure loss before
updating the weights

Training a Multilayer Perceptron
Key Terminology

● Epoch: One complete pass
through the entire training
dataset — helps find the lowest
loss possible

● Batch size: Number of samples
used to measure loss before
updating the weights

Procedure

1. Prepare data
2. Initialize weights randomly
3. Forward propagation: calculate model outputs

of N=batch_size training data samples
4. Measure average loss (prediction error)

of samples in batch
5. Backpropagation & update weights
6. Repeat 2-4 for multiple epochs
7. Model evaluation using validation data
8. Hyperparameter tuning (adjust number of

layers, neurons, learning rate, ect.)
9. Final testing using test data

Exercise

● Given an MLP with 1 hidden layer, how
many neurons will be needed in the
hidden layer to accurately classify the
following data cloud

○ Red & blue represent two classes

● Test your theory using the Tensorflow
playground.

X1

X
2

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=&seed=0.60090&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=&seed=0.60090&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Deep Neural Network (DNN) Applications

● 2010: improvements in computing power and the algorithms for training
the networks made much larger and more powerful networks practical

● Deep = 3+ hidden layers (in most contexts). 10+ layers is more common

● Exceptional at approximating many functions

DNN: What is it good for?

What sort of problems can deep learning solve?

● Generating new data that looks similar to the training data, often used to
create synthetic datasets, art, or deepfake videos. A recent famous
example: chatGP

What are examples that you have of deep learning
applied to research?

When to avoid deep learning
• Lack of abundant data (< 1000). Ideally > 10,000 samples.

Data requirements depend on…
– Problem complexity

– Data quality & diversity

– Number of weights

– Number of layers

• Tasks requiring an explanation of how the answer was arrived at.

• Cases already handled by traditional algorithms

Too little data?
1. Collect more data! … not always feasible…

2. Find and use a pretrained network trained on a similar problem

3. Use data augmentation techniques to expand your dataset (e.g., mirroring

images when classifying cats vs dogs)

4. Resort to other machine learning models which are still very useful!

Exercise
Which of the following would you apply Deep Learning to?

1. Recognizing whether or not a picture contains a bird.

2. Calculating the median and interquartile range of a dataset.

3. Identifying MRI images of a rare disease when only one or two

example images available for training.

4. Identifying people in pictures after being trained only on cats and

dogs.

5. Translating English into French

Deep Learning Workflow

1. Formulate/ Outline the problem → prediction or classification?
2. Identify inputs and outputs → e.g., pixel data and image-labels for image classification
3. Prepare data → read in, clean, and sometimes standardize data
4. Choose a pre-trained model or build a new architecture from scratch
5. Choose a loss function and optimizer → hyperparameter that controls how the model is

trained
6. Train or “fit” the model → optimize the model’s weights (parameters) by giving it

labelled data to learn from
7. Perform a prediction/classification
8. Measure performance
9. Tune hyperparameters & Repeat steps 6-8

10. Share model

Exercise

Think about a problem you’d like to use deep learning to solve.

1. What do you want a deep learning system to be able to tell you?
2. What data inputs and outputs will you have?
3. Do you think you’ll need to train the network or will a pre-trained network be

suitable?
4. What data do you have to train with? What preparation will your data need?

Consider both the data you are going to predict/classify from and the data
you’ll use to train the network.

Deep Learning Libraries (“Frameworks”)

● Most popular choice overall, especially in
industry & production environments

● Low-level API; tedious to use, but can
customize models more

● Versatile and capable of more than deep
learning.

● Most popular choice in research domains
(e.g., NLP, Computer Vision)

● Lower-level API but can customize models
more

● Feels more “pythonic” (numpy w/ GPUs)

Keras

● Keras is not actually a framework on it's own.

● High-level API that sits on top of other supported deep learning frameworks
(typically TensorFlow).

○ Currently does not support PyTorch.

● Save time coding; quickly build models and run experiments

● Slower to run than Tensorflow and PyTorch

● Difficult to build highly customized models with novel architectures
(typically only a problem for ML researchers building new models)

Code Along: Training A Classifier

● Using penguin dataset — published in
2020 by Allison Horst

● Contains data on three different species of
the penguins — Chinstrap, Gentoo, Adélie

● Use a DNN to classify penguin species
based on their physical characteristics
○ bill length and depth
○ flipper length
○ body mass

Artworks by @allison_horst

