
D6.3 Updated report on
requirements and core
modules functionalities

Status: Under EC Review

Dissemination Level: public

Disclaimer: Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union. Neither the European

Union nor the granting authority can be held responsible for them



D6.3 Updated report on requirements and core modules functionalities

2

interTwin – 101058386

Abstract

Key Words Core modules, Workflow management, Data fusion, Real time data
Acquisition, AI, Big Data, Quality, TOSCA

interTwin co-designs and implements the prototype of an interdisciplinary Digital
Twin Engine (DTE). The developed DTE will be an open source platform that
includes software components for modelling and simulation to integrate
application-specific Digital Twins. InterTwin WP6 will provide the core DTE modules
to be integrated by WP7 and to be executed on infrastructure and components
delivered by WP5.

The current document consists of a report on the high-level description of WP6
components and the related design based on the C4 model. Additionally, this
deliverable includes the set of requirements derived from the analysis of the use
cases and updates on the development of components after the first release in
Feb 2024.



D6.3 Updated report on requirements and core modules functionalities

Document Description
D6.3 Updated report on requirements and core modules functionalities

Work Package number WP6

Document type Deliverable

Document status UNDER EC REVIEW Version 1.0

Dissemination Level Public

Copyright Status
This material by Parties of the interTwin Consortium is licensed
under a Creative Commons Attribution 4.0 International License.

Lead Partner CSIC

Document link https://documents.egi.eu/document/3952

DOI https://zenodo.org/records/13709618

Authors

● Isabel Campos (CSIC)

● Donatello Elia (CMCC)

● Germán Moltó (UPV)

● Ignacio Blanquer (UPV)

● Estíbaliz Parcero (UPV)

● Alexander Zoechbauer (CERN)

● Eric Wulff (CERN)

● Matteo Bunino (CERN)

● Andreas Lintermann (FZJ)

● Rakesh Sarma (FZJ)

● Pablo Orviz (CSIC)

● Alexander Jacob (EURAC)

● Sandro Fiore (UNITN)

● Miguel Caballer (UPV)

● Bjorn Backeberg (DELTARES)

● Mariapina Castelli (EURAC)

● Juraj Zvolensky (EURAC)

3

interTwin – 101058386

https://jira.egi.eu/browse/ITPO-57?src=confmacro
http://creativecommons.org/licenses/by/4.0/
https://documents.egi.eu/document/3952
https://zenodo.org/records/13709618


D6.3 Updated report on requirements and core modules functionalities

● Iacopo Ferrario (EURAC)

● Michele Claus (EURAC)

● Rufai Omowunmi Balogun (EURAC)

● Massimiliano Fronza (UNITN)

● Andrea Manzi (EGI)

● Davide Donno (CMCC)

● Emanuele Donno (CMCC)

● Cosimo Palazzo (CMCC)

● Andrea Cristofori (EGI)

Reviewers
● Sandro Fiore (UNITN)

● Marcin Płóciennik (PSNC)

Moderated by: Andrea Anzanello (EGI)

Approved by Christian Pagé (CERFACS) on behalf of TCB

Revision History
Version Date Description Contributors

V0.1 01/06/2024 ToC update from D6.1 Isabel Campos (CSIC)

v0.2 29/07/2024
Updated sections 2,3,
4, 5, 6 from D6.1

All contributing authors

v0.3 08/08/2024

Added Executive
Summary and
Conclusions. Sent for
review.

Isabel Campos (CSIC)

v0.4 16/08/2024 Internal review
Sandro Fiore (UNITN)

Marcin Płóciennik (PSNC)

v0.5 22/08/2024
Version ready for TCB
review

Isabel Campos (CSIC)

v0.6 29/08/2024 TCB review Christian Pagé (CERFACS)

v0.7 03/09/2024 Version ready for QA Isabel Campos (CSIC)

V1.0 06/09/2024 Final

4

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

Terminology / Acronyms
Term/Acronym Definition

DT Digital Twin, a digital representation of an actual physical product,
system, or process that serves as the effectively indistinguishable
digital counterpart of it for practical purposes, such as simulation,
integration, testing, monitoring, and maintenance

DTE Digital Twin Engine, a platform to build DTs

CLI Command Line Interface

GUI Graphical User Interface

API Application Programming Interface, aka programmatic interface of a
computer system through which other computer systems can
interact with it

REST API API that conforms to the design principles of REST, or
REpresentational State Transfer architectural style

SQL Structured Query Language, a domain-specific language used in
programming and designed for managing data held in relational
database management systems

CI/CD In software engineering, CI/CD is the combined practices of
Continuous Integration and Continuous Delivery

AI Artificial Intelligence

ML Machine Learning is a branch of AI and computer science which
focuses on the use of data and algorithms to imitate the way that
humans learn, gradually improving its accuracy

5

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

Table of Contents

1 Introduction 11
1.1 Scope 11
1.2 Document Structure 12

2 Requirements 14
2.1 Astrophysics - Noise detector DT 14
2.1.1 Description 14
2.1.2 Requirements in terms of core capabilities 14
2.2 Noise simulation for Radio Astronomy 15
2.2.1 Description 15
2.2.2 Requirements in terms of core capabilities 15
2.3 High Energy Physics - Detector simulation 16
2.3.1 Description 16
2.3.2 Requirements in terms of core capabilities 16
2.4 High Energy Physics - Lattice QCD Simulations 17
2.4.1 Description 17
2.4.2 Requirements in terms of core capabilities 17
2.5 Climate Change Future Projections of Extreme Events (storms & fire) 17
2.5.1 Description 17
2.5.2 Requirements in terms of core capabilities 18
2.6 Climate Change Impacts of Extreme Events (storms, fire, floods,
drought) 18
2.6.1 Description 18
2.6.2 Requirements in terms of core capabilities 18
2.7 Early Warning for Extreme Events (floods & drought) 19
2.7.1 Description 19
2.7.2 Requirements in terms of core capabilities 19

3 Components for advanced workflow composition 21
3.1 Data acquisition & event-driven triggering of workflows 22
3.1.1 General description and functionalities 22
3.1.2 Interfaces 25
3.1.3 Technology stack 25
3.1.4 Interaction with other components 26
3.2 Workflow composition 27
3.2.1 General description and functionalities 28
3.2.2 Interfaces 29
3.2.3 Technology stack 30

6

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

3.2.4 Interaction with other components 35
3.3 Provenance in Workflows 35
3.4 Data Fusion 37
3.4.1 Data Fusion in Workflows 37
3.4.2 Processing Fusion in Workflows 38
3.4.3 Data Fusion for Artificial Intelligence 39

4 Components for AI workflows 40
4.1 Training module 43
4.1.1 General Description and functionalities 43
4.1.2 Interfaces 47
4.1.3 Technology stack 47
4.1.4 Interaction with other components 48
4.2 Model Registry 48
4.2.1 General description and functionalities 49
4.2.2 Interfaces 49
4.2.3 Technology stack 49
4.2.4 Interaction with other components 49
4.3 Metric Logger 50
4.3.1 General Description and functionalities 50
4.3.2 Interfaces 50
4.3.3 Technology stack 50
4.3.4 Interaction with other components 51
4.4 Machine Learning model deployment 52
4.4.1 General description and functionalities 52
4.4.2 Interfaces 54
4.4.3 Technology stack 54
4.4.4 Interaction with other components 55

5 Components for Quality Assurance 57
5.1 Software Quality Assurance as a Service 57
5.1.1 General Description and functionalities 57
5.1.2 Interfaces 59
5.1.3 Technology stack 59
5.1.4 Interaction with other components 60

6 Components for Big Data Analytics 61
6.1 Deployment of Big Data Analytics tools 61
6.1.1 General description and functionalities 61
6.1.2 Interfaces 63
6.1.3 Technology stack 63

7

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

6.1.4 Interaction with other components 64
6.2 Elastic Kubernetes clusters on demand 64
6.2.1 General Description and functionalities 64
6.2.2 Interfaces 64
6.2.3 Technology stack 65
6.2.4 Interaction with other components 65
6.3 Horovod environment 65
6.3.1 General Description and functionalities 65
6.3.2 Interfaces 66
6.3.3 Technology stack 66
6.3.4 Interaction with other components 66
6.4 KubeFlow clusters 66
6.4.1 General Description and functionalities 66
6.4.2 Interfaces 67
6.4.3 Technology stack 67
6.4.4 Interaction with other components 67
6.5 Ophidia Cluster 67
6.5.1 General description and functionalities 67
6.5.2 Interfaces 68
6.5.3 Technology stack 68
6.5.4 Interaction with other components 68
6.6 openEO clusters 68
6.6.1 General Description and functionalities 68
6.6.2 Interfaces 69
6.6.3 Technology stack 69
6.6.4 Interaction with other components 69
6.7 Airflow clusters 69
6.7.1 General Description and functionalities 69
6.7.2 Interfaces 69
6.7.3 Technology stack 69
6.7.4 Interaction with other components 69
6.8 EOEPCA ADES clusters 70
6.8.1 General Description and functionalities 70
6.8.2 Interfaces 70
6.8.3 Technology stack 70
6.8.4 Interaction with other components 70
6.9 ecFlow clusters 70
6.9.1 General Description and functionalities 70

8

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

6.9.2 Interfaces 71
6.9.3 Technology stack 71
6.9.4 Interaction with other components 71
6.10 MLFlow server 71
6.10.1 General Description and functionalities 71
6.10.2 Interfaces 71
6.10.3 Technology stack 71
6.10.4 Interaction with other components 71
6.11 yProv server 71
6.11.1 General Description and functionalities 71
6.11.2 Interfaces 72
6.11.3 Technology stack 72
6.11.4 Interaction with other components 72

7 Conclusions 73
8 References 74

Table of Figures
Figure 1 - General overview of the core components and related functionality 12

Figure 2 - General architecture for data ingestion and event-driven triggering of
workflows 23

Figure 3 - Integration of OSCAR, interLink, and itwinai for scalable event-driven
processing of AI workloads across Cloud and HPC 26

Figure 4 - Example of workflow composition for EO applications. 29

FIgure 5 - High-level schematic view of the use of the PyOphidia module for generating
and managing the provenance document of a workflow. 36

Figure 6 - Example OpenEO processing fusion 39

Figure 7 - Detailed view on the architecture of the ML component 42

Figure 8 - Detailed view on the architecture of ML training module 44

Figure 9 - Kubeflow-based example of an illustrative AI pipeline 46

Figure 10 - Detailed view on the architecture of the ML deployment module 53

Figure 11 - Detailed view on the architecture of the quality assurance module 59

Figure 12 - General architecture of the data analytics tools 62

9

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

Executive summary
This deliverable updates the previous D6.1 (Report on requirements and core modules
definition). For completeness it also provides the overview of the global requirements
that the target users of a Digital Twin Engine (DTE) have identified. In D6.1 these
requirements were matched with the core modules of the solutions that can fulfil those
requirements in a first approximation.

This document describes the developments that took place in the course of the last year
towards refining and extending the set of core modules to build the DTE. Several
uncertainties and pending technical decisions have been made in the light of the use
cases, technological evolution and integration opportunities. Overall efforts have been
made towards a standardisation and improvement of the interoperability properties of
the core modules.

● Regarding advanced workflow composition the project moved in the direction
of exploiting the CWL standard as a common ground. Interfacing with popular
and community workflow managers such as Apache Airflow, Streamflow or
ecFlow has been a priority. The usage of the openEO API for Earth Observation
using CWL as standard in the workflow made substantial progress in the last
year. The effort to integrate community solutions such as the execution and
workflow manager engine Ophidia needs to be highlighted, for instance a
python-based client for Ophidia has been developed including support for the
tasks descriptions to be written in CWL format.

● Real-time data acquisition and event-driven triggering of workflows is one
of the most advanced and complex stacks developed in interTwin. Our
middleware stack is able to detect when new data arrives, perform data stage
and pre-processing, including quality control, and finally delegate into an
external workflow management system that will enact the execution on
resources dynamically provisioned on Clouds or on HPC-based infrastructure.

● We have also tackled the general issue of provenance in workflow execution,
integrating the yProv service with the general framework of WP6. This relies on
the W3C PROV family of standards for its information model. The project is
testing the yProv functionality in climate analytics workflows and HEP pipelines.

● The core components to support AI workflows are one of the project priorities.
In this context the itwinai virtual environment has been greatly enhanced during
the last year including features such as Hyperparameter Optimization and
support to distributed training in Cloud and HPC infrastructures. The framework
enables the DT developer to define modular AI workflows, fostering code reuse
and streamlining development.

● The Quality Assurance component is evolving to support requirements of data
quality evaluation in data spaces, and support the inclusion of QA in workflow
composition for model validation. For instance it has been enhanced with
capabilities to include specific criteria, such as AI/ML validation. The Quality and
uncertainty tracing module allows testing (micro)services in a black-box manner.
For instance, once a pre-trained ML model is deployed as a container, it can be

10

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

easily tested, and the DT developer can provide user case-specific cases to
validate the performance of the model.

● Finally at the deployment layer the big data analytics tools are designed as a
deployment layer using OASIS TOSCA templates to describe the virtual resources
and software components needed to deploy data analytics applications.
Kubernetes clusters, Horovod environments, Kubeflow, and Ophidia, Airflow,
ADES, ecFlow, MLFlow and yProv are among the tools provided in the
deployment layer. All the templates are stored in a public repository, accessible
to end users via the WP5 tools (PaaS orchestrator dashboard). The recipes
needed to install/configure every software component are stored in a set of
public repositories using Ansible language. In the context of WP5, the PaaS
orchestrator by means of the Infrastructure Manager interacts with the
computing infrastructure providers to deploy the virtual resources as needed.

All the WP6 components delegate its execution to backends deployed via the interfaces
and APIs made available by WP5.

1 Introduction
1.1 Scope
The general objective of the WP6 is enhancing Digital Twins with horizontal capabilities
for exploiting generic workflows able to link observational and model data.

Progressing towards this goal requires tackling a number of technological challenges.
For example, we need to expand the paradigm of “serverless” computing to Digital
Twins by implementing a generic framework for real-time data acquisition and
processing that builds on event-triggered execution of workflows. This is a generic
capability required by (most) Digital Twins aiming at performing automated validation of
models using real-time observational data.

The usage of Artificial Intelligence techniques such as Machine Learning, for a variety of
purposes (from optimisation of simulations to model building) requires a significant
push on distributed training and the related advanced optimization (such as Hyper
Parameter Optimization). A generic framework needs to be devised to plug in ML
models and data pipelines that can be interfaced to the computing and data resources
in the backend.

In turn, the computing and data resources need to support a number of components
and best practices to efficiently run data analytics. In the framework of WP6, this implies
the implementation of recipes for general-purpose data analytic environments to be
deployed on demand on top of the Cloud resources, or the provision of a seamless HPC
and Cloud resources interface with container workload management services that are
able to interact with HPC resources. One of the main challenges (and source of
innovation) is on the “on-demand” provisioning, horizontal scaling and integration of the
workflow mechanisms.

11

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

A general model quality validation strategy needs to be developed as well, to enhance
Digital Twins with the capability to implement best practices and standard quality
measures to support model validation. The work here is inspired by DevOps practices,
to exploit automation, Continuous Integration and Delivery (CI/CD) to create a
comprehensive environment for model quality assessment and validation, together with
the evaluation of FAIR data quality integrated, in the pipeline for observed and
simulated data. The final objective here is the implementation of Model Quality
Validation “as a Service”.

Figure 1 - General overview of the core components and related functionality

1.2 Document Structure
This document is an updated version of the deliverable D6.1 [6] Report on
requirements and core modules definition. Most of the information are therefore
common to the two documents with the following sections updated:

● Section 3.1 has been updated with the integration performed;
● Section 3.2 has been extended to include ADES and remove Delf-FEWS;
● Section 3.3 has been extended with the latest design;
● Section 3.4 has been rewritten;
● Section 4 has been heavily upgraded;
● Section 5 has been extended with uncertainty quantification component;
● Section 6 has been extended with new TOSCA templates developed in the

second part of the project.

This deliverable is structured as follows. Section 2 contains a very high level summary
of the main applications used to derive the requirements and a list of the required
functionalities that fall in the scope of “core” services; Section 3 describes the core
components that will be implemented for advanced workflow composition and the
components that deliver data fusion capabilities; Section 4 describes the architecture

12

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

and components related to Artificial Intelligence workflows; Section 5 describes the
core components dedicated to support quality assurances; Section 6 describes the
components dedicated to support big data analytics.

13

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

2 Requirements
2.1 Astrophysics - Noise detector DT

2.1.1 Description
The discovery of gravitational waves was one of the main scientific results in recent
years and was awarded the Nobel Prize in 2017, opening a new era in the study of the
cosmos and paved the way to multi-messenger astronomy. Besides getting ready for
their next observation runs, the gravitational-wave community is designing a
next-generation observatory, the Einstein Telescope, which was recently included in the
EU ESFRI roadmap.

The sensitivity of Gravitational Waves interferometers is limited by noise; its reduction
and subtraction are one of the most important and challenging activities in this research
area. The Digital Twin of an interferometer is meant to realistically simulate the noise in
the detector, in order to study how it reacts to external disturbances and, in the
perspective of the Einstein Telescope, to be able to detect noise “glitches” in quasi-real
time, which is currently not possible. This will allow the low-latency search pipelines to
veto or de-noise the signal, sending out more reliable triggers to observatories for
multi-messenger astronomy.

2.1.2 Requirements in terms of core capabilities
● Notebook platform: JupyterLab is currently used. Notebooks will be used

during R&D, but the DT pipeline should have a microservices architecture.

● ML architecture: Generative Adversarial Networks. Particular attention will
need to be paid to the training stability, especially regarding the with regard to
online learning.

● ML dataset: 2D images (frequency-time heatmap). Size is in the order of 10s of
TB.

● ML framework: Pytorch and Tensorflow should be made available in the
Notebooks and in the pipeline environment (Linux containers).

● Distributed ML: For training heavy models or large datasets on HPC resources
a distributed Training Framework (e.g., Horovod, PyTorch DDP) is necessary.

● Streaming platform: the detector pushes data using Apache Kafka:

○ input consists of about 50 AUX channels for a total of 2 MB/s plus the Strain
channel at 160 kB/s;

○ output is a stream of denoised data to low-latency search pipelines (year 2),
rate comparable to the strain channel (160 kB/s).

● ML model storage: only the most recent trained model (and the previous one
for rollbacks) is needed by the DT pipeline, most likely on a POSIX filesystem. A
database or online service for retrieval of model history will be beneficial for
offline analysis.

14

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

● ML monitoring tools: plan to use Tensorboard to monitor the behaviour of the
training process (accuracy, convergence…). Notifications to the DT operator
would be interesting to have, as well as monitor processing in general (e.g.,
Prometheus + Grafana).

● Event-based platform: trigger retraining when experimental conditions
(detector) change and the simulated data start to deviate from the input
stream.

● User notifications: user intervention might be needed when the conditions for
re-training are met. Would be interesting having online notifications (not just
emails).

2.2 Noise simulation for Radio Astronomy

2.2.1 Description
The Digital Twin of the MeerKAT radio telescope is meant to better separate the
background signals from the (usually weak) astrophysical effects, especially considering
the ever-increasing amount of data streams delivered by the antennas. A major
challenge is to identify the large amount of man-made noise signals (mostly from
satellites and mobiles). Radio Astronomy sensors collect increasing amounts of data
requiring massive parallel computing both in the online and offline phases. This
requires dynamic filtering of data in a real-time manner via ML from huge data streams
amounting to several Petabytes per day, and a feedback loop from analysis to sensor
control.

The above goals will be achieved by harmonisation of real-time and near-real-time
streams, such as earth observation data or radio telescopes with AI and ML modelling
workflows, and effective detection of noise signals in real-time with continuous training
of ML algorithms for immediate and optimised control of the physical twin.

2.2.2 Requirements in terms of core capabilities
● Tools to transfer input data: we need to push and/or pull to/from an archive

(of the observatory that operates the telescope or other institutes interested in
the data), which differs for each telescope and project. Given the size of the data
(hundreds of TBs) it would be beneficial having UDP-based protocols to transfer.

● ML architecture: convolutional/recurrent Neural Networks, long short-term
memory networks, neural ODE (computational speed needs to be evaluated in
case of online learning)

● ML dataset: 2D images (frequency-time heatmap). Size is in the order of 10s of
TB.

● ML framework: tensorflow should be made available in the Notebooks and in
the pipeline environment (Linux containers).

● Distributed ML: for training heavy models or on large datasets using HPC
resources a distributed Training Framework (e.g., Horovod, PyTorch DDP) is
necessary.

15

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

○ For the future we aim at implementing in a more computationally efficient
way (e.g., C++) using distributed training on a HPC cluster (multiple GPUs at
once, e.g., as the model does not fit on a single GPU). An approach to
multithreaded computation will be needed, such as MPI or in-memory
frameworks such as Apache Spark.

2.3 High Energy Physics - Detector simulation

2.3.1 Description
Particle detectors measure different particle properties when interacting with the
materials that the detectors consist of, at the Large Hadron Collider (LHC) experiments.
More specifically, the detectors called calorimeters are key parts of the detectors’ set
up, which are responsible for measuring the energy of the particles. In a collider, the
emerging particles travel through the detector and interact with the materials either
electromagnetically or hadronically. During this interaction cascades of secondary
particles are created. The modelling of these matter interactions is performed by Monte
Carlo calculations, which in order to produce an instance of the interactions of a particle
with the detector, depend on repeated random sampling. These simulations have a
crucial role in High Energy Physics (HEP) experiments, and at the same time are slow
and resource intensive.

Therefore, there is a need for faster simulations. The main motivation for fast
simulations is to incorporate other faster alternative simulation techniques. For this
purpose, machine learning has been utilised as a fast simulation technique to speed up
detector simulations. Our use case leverages a variant of a GAN developed for HEP
applications called 3DGAN, where the detector output was generated employing three
dimensional convolutions, a powerful approach for retaining correlations in all three
spatial dimensions.

2.3.2 Requirements in terms of core capabilities
The use case aims at comparing simulated data generated with the ML model with
previously generated based simulated data using MonteCarlo methods (by GEANT4).
The format file is different (HDF5 vs ROOT) but the accompanying metadata are the
same. CI/CD pipelines to automate the comparison and check the integrity of the
metadata can be interesting.

The current case is meant as a static synthetic model of a detector. We could think of
extending this to an application capable of modelling in real time the behaviour of a
detector in different operation conditions (beams and accelerator configurations) and
therefore include continuous retraining on real data. That would require event-driven
execution.

● ML architecture: 3D Generative Adversarial Networks. The envisioned model
will have ~5 million parameters, needing at least 8 GPUs. Computational costs
can be high; therefore attention needs to be paid to sufficient per-GPU
performance next to the number of total GPUs available.

16

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

● ML dataset: 3D images (energy deposition in 3D). Size is in the order of 10s of
GB.

● ML framework: Pytorch and Tensorflow should be made available in the
Notebooks and in the pipeline environment (Linux containers).

● Distributed ML: for training heavy models or large datasets on HPC resources a
distributed Training Framework (e.g., Horovod, PyTorch DDP) is necessary.

2.4 High Energy Physics - Lattice QCD Simulations

2.4.1 Description
The aim of Lattice QCD is shedding light on the properties of Quantum
Chromodynamics in the limit of low energies/strong couplings, where perturbation
theory breaks down, and numerical approaches become mandatory. In interTwin are
exploring two use cases addressing the status of Lattice QCD simulations: a classical
scenario, with large scale simulations in HPC; and a second scenario, Machine
Learning-based simulations, an area under development in the community, at the proof
of concept level, therefore requiring few resources.

2.4.2 Requirements in terms of core capabilities
● HPC simulations require access to HPC resources with Infiniband. Data sharing in

a Data Lake requires mainly infrastructure services from WP5. In order to
connect to the services, Jupyter notebooks are becoming a useful tool.

● For the Machine Learning based simulations the requirements in terms of tools
are ML libraries such as Tensorflow, Pytorch, etc. CI/CD pipelines to automate
the checking of the convergence of the simulations towards the target
acceptance rate.

2.5 Climate Change Future Projections of Extreme Events (storms &
fire)

2.5.1 Description
This Digital Twin application is related to the prediction of Extreme Weather Events
(EWEs), in particular storms and fires, in future projection scenarios (e.g., CMIP6) with
the aim of giving an indication about the temporal trend and the geographical
occurrence of such events across the globe due to climate change. ML models (e.g.,
Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs)) that learn
the underlying mapping between drivers and the historical occurrence of such EWEs,
will be adopted. The data-driven products generated can generalise to future projection
data, where a strong signal of climate change is evident.

As the use cases are data-driven, besides the actual ML models and the experimental
setup, pre-processing pipelines will play a relevant role in order to prepare the data for
the training and inference phases. What-if scenarios will be made available for the
end-users (e.g., climate scientists) for highlighting relevant changes of such EWEs in
future projections.

17

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

2.5.2 Requirements in terms of core capabilities
● Workflow composition: support for execution of large-scale data cube-based

workflows, parallel multi-model workflows and workflows integrating
community-based climate tools (e.g., Ophidia).

● Provenance: climate workflows should be also documented in terms of
provenance metadata to enable full tracking of lineage information.

● ML architecture: Convolutional Neural Networks, Graph Convolutional
Networks.

● ML dataset: up to 4D climate data. Overall size is at most 1TB.

● ML framework: PyTorch, PyTorch Lightning and PyTorch Geometric should be
made available in the Notebooks and in the pipeline environment (Linux
containers).

● Distributed ML: for training heavy models or on large datasets on HPC
resources a distributed Training Framework (e.g., PyTorch, PyTorch Lightning,
Horovod) is necessary.

● CI/CD validation pipelines: for trained ML models.

2.6 Climate Change Impacts of Extreme Events (storms, fire, floods,
drought)

2.6.1 Description
The Digital Twin application for Climate Change Impacts of Extreme Events on Floods
(hereafter referred to as FloodAdapt Climate Change Impact) uses the same
process-based models as the Digital Twin application for Flood Early Warning in coastal
and inland regions (Section 2.7). The main addition is that in FloodAdapt Climate
Change Impact, end-users (e.g., decision makers) can define scenarios such as building
a dam wall or doubling the rainfall, that modify the input data for the process-based
models. These changes are managed by the FloodAdapt backend.

2.6.2 Requirements in terms of core capabilities
● Workflow composition: reuse workflows already developed by CERFACS,

Deltares, and EURAC. This will need a workflow backend that will be able to call a
mix of processes and sub-workflows involving amongst others openEO,
FloodAdapt, StreamFlow and ecFLOW.

● Data fusion: generic data fusion components combined with custom Python
scripts for preprocessing forcing and boundary condition data.

● Container workflow management for running containerised models on
heterogeneous computing infrastructures.

● Batch queue system for running models at scale on HPC/HTC infrastructures.

● Data is to be queried and processed via the openEO syntax. That includes a
backend with openEO interface, geodata in an openEO compatible format

18

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

● Possibility to store intermediate and final workflow results at the cloud provider.

● Support for model sharing via Jupyter notebooks or docker containers.

● ML framework: Tensorflow should be made available in the Notebooks and in
the pipeline environment (Linux containers).

● ML architecture: Kmeans, Clustering

● ML Dataset: 4D satellite time series. Size is in the order of 100s of GB. Update
frequency is 5-10 years.

● Distributed ML: For training heavy models or on large datasets on HPC
resources a distributed Training Framework (e.g., Horovod, PyTorch DDP) is
necessary.

2.7 Early Warning for Extreme Events (floods & drought)

2.7.1 Description
For Early Warning for Extreme Events, two Digital Twin applications are planned: (1)
Flood Early Warning in coastal and inland regions (hereafter referred to as FloodAdapt
Early Warning), and (2) Drought Early Warning in alpine regions. Process-based models
will be combined with ML and Deep Learning models using Earth Observation data to
support early warning of floods and droughts. This includes developments towards
globally relocatable models which require data pre-processing pipelines similar to those
needed by ML and Deep Learning models.

2.7.2 Requirements in terms of core capabilities
● Workflow composition: reuse workflows already developed by Deltares, EURAC,

and TUW. This will need a workflow backend that will be able to call a mix of
openEO, FloodAdapt, and ecFLOW sub-workflows.

● Container workflow management for running containerised models on
heterogeneous computing infrastructures.

● Data fusion: generic data fusion components combined with custom Python
scripts for preprocessing forcing and boundary condition data.

● Batch queue system for running models at scale on HPC/HTC infrastructures.

● FAIR data quality evaluation to assess FAIRness of output from process-based
and data-driven models.

● ML framework: Tensorflow should be made available in the Notebooks and in
the pipeline environment (Linux containers). PyTorch to implement the model
architecture. Tensorboard for training analysis.

● Distributed ML: for training heavy models or on large datasets on HPC
resources a distributed Training Framework (e.g., Horovod, PyTorch DDP) is
necessary. Also, Dask would be useful for distributed hyper parameter tuning.
NVIDIA GPU (with the NVIDIA driver version 510.85.02 and CUDA version 11.6).

19

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

● ML architecture (type of model): Recurrent Neural Networks (Long Short-Term
Memory networks and/or Gated Recurrent Unit), encoding/decoding using
Convolutional Neural Networks (for climate data downscaling).

● ML Dataset: 4D satellite time series. Climate data (Copernicus European
Regional Reanalysis, System 5 seasonal forecasts). Size is under investigation.

20

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

3 Components for advanced workflow
composition

One of the most important capabilities of a Digital Twin Engine (DTE) is the ability to
organise and run a chained list of data acquisition and/or processing steps into what is
known as a workflow. At every stage in a workflow, the current step has a connection to
the next one, which means data of earlier steps process to the next one. Workflows may
have steps that run in parallel.

Workflow orchestration is the process of configuring, managing, and coordinating tasks
automatically, which may contain different disparate systems.

The DTE to be built as a result of the interTwin project, and which can be used both by
expert users (DTE developers) and regular end users (Scientists), is using the following
approach:

● Create/Reuse an intuitive User Interface (UI): develop a user-friendly,
web-based UI that allows users to create, modify, and manage workflows without
needing to understand the underlying complexity of the workflow orchestration
solutions. The UI should provide drag-and-drop functionality, visual
representation of tasks, and easy configuration of task parameters. Some steps
that are part of the workflow could expose specific UI’s or APIs to the DTE expert
users (e.g., to configure specific aspects of a DTE step, to collect results of a
specific task, etc.).

● Create a programmatic interface (aka an Application Programming Interface,
or API): define a programmatic interface for the DTE, as a contract between DTE
implementers and DTE users, that allows the DTE to be triggered by other
software components, most notably by data-related events.

● Adopt a top-level workflow orchestration technology: reusing existing work
as steps in a DTE’s workflow is a crucial capability of the DTE. The challenge is
that most of this work is in the form of existing workflows, based on different
workflow composition and/or workflow execution frameworks. Therefore,
picking any single workflow orchestration and execution technology for the
interTwin DTE would mean asking researchers to redo most of this work. At the
same time, the top-level entry point into the DTE should be well defined. Pick a
single workflow description language, and workflow orchestration tool that
supports that language, which can then accommodate existing research
work/tools as is, as sub-workflows.

● Abstract workflow orchestration solutions: develop a set of reusable
components or modules that encapsulate the functionality of the various
workflow orchestration solutions supported by the project. These components
should provide a consistent interface for interacting with the underlying systems,
making it easier for users to incorporate different workflow solutions without
needing to understand their specific implementation details. Additional

21

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

components, supporting additional workflow orchestration frameworks can be
added in the future, as needed.

● Provide pre-built templates: offer a collection of pre-built workflow templates
that cover common use cases and can be easily customised by users. These
templates should include examples of how to call complex sub-workflows from
different workflow orchestration solutions and provide best practices for
structuring and organising workflows.

● Ensure scalability and flexibility: design both the high-level entry point, and
the components that can be used as steps in this top-level workflow, to be
scalable and flexible, allowing users to create workflows that can grow in
complexity and size over time. This may involve providing support for parallel
execution, distributed computing environments, and cloud platforms.

● Offer documentation and support: provide comprehensive documentation,
tutorials, and support resources to help users get started with the high-level
entry point and learn how to create and manage workflows. This should include
guides for working with different workflow orchestration solutions and examples
of how to call complex workflows.

By following the approach described above, we can create a high-level entry point that
makes it easy for users with different expertise levels to compose workflows using
various workflow orchestration solutions. This will enable users to focus on the
high-level logic and structure of their workflows, without needing to understand the
intricacies of the underlying systems.

Data acquisition and how to kick off the DTE workflow in reaction to data-driven events
is described in Section 3.1. The solutions adopted for DTE workflow composition are
covered by Section 3.2, while provenance in workflows is addressed by Section 3.3 and
data fusion by Section 3.4.

3.1 Data acquisition & event-driven triggering of workflows
This component offers a generic framework for real-time data acquisition and
processing that builds on event-triggered execution of workflow engines.

3.1.1 General description and functionalities
The real-time data acquisition and processing framework for the DTE that supports
event-triggered execution of workflow engines satisfy the following requirements: i)
detects when new data that requires processing is made available; ii) performs data
stage and pre-processing (e.g., to perform data cleansing or data quality assessment)
and iii) delegates the complex data processing into external workflow management
systems in charge of enacting the execution on resources that are dynamically
provisioned from a Cloud or HPC based infrastructure.

22

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

Figure 2 - General architecture for data ingestion and event-driven triggering of workflows

To this aim, Figure 2 shows the overall architecture for data acquisition and
event-driven triggering of workflows, including the high-level components described
below. Yellow boxes represent infrastructure-level components for storage and
processing, while blue boxes represent software/service components.

Serverless Event-Processing System

The serverless event-processing system is in charge of receiving data pre-processing
requests from the event-ingestion system to perform additional data transformations
that may not be performed within the event-ingestion system itself. This can be due to a
lack of support for certain operations or the dependency on external tools that may be
packaged as Docker images, which may not be able to run directly within the
event-ingestion system.

In order to address the challenges and limitations of the event-ingestion systems, we
adopted the OSCAR serverless event-processing system since it leverages the high
scalability provided by elastic Kubernetes clusters, which are dynamically provisioned
via the Infrastructure Manager on multi-Clouds and uses the CLUES elasticity manager
to achieve two-level elasticity (in terms of the number of pods and the number of
nodes) and provide efficient execution of data-processing requests.

OSCAR also leverages Knative under the hood to support low-latency synchronous
requests. OSCAR services are triggered in response to events and execute user-defined
scripts on dynamically provisioned containers out of user-defined Docker images, thus
facilitating the integration with external workflow engines where the actual complex
processing can take place.

23

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

File/Object Storage System

The file/object-storage system provides a solution for the storage of data to be
analysed, whether it is temporary or long-term storage, as is the case of data lakes. For
fault-tolerance and high-availability reasons, the data is typically stored in a distributed
approach among a large number of heterogeneous servers while providing a unified
vision of a virtual filesystem that can be accessed through a variety of protocols.

The serverless event-processing system OSCAR supports several storage providers like
MinIO, Amazon S3, OneData, and WebDAV storage providers (e.g., OpenStack’s Swift,
NextCloud).

The framework now includes support for dCache, a file storage system known for
managing large-scale scientific data across multiple nodes. This integration has brought
several advantages, including improved data availability due to dCache’s ability to
replicate data across multiple storage nodes. Also, the ability to detect new data
uploaded in dCache to trigger its data processing within an OSCAR cluster.

Event-Ingestion System

The event-ingestion system is responsible for receiving the notification events from the
file/object-storage system or data source and provides the ability to execute simple
transformation data flows using the built-in components supported by the system.

In the development of this system, we have employed Apache NiFi, since it allows us to
craft flows that will take data from a large variety of different sources, enrich the data,
and route it to several destinations.

The benefits of this event-ingestion system lie, among others, in decoupling the rate at
which files can be uploaded to the file-storage system to the one used for data
processing. This acts as an infinite message queue that elastically grows to manage the
asymmetry between data producer and consumer.

We have integrated this event-ingestion system with several data sources to leverage
the benefits of Apache NiFi, like Amazon S3 and dCache. In the case of dCache, we have
successfully incorporated it as a source for events through a client for the SSE
(Server-Sent Events) support in our event-ingestion system.

We also integrated Apache Kafka, a Publish/Subscribe system and a distributed event
streaming platform known for its high-throughput, fault-tolerance, and durability. In our
setup, the event-ingestion system consumes data from a specific Kafka topic and it’s
stored in an internal buffer for its processing. When the buffer is full, the data is sent to
an object storage system (e.g., MinIO) which triggers the execution of an OSCAR service.
This allows OSCAR to process data close to real-time as it is delivered, enhancing the
responsiveness and efficiency of our system.

This multi-source approach not only diversifies our data intake but also increases the
flexibility of our system. It allows us to handle a wide range of use cases and adapt to
various data environments.

24

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

DCNiOS

DCNiOS1 is an open-source Data Connector for Apache NiFi and OSCAR. DCNiOS has
been developed to facilitate the deployment of dataflows to achieve integration
between a source of events like a storage system (such as Kafka or dCache) and OSCAR
Services.

This tool allows users to set up dataflows using simple YAML configuration files. These
files detail data sources and destination endpoints together with intermediate steps
processes.

DCNiOS also comes with a command-line interface (CLI). This feature enables us to
deploy and adjust the NiFi flow at runtime. For instance, we can change the data
processing rate, making our system adaptable to varying needs.

3.1.2 Interfaces
The interfaces vary for the different subcomponents, as follows:

● File/Object-Storage System: these systems typically support several protocols
and interfaces for file uploading/downloading. For example, dCache supports
FTP (File Transfer Protocol), NFS (Network File System), and WebDAV (Web
Distributed Authoring and Versioning), an extension of HTTP (Hypertext Transfer
Protocol).

● Event-Ingestion System: these components support several specifications to
comply with the Publish/Subscribe (Pub/Sub) approach to gather the events. In
particular, Apache NiFi relies on HTTP to create an SSE client and the
corresponding subscription into dCache in order to receive the file upload events
into the file-storage system.

● Serverless Event-Processing System: these systems rely on HTTP-based
requests and events from the underlying object-storage system. For example,
OSCAR allows receiving events from MinIO buckets to perform event-driven
processing. It can also receive triggering requests via HTTP into the OSCAR
Manager’s API.

3.1.3 Technology stack
The technology stack to support the deployment and execution of this component is:

● A Cloud Management Platform (e.g., OpenStack or OpenNebula) or a public or
federated Cloud on which to perform the automated provisioning of these
components via the PaaS Orchestrator and the Infrastructure Manager (IM).

● The PaaS Orchestrator, an open-source TOSCA-based engine to provide Cloud
resource selection, and infrastructure provision and customization through the
Infrastructure Manager.

1 https://github.com/interTwin-eu/dcnios

25

interTwin – 101058386

https://github.com/interTwin-eu/dcnios


D6.3 Updated report on requirements and core modules functionalities

● The Infrastructure Manager, an Infrastructure as Code (IaC) tool to support the
deployment of TOSCA-based description of complex application architectures
(e.g., Kubernetes clusters) on multiple Cloud back-ends.

● Kubernetes, a container orchestration platform which allows to coordinate the
execution of multiple container-based services on a distributed infrastructure.
This will facilitate the automated deployment of the subcomponents in an
automated fashion.

● A Container Registry (e.g., Docker Hub, GitHub Container Registry) to host the
Docker images required to deploy the subcomponents within a Kubernetes
cluster.

Of course, this component also involves the corresponding packages to provision
Apache NiFi, OSCAR clusters, and the corresponding workflow management solution.

3.1.4 Interaction with other components
These components provide the ability to trigger the execution of workflows upon
certain file events in an external storage system. There are also additional integrations
carried out with other tools in the ecosystem, described as follows and shown in the
following figure:

Figure 3 - Integration of OSCAR, interLink, and itwinai for scalable event-driven processing of AI workloads across
Cloud and HPC

OSCAR-interLink Integration

OSCAR was integrated with interLink, a framework that allows the execution of a
Kubernetes pod on any remote resource capable of managing a Container execution
lifecycle. This allowed OSCAR jobs to be offloaded into an external HPC cluster through
interLink, where additional scarce computing resources, such as GPUs, may be
available.

OSCAR-itwinai Integration

We successfully integrated OSCAR and itwinai, an open-source Python library designed
to compose and run ML workflows. This integration allows for efficient execution of
inference AI pipelines in response to incoming data events, enabling real-time
predictions on new samples. Furthermore, the ability to offload tasks to remote HPC
systems for accelerated predictions on GPU hardware enhances the speed and
efficiency of ML tasks.

26

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

OSCAR-Jupyter Integration

We provide the ability to deploy Jupyter Notebooks in an OSCAR cluster with automatic
mounting of the object-storage (e.g., MinIO or dCache) to facilitate data processing from
a visual environment which can be customised by the user. This facilitates the
post-processing phase after the data ingestion and processing done inside the OSCAR
cluster, to perform further interactive analysis.

The workflow composition and workflow enactment and execution will be described in
Section 3.2.

3.2 Workflow composition
The workflow composition subsystem is devoted to facilitating the definition of complex
workflows. The challenge is to support the definition of workflows whose steps might
already have been implemented or which require specific workflow engines. This need
has emerged from the requirements analysis included in Section 2, therefore it is
important to allow reuse of existing workflows as building blocks (sub-workflows) in the
DTE’s workflow.

The workflow composition solution adopted for the interTwin DTE, as described in
Section 3, is to have a high-level entry point for users to compose workflows that in
turn can call complex sub-workflows built with any of the workflow orchestration
technologies supported by the project. The adopted high-level entry point should have
both an easy-to-use UI, as well as an API to trigger the workflow. The subsystem should
also support the execution of Workflows directly from one of the Sub-workflow engines
as needed by the DT Application developers.

When choosing the technology to be adopted for the top-level workflow of the DTE,
openEO2 process graphs and Common Workflow Language (CWL)3 were considered as
possible options. It was debated if multiple choices should be offered, and the
consensus was that this would complicate the DTE architecture and implementation,
without adding much benefit, as either solution still allows for the flexibility needed to
reuse existing work as sub-workflows with different technological stacks. CWL was
selected as the language to describe the top-level workflow of the interTwin DTE, on
these considerations:

● OpenEO is primarily designed for Earth observation data processing and would
need to be adapted and extended with additional concepts to accommodate the
broader scope of workflows in a general purpose DTE.

● CWL supports open consensus-based standards for command line data analysis
workflows and tools, and also provides a reference implementation (the cwltool4)
which can be used to describe portable and reusable workflows.

4 https://github.com/common-workflow-language/cwltool

3 https://www.commonwl.org

2 https://openeo.org

27

interTwin – 101058386

https://github.com/common-workflow-language/cwltool
https://www.commonwl.org
https://openeo.org


D6.3 Updated report on requirements and core modules functionalities

● CWL has gained much traction and is currently widely supported by popular
workflow management systems and engines such as StreamFlow5 or Apache
Airflow (CWL-Airflow6 in particular).

3.2.1 General description and functionalities
For the purpose of defining the top-level DTE workflow the usage of CWL as a glue to
execute isolated workflow steps which eventually will run in different workflow engine
backends is envisaged. Please note that workflow composition is highly dependent on
the application at hand, therefore the most sensible approach is adopting a neutral
standard such as CWL as the requirement for the general architecture of the DTE.

When selecting the software to orchestrate and execute the top-level CWL-based
workflows of the interTwin DTE, multiple platforms that include CWL support were
analysed, including Streamflow7 a and Apache Airflow8, others like Ophidia have already
started supporting CWL as an activity in the project.

An example of EO workflows defined with CWL with subworkflows is shown in FIgure 2.

8 https://airflow.apache.org

7 https://streamflow.di.unito.it/

6 https://cwl-airflow.readthedocs.io/en/latest/

5 https://streamflow.di.unito.it/

28

interTwin – 101058386

https://airflow.apache.org
https://streamflow.di.unito.it/
https://cwl-airflow.readthedocs.io/en/latest/
https://streamflow.di.unito.it/


D6.3 Updated report on requirements and core modules functionalities

Figure 4 - Example of workflow composition for EO applications.

Figure 4 shows the generic usage model of workflow composition for the EO machine
learning where the end-user defines the workflow following the standard of CWL.

3.2.2 Interfaces
The workflow composition tool provides CLI tools and a GUI so that DT Developers
could set up and execute Workflows for the definition of DT applications, by integrating
thematic modules tailored to their needs (developed by WP7).

Therefore, from one side the Workflow composition tool needs to deliver interfaces for
DT developers and eventually DT users willing to execute DT applications workflows. On
the other side the component should be responsible for the execution of the workflows
delegating its execution to the backends that are deployed via the PaaS Orchestrator
and the interfaces/API that are made available by WP5.

29

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

3.2.3 Technology stack
In this section we list the possible entrypoint for definitions of the Workflows to be
executed and Workflow Management engines requested/suggested by the user
communities to be used as sub workflows management engines.
Apache Airflow

One of the most promising solutions for the definition and execution of the CWL
workflow is Apache Airflow or simply Airflow. Airflow comes with a built-in, easy-to-use
web interface that allows users to manage, monitor, and visualise their workflows. This
interface can be extended and customised to provide a more intuitive experience for
users who are compositing workflows with different orchestration solutions.

Airflow has a plugin system that enables users to create custom operators, sensors, and
other extensions to add new functionality or integrate with other systems. This feature
allows the users to develop custom wrappers for other workflow orchestration solutions
and incorporate them seamlessly into Airflow. Airflow includes a wide range of built-in
operators for various tasks and integrations, making it easier to create complex
workflows without needing to develop custom code. It is designed to be scalable, can
handle large-scale, distributed workflows and supports parallel task execution, dynamic
task creation, and execution on various distributed computing environments, including
Kubernetes and Apache Mesos. Furthermore Airflow supports Python as its primary
scripting language, which is widely used and accessible to users with varying expertise
levels. It also runs on multiple platforms, including Linux, macOS, and Windows.
ecFlow

ecFlow9 is a workflow management system developed and maintained by the European
Centre for Medium-Range Weather Forecasts (ECMWF). It is designed to handle complex
workflows, particularly in the field of weather forecasting and numerical weather
prediction. ecFlow has several features that make it suitable for managing large-scale,
compute-intensive workflows:

● Dependency management: ecFlow allows to define complex dependencies
between tasks, ensuring that they are executed in the correct order.

● Scalability: ecFlow can manage workflows that consist of thousands of tasks
running across a distributed computing environment.

● Fault tolerance and error handling: ecFlow provides mechanisms for handling
errors, retries, and failure recovery to ensure that your workflows continue
running even in the presence of failures.

● Monitoring and visualisation: ecFlow includes a web-based user interface
(ecFlowUI) that allows you to monitor the progress of your workflows, visualise
dependencies, and perform various management tasks.

● Extensibility: ecFlow supports custom scripting using Python, which allows it to
extend its functionality and integrate it with other tools and platforms.

9 https://ecflow.readthedocs.io/en/latest/

30

interTwin – 101058386

https://ecflow.readthedocs.io/en/latest/


D6.3 Updated report on requirements and core modules functionalities

● Environment agnostic: ecFlow can be used on various platforms, including
Linux, macOS, and Windows.

ecFlow is particularly well-suited for use cases involving large-scale, compute-intensive
workflows, such as weather forecasting, climate modelling, and other scientific
simulations.
openEO

openEO10 is an API specification11 to discover, access and process Earth Observation
data and define abstract processing workflows. It has grown into an independent open
source community12 standard in the earth observation community and is steered
through the openEO project steering committee13.

The core API is defined following open API version 3 for the setup of a RestFul
http-based API. The main concept is to have openEO as middleware between clients and
back-end implementations. It exposes virtual views on data independent of the actual
organisation of it. It implements the concept of virtual data cubes that can represent
gridded or vector data. Also, the definition of processing is defined on an
implementation agnostic process graph, allowing for very different implementations of
processing frameworks in any kind of compute environment.

The main features of openEO are:

● Decoupling of data model and physical storage through data cubes14 in order to
represent data along with time dimensions which can be queried and subsetted.

● Decoupling of process model and processing infrastructure through graph-based
workflow descriptors;

● Workflows in openEO are described through the so called openEO process
graph. The process graph follows the principles of a directed acyclic graph
(DAG)15;

● Processes make the nodes in this graph and are pre-defined16. Custom processes
can be added however to extend the functionality;

● Metadata catalogues functionality for data discovery and querying;

● Metadata functionality for description of available processes for the graph-based
processing;

● Synchronous processing of graphs;

16 https://processes.openeo.org/

15 https://en.wikipedia.org/wiki/Directed_acyclic_graph

14 https://openeo.org/documentation/1.0/datacubes.html#what-are-datacubes

13 https://openeo.org/psc.html#members

12 https://github.com/open-eo

11 https://api.openeo.org/

10 https://openeo.org/

31

interTwin – 101058386

https://processes.openeo.org/
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://openeo.org/documentation/1.0/datacubes.html#what-are-datacubes
https://openeo.org/psc.html#members
https://github.com/open-eo
https://api.openeo.org/
https://openeo.org/


D6.3 Updated report on requirements and core modules functionalities

● Asynchronous processing of graphs through batch jobs and management of
jobs;

● Authentication and authorization of any exposed micro service;

● Integration of custom user data;

● Integration of custom user processing scripts in R or python through so called
User Defined Functions;

● Definition of higher-level processes based on simple processes based on User
Defined Processes;

● Dynamic execution of workflows based on web service request, through
secondary web services such as WM(T)S17, WCS18 or OGC API tiles19.

Apart from the main features and capabilities of the openEO API itself, it should be
mentioned that openEO has a set of open source implementations, both on the client
and server side, by very active user communities. Extensive documentation for all
components is available especially for the user facing resources in form of the client
libraries in R20and Python21, as well as the JavaScript based web-editor.

StreamFlow

StreamFlow22 is a workflow management system that focuses on the parallel and
distributed execution of complex scientific applications. It is designed to handle both
cloud and edge computing environments and aims to provide an easy-to-use
framework for developing, deploying, and managing scientific workflows. StreamFlow
offers a flexible framework for developing and managing complex workflows for
applications that require high levels of parallelism, distributed computing, and
cross-domain interoperability.

Some of the key features of StreamFlow include:

● Hierarchical Workflow Composition: Enables modular and reusable workflow
components by allowing sub-workflows as tasks in higher-level workflows.

● Resource Abstraction: Simplifies resource management by defining resources
independently of tasks, making it easy to switch configurations.

● Cross-Domain Interoperability: Supports various application domains and
integrates with domain-specific languages (DSLs) and tools.

● Fault Tolerance and Recovery: Automatically detects and retries failed tasks,
with checkpointing to resume execution from the last saved state.

22 https://streamflow.di.unito.it/

21 https://open-eo.github.io/openeo-python-client/

20 https://openeo.org/documentation/1.0/r/

19 https://ogcapi.ogc.org/tiles/

18 https://www.ogc.org/standard/wcs/

17 https://www.ogc.org/standard/wms/

32

interTwin – 101058386

https://streamflow.di.unito.it/
https://open-eo.github.io/openeo-python-client/
https://openeo.org/documentation/1.0/r/
https://ogcapi.ogc.org/tiles/
https://www.ogc.org/standard/wcs/
https://www.ogc.org/standard/wms/


D6.3 Updated report on requirements and core modules functionalities

● Scalability: Optimises resource utilisation with parallel and distributed
computing, suitable for cloud and edge environments.

Ophidia

Ophidia23 is a CMCC research effort addressing scientific big data challenges. It provides
a High-Performance Data Analytics (HPDA) framework for the analysis of scientific
multi-dimensional data, targeting primarily the climate change domain, although it has
been effectively used also with solid Earth, and environmental data.

The framework exploits an array-based storage model, leveraging the datacube
abstraction, and a hierarchical storage organisation to partition and distribute large
multi-dimensional scientific datasets over multiple nodes. It provides a platform for
server-side in-memory computation through a large set of parallel operators,
supporting statistical analysis, time series processing, data intercomparison, subsetting,
multi-model analysis, etc.

Besides running single parallel operators, Ophidia provides a workflow management
system for running complex scientific analysis composed of hundreds of tasks; this
engine is integrated with the Ophidia server front-end. Different interfaces are provided
to interact with the server for the submission of the workflow execution plan, including
OGC/WPS or WS-I.

The workflow description request is written in JSON format according to a set of
keywords defined in the workflow schema definition24. The workflow engine is able to
handle complex workflow in the form of DAG of tasks. Tasks can be defined using each
of the Ophidia data analytics operators, including external Python/bash scripts or binary
executables.

From the client side, the PyOphidia module (i.e., the Ophidia Python bindings25) can be
used to interact with the engine to send and execute workflow documents with the
defined JSON format. The module can also be used to build the workflow document in a
programmatic way, through a recent extension. Moreover, in the context of the project
the PyOphidia library is being extended with some utilities to support execution of
workflows of Ophidia tasks written in CWL format. These additional capabilities
translate a workflow in CWL format, by using the CWLtool, in the native Ophidia JSON
format before submitting the workflow description to the front-end server. It is worth
mentioning that only part of the CWL standard is supported.

The workflow engine takes care of handling the whole execution flow:

● translates the JSON document into an “execution plan”, i.e., an ordered list of
single tasks that are managed by the resource manager;

● handles the scheduling of the different tasks based on their dependencies and
available resources;

● tracks and monitors the execution status of each task;

25 https://pyophidia.readthedocs.io/en/latest/

24 https://ophidia.cmcc.it/documentation/users/workflow/workflow_basic.html

23 https://ophidia.cmcc.it/

33

interTwin – 101058386

https://pyophidia.readthedocs.io/en/latest/
https://ophidia.cmcc.it/documentation/users/workflow/workflow_basic.html
https://ophidia.cmcc.it/


D6.3 Updated report on requirements and core modules functionalities

● handles task failures, potentially resubmitting the same task for execution.

The Ophidia workflow system supports different types of abstractions; besides data and
flow dependencies and simple task definition, it provides flow control constructs to
handle conditional, iterative and parallel execution of sub-workflows (i.e., a subset of
the workflow tasks).

Application Deployment and Execution Service (ADES)
The ADES originated from the Earth Observation Exploitation Platform Common
Architecture (EOEPCA) project26. It is a Kubernetes-based CWL execution service
designed to provide a seamless and easily scalable cloud-based application execution
environment. Interaction with ADES is managed via OGC API Processes, allowing users
to deploy, undeploy, view, and execute processes.

When a workflow is submitted, a job is created. The ADES first performs initial setup
tasks, such as pulling the necessary Docker images specified in the CWL. A pod is then
spawned, serving as the execution environment for the application. During the stage-in
process, all required data is ensured to be available for the application's execution. The
outputs are stored in an S3 bucket, accompanied by a STAC27 (Spatio Temporal Asset
Catalog) catalogue that provides metadata for each application output.

OGC Application Package

According to the Open Geospatial Consortium (OGC) best practices document, an
Application Package is formally defined as "a platform-independent and self-contained
representation of an application, providing executables, metadata, and dependencies
such that it can be deployed to and executed within an Exploitation Platform"28. The
Application Package is designed to free developers from the constraints of existing
exploitation platforms, ensuring platform independence so that it can be executed on
any underlying hardware. Its self-contained nature allows developers to use any
programming language or framework.

An Application Package comprises two main components: a Docker Image and a CWL
file.

The Docker Image contains all the application software, dependencies, and
environment variables necessary to run the application. It must also provide a
command line interface for interaction, as the application is deployed without further
user input. According to OGC best practices, an OGC Application Package stages in and
out data using a STAC.

The CWL file describes all command line tools required to run the workflow, with all
inputs and outputs defined and linked semantically. Additionally, metadata about the
application is stored in the CWL document.

28 OGC Best Practice for Earth Observation Application Package

27 https://stacspec.org/

26 Earth Observation Exploitation Platform Common Architecture - EOEPCA Portal

34

interTwin – 101058386

https://docs.ogc.org/bp/20-089r1.html
https://stacspec.org/
https://eoepca.org/


D6.3 Updated report on requirements and core modules functionalities

3.2.4 Interaction with other components
The workflow composition and workflow execution will interact with the real time
acquisition component, as it will trigger the execution of workflows upon data arrival.
The component will also trigger SQaaS service pipelines as part of the workflow
execution to enable Model validation and Data FAIRness. Finally, the provenance
component described in the next section will also be integrated to support lineage
metadata tracking of the interTwin workflows. To this end, initial work has already been
performed for the integration of provenance support in the Ophidia framework
(described in the next section).

3.3 Provenance in Workflows
Workflow and provenance are two faces of the same medal. While the former addresses
the coordinated execution of multiple tasks over a set of machines, the latter relates to
the historical record of data from its original sources. In this respect, provenance
represents valuable accompanying documentation for scientific data and experiments,
providing historical context, documenting data transformations, and addressing trust
and authenticity of data.

Additionally, provenance is a key enabling factor for reproducibility, thus playing a
relevant role in Open Science. On the same line, to facilitate findability, accessibility,
interoperability and reusability, provenance documents should also adhere to FAIR
principles.

However, due to the complexity of scientific workflows and applications, provenance
needs to be managed across multiple and multifaceted processes and services, which
introduces the need for linking provenance documents as well as expressing
provenance information at multiple levels.

In the former case, linking provenance information needs the use of Persistent
Identifiers (PIDs) to reliably find, use and cite associated documents, while in the latter
different levels of granularity for provenance could serve very different scenarios,
according to users’ needs to investigate such information at different levels of depth.

All the aspects presented before pose interesting challenges at the level of services,
interfaces, infrastructure, libraries and tools as well as applications.

The core module yProv relies on the PROV family of standards for its internal
information model and it enables core provenance functionalities through an
interoperable service interface linked to a persistent graph database in its back-end.

In the interTwin project, such a service is being extended to help tracking provenance
information associated to climate analytics workflows both in batch and real-time
workflows. The service is also intended to manage scenarios with multi-level
provenance information allowing scientists to drill-down into specific processes
according to their needs. In order to access the provenance information recorded by
the service, a provenance explorer GUI is under implementation and will be finalised for
the final interTwin release.

35

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

Besides the yProv service and GUI, a new library (prov4ML) is also part of the
provenance software ecosystem under development. Such a library aims at tracking
provenance information within learning tasks, thus providing useful insights about AI
training processes.

Though its primary application domain is climate, its cross-domain and standard API
definition enables its re-use over multiple different domains, thus multiplying
exploitation opportunities within and outside the project, across a variety of different
use cases.

Some relevant examples include provenance support in climate analytics workflow
(which links to the Ophidia big data framework), more general scientific workflows
(which links with WFMSs) as well as AI training processes. The last scenario is being
implemented in the context of different use cases like the extreme events Digital Twin
(T4.5 - Tropical Cyclones detection) and deep learning processes for High Energy Physics
(which also addresses an integration with itwinai).

Concerning the Ophidia framework, an extension for supporting provenance is being
implemented in the PyOphidia library. Such a feature is still on the development
branches of the library and will be part of the next WP6 release. Through this extension
provenance documents in JSON format (following the W3C-PROV standard) can be
generated by the user through a method of the library, once the Ophidia workflow
execution is complete. The provenance document can then be sent to the yProv service
for a fine grained analysis of the workflow provenance structure. An initial integration of
the functionalities has already been tested. Figure 5 shows how the interaction among
the different components of the Ophidia framework and the yProv service are carried
out.

Figure 5. High-level schematic view of the use of the PyOphidia module for generating and managing the
provenance document of a workflow.

36

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

3.4 Data Fusion
Data fusion is an important component in the implementation of workflows consisting
of multiple heterogeneous data sources and is the output of Task 6.3.

The main challenge in this task is the combination of domain specific datasets and tools
in the general workflow of interTwin. Datasets need to be prepared to be used in
generic components taking care of the analytics framework and artificial intelligence. By
the end of processing, results from multiple model runs need to be re-integrated for
visualisation purposes. It’s important to note that data fusion requirements mainly
come from the environmental use cases, where it is necessary to perform fusion on a
large number of heterogeneous datasets and indicators to process the data. Therefore
the design and the technology used as base for the data fusion components
implementation are tailored to that domain. In the context of the environmental use
cases data from various sources need to be integrated covering climate model output
with satellite imagery as well as various sources of vector data.

In total three tasks are hence covered by this activity:

● Definition of guidelines for the implementation of thematic modules in order to
be interoperable with the general workflow in terms of data exchange.

● Implementation of processes for merging datasets from different sources in
collaboration with developers of thematic modules, including gridded and vector
data.

● Implementation of processes for preparing data for ingestion into AI workflows.

3.4.1 Data Fusion in Workflows
OpenEO facilitates the preparation and seamless integration of data from several
sources, hence enabling data fusion in workflows. These workflows make use of
OpenEO's ability to carry out crucial data fusion and preprocessing operations,
guaranteeing that data is appropriately staged for the workflow's later phases.

The data is sent back to OpenEO when the workflow's processing portion is finished. It
can now either be saved as the final result or go through additional post-processing.
This method makes it possible to link several workflows together. Since it allows for
multiple data fusion events, this design greatly improves the flexibility and scalability of
the data processing pipeline, making it ideal for complicated processing workflows.

In order to allow for dynamic access of data during various steps in the workflow, a
common architecture for data discovery and access is required. In analogy of ongoing
activities in the Destination Earth this will be based on STAC (SpatioTemporal Asset
Catalog) as the main data catalogue, describing collections of online accessible data
through various technologies. The Thematic Module developed in WP7 raster2stac29

addresses the need of having a single entrypoint to create STAC compliant metadata

29 https://pypi.org/project/raster2stac/

37

interTwin – 101058386

https://pypi.org/project/raster2stac/


D6.3 Updated report on requirements and core modules functionalities

from a variety of raster datasets in an unified manner. More so, the STAC metadata
works seamlessly with downstream tools that can directly access datasets provided in
the interTwin data lake interfacing with Rucio30 or alternatively on S3 bucket. In order to
achieve this, a specific procedure to register into STAC catalogue datasets uploaded to
Rucio is under implementation by WP5.

Additionally, the openEO concept of virtual data cubes allows to handle
multidimensional data from multiple domains (e.g.: remote sensing and climate
analysis) in the same way, since the processes are generalistic and can handle them
independently from their source, given the data collections metadata (provided as STAC
documents). A key development done for the openeo-processes-dask31 Thematic
Module in WP7 consists in extending the capabilities of loading and processing data
coming from the generated STAC Collections, making the implementation flexible
enough to handle several different cloud native file formats (COGs, ZARR, Kerchunk).

3.4.2 Processing Fusion in Workflows

interTwin provides a host of different data processing engines depending on the
scientific domain and applications used in the manifestation of a specific digital twin.
Complex workflows often require data from multiple sources. OpenEO, combined with
OGC Application Packages, enables seamless data fusion by supporting the integration
of multiple datasets. These datasets can be preprocessed using a variety of
cloud-optimized processes, such as reprojection, aggregation, and temporal and spatial
filtering. These preprocessing steps facilitate data fusion, preparing the data for further
analysis.

Once the fused data is ingested into an Application Package, additional specific
preprocessing may occur, such as atmospheric correction or co-registration of SLC SAR
data. The Application Package allows users to run their custom algorithms or models,
such as examples present in the Thematic Modules. The results are then made available
in OpenEO via STAC for post-processing or storage. Figure 6 shows how the processing
workflow looks like expressed in an OpenEO Process Graph.

31 https://github.com/Open-EO/openeo-processes-dask

30 https://rucio.cern.ch/

38

interTwin – 101058386

https://github.com/Open-EO/openeo-processes-dask
https://rucio.cern.ch/


D6.3 Updated report on requirements and core modules functionalities

Figure 6. Example OpenEO processing fusion.

3.4.3 Data Fusion for Artificial Intelligence
Machine learning models require that multi-dimensional data inputs should be:
co-located spatially and temporally, eventually reshaped to be ready for training, split
into train, test and validation and scaled to a numerical range to improve convergence.

Data fusion by combining the abilities described in the previous two subsections on
data fusion and processing fusion in workflows are powerful tools to perform those
operations on the input data for further enhancement in data driven models.

OpenEO reproducible workflows ensure that input data are correctly integrated, the
results stored in the data lake and the corresponding metadata uploaded into the STAC
catalogue.

The process of developing ML models can be characterised by two phases: a) an
experimentation phase where the user is heavily experimenting on the choice of the
model architecture, model structure and the overall workflow; b) a consolidation and
inference phase where the overall process has reached a certain stability and the user
may want to re-train the model on other input data (e.g., geographical regions), perform
additional hyperparameter tuning or simply running the model in inference.

In interTwin, these two phases are enabled by partially different sets of technologies.

In the experimentation phase, the itwinai module offers the highest flexibility whilst
also covering some common data preprocessing steps such as data splitting and
scaling, whereas the workflow composition and execution is managed by Kubeflow (see
4.1.1).

In the consolidation and inference phase, the relevant itwinai’s functionalities and
pipeline execution are wrapped and exposed in a CWL Application Package, whereas a
customisable openEO process graph takes care of chaining the data fusion steps to the
itwinai-based CWL and seamlessly executing the overall workflow.

39

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

4 Components for AI workflows
The Artificial Intelligence (AI) subsystem in the proposed Digital Twin Engine (DTE) is
intended for data-driven Digital Twin (DT) models and is the output of Task 6.5. This
subsystem is mainly devoted to two macro-operations: training and deployment of
machine learning (ML) models. In this context, the DT developer is mostly focusing on
ML training workflows, which also include hyperparameter tuning and validation of ML
models. The DT application user is generally more interested in the deployment of
pre-trained ML models on its preferred infrastructure (e.g., cloud services, on-premises
servers, HPC systems). In the more general case the models will be re-trained by the
scientific users to input new data, or to focus in particular areas of the parameter space.
Figure 4 depicts the internals of the AI subsystem, showing how the ML training and
deployment modules interact with other components, such as distributed training,
metrics logger, models registry, and hyperparameter optimization (HPO). This AI
subsystem developed in the context of the interTwin project is called itwinai32, which is
a Python library to support large-scale AI applications in scientific DT applications.

Training an ML model involves loading some (pre-processed) dataset from the storage
and splitting it into training, validation and test datasets. The DT developer inputs the
details of the ML model from the Platform-as-a-Service user interface (PaaS UI), like a
thematic module, including the loss function, evaluation metrics, neural network
architecture, optimizer type, etc. The user can choose among a collection of tools for
both distributed training (e.g., Horovod33, DeepSpeed34), and HPO, such as Ray Tune35.
Once a model is trained, its performance is assessed on the validation dataset (ML-level
validation). ML logs, like metrics, are saved on disk and made available to the user for
future inspection by means of the "metrics logger", whereas the best models are saved
in the "models registry". In the case of online inference, the input is a stream of data
that is updated over time. The full deployed DT includes the possibility to perform
real-time inference on the trained models.

An ML model is deployed after it passes domain-specific validation performed by the
"Quality and uncertainty tracing" DTE's module, when validation is required.. The user
chooses a pre-trained ML model from the model registry, which is going to be served as
a step in the overall DT inference workflow. There may be multiple versions available for
the same ML model and the user can choose which version to deploy as the "living" DT
model. Once the full DT is deployed as a workflow, it can process real-time streams of
data from the real world, and the experimenter can interact with it, like performing
experiments and making predictions.

One of the main challenges of this task is to provide support for a large spectrum of
users with different degrees of expertise with ML workflows and MLOps best practices.
This entails a tradeoff because base users would like to have a simple interface that is

35 https://docs.ray.io/en/latest/tune/index.html

34 https://github.com/microsoft/DeepSpeed

33 https://github.com/horovod/horovod

32 https://itwinai.readthedocs.io/

40

interTwin – 101058386

https://docs.ray.io/en/latest/tune/index.html
https://github.com/microsoft/DeepSpeed
https://github.com/horovod/horovod
https://itwinai.readthedocs.io/


D6.3 Updated report on requirements and core modules functionalities

easy to understand, whereas experienced users would like to have finer control of the
underlying ML technicalities. This can be solved by developing two different user
interfaces, considering two levels of user profiles:

● The DT Developer (Experienced user / ML researcher) has full control of the ML
workflow, custom losses and metrics, NN architectures, ensemble methods, etc.
The user provides custom training/validation scripts, interfacing directly with
PyTorch, TensorFlow and MLflow. In this case, the user also provides the logic for
loading non-standard data formats.

● The Scientist (Base user) has little experience with ML workflows and provides
only high-level definitions of ML tasks. Almost everything is automated under the
hood, reducing the engineering effort required from the scientist. If the scientist
has some special needs, they can outsource changes to a DT developer. To
achieve the desired level of abstraction for the Scientist, itwinai enables the DT
developer to define modular AI workflows composed of reusable, reproducible,
and fully-configurable steps. Scientists can reuse such steps in their AI workflows
without having to understand their internal implementation, fostering code
reuse and streamlining the development of AI workflows in scientific digital twin
applications.

41

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

Figure 7 - Detailed view of the architecture of itwinai

An overview of the ML training component and its functionalities is described in Section
4.1. The description of the Models Registry, where pre-trained ML models are stored, is
provided in Section 4.2, while Section 4.3 describes the metrics logger component,
used to log ML metrics and metadata. Finally, a description of the ML model
deployment component and its sub-components is provided in Section 4.4. For each of
these AI/ML components, an overview of the component and its functionalities,

42

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

interactions with other AI/ML components, the required technology stack, and the
interactions with other tasks are provided.

4.1 Training module
This section contains a description of the different components of the training module
in the AI workflow engine. The architecture of this module and its interaction with the
other modules of the AI workflow component is shown in Fig. 8.

4.1.1 General Description and functionalities
This module provides various functionalities to the DTE for training their AI models. The
module allows access points to local, cloud, and/or High-Performance Computing (HPC)
resources for training the networks. The cloud and HPC resource provisioning have to
be arranged on a use-case basis, in this regard, interaction with WP5 and T6.4 is
foreseen. In collaboration with WP5, support will be provided for job scheduling, for
example with Slurm, Cron, etc. JupyterLab36 is currently being investigated as a
programming interface for this module. The primary components of this module are
summarised here.

itwinai virtual environment

The itwinai library employs a Python-based virtual environment for executing the
workflows. At the moment, the environment supports the PyTorch37 and TensorFlow38

frameworks, which are decided based on the interaction with the use-cases that were
integrated in the initial phase of the project. The environment creation is supported on
multiple platforms, locally on a CPU-only or single-node/GPU system (for instance, on a
laptop), containerized execution, and on HPC systems. In terms of HPC systems,
currently the HDFML system at the Jülich Supercomputing Center (JSC) has been
configured. Support for Vega EuroHPC is also being gradually added. The creation of the
environment is streamlined with a Makefile. The documentation of the library outlines
detailed instructions on the creation and usage of the environment. Furthermore, the
itwinai library has also been released in the Python Package Index (PyPI), which enables
users to directly install the library with the package management system pip. For the DT
Developers, the package can be built from the source, using make targets, which are
provided for various modes of execution, e.g. CPU or GPU.

38 https://www.tensorflow.org/

37 https://pytorch.org/

36 https://jupyter.org/

43

interTwin – 101058386

https://jupyter.org/


D6.3 Updated report on requirements and core modules functionalities

Figure 8 - Detailed view on the architecture of ML training module

Distributed training

The training module provides functionality for distributed training of the AI models,
which is essential to maximise utilisation of HPC resources. Typically, training AI models
in a distributed or parallel manner uses either data parallelism or model parallelism
techniques. In the case of the former, batches of the dataset are distributed across the
workers, while each worker receives a replica of the model. Subsequently, each worker
trains the copy of the model in each training cycle (optimization step over a mini-batch),
and after a certain number of cycles (dependent on the framework), the gradients are
exchanged across the workers to synchronise the training. In case the AI models are too
large to fit into one worker (e.g., GPU), a model parallelism feature is required, which
distributes a single model to several workers, such that each worker only executes a

44

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

fraction of the full model. At the time of writing this report (07/2024), model parallelism
in itwinai is possible by employing the ZeRO Stage 3 optimizer39 provided by DeepSpeed
framework through parameter partitioning.

There are multiple open-source frameworks that provide distributed training
functionality. PyTorch Distributed Data Parallel (DDP) module40, Horovod developed by
Uber, DeepSpeed from Microsoft, and MultiWorkerMirroredStrategy41 from TensorFlow
are the commonly-used frameworks available in itwinai for data distributed training via
a simplified abstraction layer. Depending on the use-case requirements, support for
other frameworks will be added to the library.

Hyperparameter Optimization (HPO)

HPO is the process of fine-tuning machine learning and deep learning models in order
to improve their accuracy. This is increasingly being employed in training of AI models
and is expected to be necessary for the use-cases in the interTwin project. The HPO
process involves optimising the allocation of computational resources to various
configurations (such as learning rate, batch size, number of filters, etc.) of the AI models.
The objective is to minimise the total computational budget to find the optimal
configuration with the highest accuracy. Various algorithms such as HyperBand42 and
BOHB43 provide solutions for HPO. These are implemented through the open-source
HPO framework, RayTune44. This development is still at an experimental stage.

44 https://docs.ray.io/en/latest/tune/index.html

43 https://arxiv.org/abs/1807.01774

42 https://arxiv.org/abs/1603.06560

41 https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy

40 https://pytorch.org/docs/stable/distributed.html

39 https://arxiv.org/abs/1910.02054

45

interTwin – 101058386

https://docs.ray.io/en/latest/tune/index.html
https://arxiv.org/abs/1807.01774
https://arxiv.org/abs/1603.06560
https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy
https://pytorch.org/docs/stable/distributed.html
https://arxiv.org/abs/1910.02054


D6.3 Updated report on requirements and core modules functionalities

Workflow Pipeline Editor

Figure 9 - Kubeflow-based example of an illustrative AI pipeline45

45 Image reference:
https://www.kubeflow.org/docs/components/pipelines/legacy-v1/introduction/#the-runtime-execution-grap
h-of-the-pipeline

46

interTwin – 101058386

https://www.kubeflow.org/docs/components/pipelines/legacy-v1/introduction/#the-runtime-execution-graph-of-the-pipeline
https://www.kubeflow.org/docs/components/pipelines/legacy-v1/introduction/#the-runtime-execution-graph-of-the-pipeline


D6.3 Updated report on requirements and core modules functionalities

The AI workflow consists of multiple components which can broadly be categorised into
three parts, namely preprocessing, training, and optionally post-processing. An AI
pipeline example with the basic components is shown in Figure 6, which is
Kubeflow-based pipeline definition and execution of an AI workflow.

In the exemplary pipeline, the preprocessing step involves a data transformation step.
This may involve multiple operations such as data merging, splitting, preprocessing and
preparation. Many of these operations will be part of Data Fusion, described in Section
3.4. The training component consists of various modules defined concretely in Section
4.1. In the example, the user trains an AI model, which can be conveniently defined with
the pipeline-based approach in Kubeflow.

Workflow Management Tool

The solutions to launch the AI pipeline in cloud/HPC infrastructure were investigated in
the initial phase of the project and multiple frameworks have been identified. Based on
the requirements and AI-based functionalities, Kubeflow46, an open-source platform, is
adopted as the AI workflow management solution. The advantage of Kubeflow is that it
is an ML-oriented workflow manager, which makes it suitable for most interTwin use
cases. In one single package, it provides a UI for workflow composition, Tensorboards
for metrics logging, models registry and models versioning, and allows to serve
pre-trained ML models as standalone services, in line with MLOps best practices. These
features are required by interTwin use cases. On the infrastructure side, Kubeflow
depends on Argo Workflows and Kubernetes. When a Kubeflow workflow is deployed on
the infrastructure, its steps are deployed as separate containers and orchestrated by
the Argo Workflows manager. Also as seen in the previous section, it also allows the
definition of pipelines, which are convenient for users to define their ML execution
steps. A TOSCA template for launching Kubeflow instances on the cloud infrastructure
at the Jülich Supercomputing Center (JSC) has already been developed by Task 6.4. Tests
have already been conducted for the AI workflow definition and execution for Task 4.2.

4.1.2 Interfaces
The user will be provided with a web-based portal or API to select training
hyperparameters and ML models. A selection of pre-trained models will also be
available in this portal for base users. The training module can be triggered by the
advanced workflow composition tool with Kubernetes-like OpenStack APIs and/or
Jupyter notebook-based APIs. The trained models will be available for access in Model
registry for other components such as the Quality and uncertainty tracing.

4.1.3 Technology stack
The AI model is trained in a Python environment. The required software stack is listed
below, corresponding to the operations:

● Train the AI model (e.g., PyTorch, TensorFlow, etc.)

● Interface to metrics logger (e.g., MLflow, WandB)

46 https://www.kubeflow.org/

47

interTwin – 101058386

https://www.kubeflow.org/


D6.3 Updated report on requirements and core modules functionalities

● Communicate with external environment (e.g., CLI, REST APIs)

● Distributed AI framework (e.g., DeepSpeed, Horovod, PyTorch DDP, TensorFlow
MultiWorkerMirroredStrategy etc.)

● Drivers to access (parallel) computing infrastructure (e.g., CUDA drivers)

● Job scheduling support (e.g., SLURM, kubectl)

● Container (e.g., Docker, Apptainer) engine support to deploy models in
infrastructure

● Workflow orchestrator to launch training of AI models in infrastructure (e.g.,,
Kubeflow)

4.1.4 Interaction with other components
Model registry: During the training process, the model will be periodically stored at
certain time intervals (e.g., stored after every 10 epochs) through checkpoints and
written to the model registry. Firstly, this acts as a safeguard mechanism. In case the
model training is not proceeding well, the model can be reset from a certain checkpoint
to resume with new configurations (e.g., learning rate) without the need to completely
discard the model and retrain from the beginning. Secondly, this allows the
convergence analysis of the models at different training stages.

Metric logger: Training and validation loss, as well as visualisation during the training
process will be fed to the metric logger.

Workflow composition: The training component will be deployed in a container via
Docker or Singularity. Workflow Composition will embed the container and call it once
the previous steps have been completed. This tool will also provide a GUI or a file-based
ML configuration (containing the model type, hyperparameters, dataset URI, etc.) setup
that will write to a markup language file. The AI workflow component will then load the
YAML file and set up the training module accordingly. For the DT developer, there will be
the possibility of accessing an exposed Jupyter notebook directly, without going through
the Workflow Composition components.

Quality and uncertainty tracing: During the training procedure, intermediate results
are stored as datasets and other kinds of artefacts. The SQAaaS component will take
care of assessing their quality, including the FAIRness of training datasets and,
optionally, other datasets generated by AI workflows.
Computing Federation (interLink): The component developed in WP5 allows the
transparent offloading of computing containers to remote computing sites (including
HTC and HPC clusters). Itwinai containerized training pipelines have been already
integrated with interLink and tested both Julich and VEGA HPCs.

4.2 Model Registry
This section describes the Model Registry module of the AI workflow engine.

48

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

4.2.1 General description and functionalities
The Model Registry provides a central hub for storing and sharing ML models, along
with their associated metadata, such as performance metrics, hyperparameters, and
deployment history.

The Model Registry allows users to register models as "production-ready" or
"experimental", depending on their stage in the development process. Users can create
and manage multiple versions of a model, each with its own set of metadata and
artefacts, such as serialised model files, data preprocessing scripts, and model training
logs.

The Model Registry also offers collaboration features such as access control, version
history, and model comparison. Teams can work together to review and approve model
changes before they are promoted to the production environment. Model serving and
deployment can be automated using integrations with cloud platforms such as AWS,
Azure, or custom deployment scripts. Once a ML model is selected to be used for
inference (i.e., making predictions), it can be deployed using a number of existing
services, such as KServe47, Nvidia Triton Inference Server48, Ray Serve49, MLFlow
Inference Server50.

4.2.2 Interfaces
The Model Registry offers a web-based user interface for browsing and searching
models, as well as APIs for programmatic access and integration with other tools in the
ML ecosystem described in Interaction with other components.

4.2.3 Technology stack
One of the most promising candidates for the Model Registry is MLFlow Model
Registry51. MLFlow is an open source platform for the complete ML lifecycle
management, including experimentation, reproducibility, deployment, and monitoring.
One of its core features is the MLFlow Model Registry, which is designed to enable
teams to collaboratively manage and version ML models. The Models Registry is
deployed on cloud resources and provides a centralised repository of pre-trained ML
models, which can be accessed from different locations, compared, re-trained on new
data, or deployed for inference.

4.2.4 Interaction with other components
Training module: The Model Registry will store trained models with a certain frequency
from the Training module. This will happen at two different frequencies each with a
specific purpose:

51 https://mlflow.org/docs/latest/model-registry.html

50 https://mlflow.org/docs/latest/deployment/deploy-model-locally.html

49 https://docs.ray.io/en/latest/serve/index.html

48 https://developer.nvidia.com/triton-inference-server

47 https://kserve.github.io/website/latest/

49

interTwin – 101058386

https://mlflow.org/docs/latest/model-registry.html
https://mlflow.org/docs/latest/deployment/deploy-model-locally.html
https://docs.ray.io/en/latest/serve/index.html
https://developer.nvidia.com/triton-inference-server
https://kserve.github.io/website/latest/


D6.3 Updated report on requirements and core modules functionalities

● While training is still ongoing, intermediate models will be stored regularly in
order to have backup models in case the training is diverging, and the model
behaviour is different than expected. This ensures than not all the training is lost
and allows to fall back to models saved at previous training epochs

● After the training has been completed models will be stored in the Model
Registry for the purpose of evaluation from a use case perspective, i.e., the
Scientist will compare different model types regarding e.g., architecture, number
of parameters, datasets used with other ML and non ML model and assesses
which model are fit to be post-processed and deployed.

The frequencies are use case specific and will be determined either by the DT developer
or the Scientist.

ML model deployment: The Model Registry will provide a catalogue of models that can
be accessed via the MLflow client. Model will be made available in the ML specific
framework and in the Open Neural Network Exchange (ONNX) format. The models in
the registry will be deployed in a container via the ML deployment component either as
Tensorflow or PyTorch models according to use case preference and hosted as a server.

Quality Assurance: The component can query the ML deployment server. It will certify
the quality of each model in the registry according to the FAIR (Findable, Accessible,
Interoperable and Reusable) quality assessment.

4.3 Metric Logger
This section describes the Metric Logger module of the AI workflow engine.

4.3.1 General Description and functionalities
The metric logger allows users to define and track either predefined metrics, such as
accuracy, precision, recall, mean squared error or allow the DT developer to define
custom use case specific metrics. It also supports the creation of experiments, which
can group together related runs of a model training or evaluation task. DT Users can
compare metrics across different runs and experiments, and track how metrics change
as the model is updated or new data is added. The Metric Logger also stores
provenance information for AI workflows, computed at runtime by itwinai. Such
information includes system metrics (e.g., GPU/CPU usage, carbon footprint
assessment), and additional metadata needed to improve reproducibility and
transparency of AI workflows in scientific digital twin applications.

4.3.2 Interfaces
The Metric Logger provides a user-friendly web-based interface for exploring and
visualising metric trends over time, as well as APIs for programmatic access and
integration with other components described in Interaction with other components.

4.3.3 Technology stack
The Metric Logger is characterised by a client-server duality.

50

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

DT developers access the client through Python APIs within their AI workflows. The ML
logger client is accessed via a simplified abstraction layer provided by itwinai. This
abstraction layer ensures a uniform API across popular logging frameworks, such as
MLFlow52, Weights&Biases53, and TensorBoard54. It allows DT developers to avoid being
tied to any specific framework and makes it easy to switch logging frameworks without
modifying the user code.

On the other hand, the server side of the Metric Logger is an optional component,
which is usually deployed on cloud resources. It allows to store ML metadata, metrics,
and artefacts in a centralised location, accessible by different scientists at the same time
and from different geographical locations. The Metric Logger server can be an MLFlow
Tracking Server55, Weights&Biases public or managed Platform56, or similar. Sometimes
ML workflows are executed in network-segregated environments (e.g., due to security
policies on some HPCs), preventing the logging client from communicating with its
server counterpart. In these occasions, the loggering server will not be needed, or it will
need to be integrated with other technologies, such as the Rucio Data Lake.

The Metric Logger is a flexible and scalable tool that enables users to record, visualise,
and compare ML metrics during model training and evaluation. It integrates with
popular ML libraries such as TensorFlow, PyTorch, and Scikit-learn, and can be accessed
via a REST API.

4.3.4 Interaction with other components
Training module: While training the MLFlow Metric Logger will store and visualise pre-,
or user defined metrics described above. This will allow the DT developer to assess the
training progress and to intervene accordingly.

Model registry: The metrics will be stored alongside the trained models in the Model
Registry. This preserves the whole training history and simplifies later comparisons and
analyses of stored models.

Provenance: The Prov4ML57 service for provenance information for AI workflows is
integrated into itwinai as a logger, complying with the itwinai.loggers.Logger
interface. This allows DT developers to easily log provenance information by accessing
the Prov4ML functionalities from itwinai, potentially both during training and inference
workflows.

Rucio Data Lake: The Data Lake offers a consistent distributed data management
service to share data among European federated e-infrastructures, such as EuroHPC
centres. This technology, once integrated with the Metric Logger, could enable DT
developers to store their ML logs into the Data Lake and share them between
computing sites, without requiring internet connection on compute nodes. This

57 https://github.com/HPCI-Lab/ProvML

56 https://docs.wandb.ai/guides/hosting

55 https://mlflow.org/docs/latest/tracking/server.html

54 https://www.tensorflow.org/tensorboard

53 https://docs.wandb.ai/guides/track

52 https://mlflow.org/docs/latest/tracking.html

51

interTwin – 101058386

https://github.com/HPCI-Lab/ProvML
https://docs.wandb.ai/guides/hosting
https://mlflow.org/docs/latest/tracking/server.html
https://www.tensorflow.org/tensorboard
https://docs.wandb.ai/guides/track
https://mlflow.org/docs/latest/tracking.html


D6.3 Updated report on requirements and core modules functionalities

alternative is currently under exploration. More details the interTwin Data Lake
developed in WP5 are given in [R4]

ML model deployment: During deployment the pre- or user defined metrics may be
visualised in order to monitor if the deployed model is working correctly. Depending on
the use case requirements, the DT developer can define thresholds for the metrics and
should the model above or below the threshold, warning messages and automatic
exception handler can be triggered.

4.4 Machine Learning model deployment
This section contains a description of the different components of the machine learning
deployment module in the AI workflow engine. The architecture of the module and its
interaction with the other modules of the AI workflow component is depicted in Figure
10.

4.4.1 General description and functionalities
Once an ML model, like a neural network, is trained, it is served on the infrastructure as
a standalone application, which receives unseen pre-processed data as input and
produces the respective predictions as outputs.

This component is responsible for providing the “living” ML model of a DT, allowing
anyone to query it at any time, by either requesting on-line predictions (i.e., prediction
on small data, usually encapsulated in an HTTP request, in real time), or submitting
batch jobs (i.e. the ML model is seen as a transformation, which is applied to a large
dataset, producing another dataset of predictions as output). A DT developer or a
scientist chooses a pre-trained ML model from the Models Registry and the “ML
deployment component” deploys it in a container, encapsulating the minimal Python
environment needed by the ML model to properly function.

52

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

Figure 10 - - Detailed view on the architecture of the ML deployment module

This component is different from ML training in that the training component has
generally a different Python environment, which, for instance, includes libraries that are
needed only at training time (e.g., HPO libraries). Moreover, the Python environment
used with the deployed ML model may contain deployment-specific libraries, for
instance, to allow users and other modules to query the ML model for predictions, like
via REST APIs. Furthermore, differently from the ML training module, the deployment of
an ML model can be replicated to improve its availability when multiple queries, such as
HTTP requests, are made to the same ML model. Similarly, to ML training, the deployed
ML model can access resources and frameworks for distributed ML (e.g. Horovod).

A DT developer or a scientist can deploy a pre-trained ML model as a step of a broader
DT workflow, which is orchestrated by the workflow composition tools and engine
described in Section 3.2. For instance, a minimal DT workflow including a pre-trained
ML model could consist of: preprocessing of satellite images with openEO, prediction of
fire risk maps with a pre-trained generative adversarial neural network (GAN), and

53

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

visualisation of the predictions. In this example, the pre-trained GAN can be queried by
the visualisation tool to perform on-line predictions, or it could be applied to a dataset
of preprocessed satellite images, in a batch processing fashion, to produce a large set of
predictions all at once. In both situations, deploying the pre-trained ML model as a
container allows it to be scaled up or down, according to the needs of availability for
online queries or parallelization for batch processing.

4.4.2 Interfaces
The module for ML model deployment provides an API that allows the user to select and
deploy a pre-trained model based on some goodness metrics. In the specific case of the
selection of the pre-trained model to deploy, the DT developer can access the ML model
deployment module via some web-based portal.

The ML deployment can be triggered by the advanced workflow composition through
Kubernetes-like and OpenStack APIs. The OSCAR component introduced in section 3.1.1
can be also used for model serving at scale.

4.4.3 Technology stack
To begin with, the technology requirements for this component are the following:

● Interaction with the infrastructure via a Kubernetes-like API abstraction layer.
Infrastructure providers may use different container management platforms, but
this component expects to interact with the underlying infrastructure through
some abstraction layer developed by WP5. This abstraction layer is used to
deploy pre-trained models in containers as standalone services.

● On top of Kubernetes-like clusters, the deployed ML model can be triggered by
some workflow orchestrators (such as Argo workflows).

● The ML model is deployed in a container (e.g., Docker) with an ad-hoc Python
environment. This requires the availability of container engines.

● The pre-trained ML model is retrieved from the models registry, which shall be
available on the infrastructure as part of the MLflow server (i.e. the standalone
MLflow tracking server). The MLflow tracking server can be deployed on the
infrastructure using its container image.

The technology stack of the ML deployment module can be summarised as follows:

● Interface with the PaaS UI and thematic module. This interface allows this
component to receive the scripts to include in the deployment container, and the
details of the deployment, such as unique ID of the pre-trained model to deploy,
and hardware preferences.

● Client to communicate with the Models Registry. Fetches the desired ML model
from the models registry using its unique ID. This could be an MLflow client.

● APIs to access the container engine, to build and deploy the image of the ML
model to serve.

Once deployed, the software stack of an ML model has the following key components

54

interTwin – 101058386

https://argoproj.github.io/workflows/
https://mlflow.org/docs/latest/tracking.html#scenario-5-mlflow-tracking-server-enabled-with-proxied-artifact-storage-access


D6.3 Updated report on requirements and core modules functionalities

● The model is deployed in a Python environment, including libraries to:

○ Run the pre-trained ML model (e.g., PyTorch, TensorFlow, ONNX runtime)

○ Connect to the metrics logger, like the MLflow client to contact the MLflow
tracking server.

○ Communicate with the external environment (e.g., CLI, REST APIs)

○ Distributed ML for inference, such as Horovod and PyTorch DDP

● Drivers to access computing infrastructure (e.g., CUDA drivers)

● Connectors to data infrastructure, like Kafka and Rucio clients

4.4.4 Interaction with other components
The ML model deployment interacts with the following components:

Model registry: Retrieves a pre-trained model from the models registry using its unique
ID. This interaction is mediated through a specific interface, which could be
implemented via APIs or a client. Most likely, the models registry is going to be
implemented using MLflow tracking server, therefore, the interaction with the models
registry is likely to be mediated via the MLflow client. An alternative is the Kubeflow
client/APIs in case the models registry is hosted on some Kubeflow instance.

Metric logger: Saves metrics concerning the deployed ML models to the logger service,
for monitoring reasons. Both the ML deployment instance and the deployed ML models
can access this service to constantly update the user (e.g., the DT developer) about their
status.

Distributed ML: Accesses distributed ML resources to scale the inference computations
when the deployed ML model is large, or to provide an alternative method to scale up
when the volume of requests is large. Distributed ML provides an abstraction layer to
scale the computation on multiple GPUs.

Computing infrastructure (interLink): As described above, a pre-trained ML model is
deployed on the infrastructure as a container, therefore, it has to interact with the
infrastructure provider using the Kubernetes-like APIs and the offloading to external
clusters provided by interLink. Furthermore, the computing infrastructure will provide
computing resources such as GPUs (preferably) or CPUs, to run the deployed ML model.

Data infrastructure: An ML model can be deployed to transform a large dataset, in a
batch processing manner. Alternatively, the deployed ML model can take advantage of
(near) real-time data acquisition to perform real-time predictions on input data streams,
producing an output stream of predictions by using the DCNios component detailed in
section 3.1.1

Thematic module / PaaS UI (WP7): Similarly, to the ML training component, the ML
deployment module is instantiated by the user (e.g. the DT developer) through the UI
provided by the DTE PaaS by means of Jupyter Notebooks. The user selects the
pre-trained model to deploy from the models registry, and defines other deployment
configurations, such as the number of replicas, or hardware preferences. An important

55

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

aspect is the definition of connectors to the pre-trained dataset: the DT developer shall
provide a Python script to load the dataset items in memory, by defining the logic to
parse and identify the items of the dataset stored on disk, like, the logic defined by
extending Pytorch’s Dataset class. Another similarity with the ML training module is that
the deployment of an ML model provides the user (e.g., the DT developer) with statistics
concerning the ML model, through the metrics logger component, for real-time
monitoring,

Advanced workflow composition: The ML deployment can be triggered by the
advanced workflow composition. Both components are likely to be deployed as
containers on the infrastructure, thus the trigger received from the advanced workflow
composition should be in the form of Kubernetes-like or Apache Airflow-like APIs. The
interaction could be via HTTP requests, message queues, or other.

Quality and uncertainty tracing. The Software Quality Assessment as a Service logic
provided by the “Quality and uncertainty tracing” module, allows testing (micro)services
in a black-box manner. Once a pre-trained ML model is deployed as a container as a
standalone service, it can be easily tested in a black-box manner. The DT developer can
provide use case-specific test cases to validate the performance of the model.

56

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

5 Components for Quality Assurance
The main goal of the Quality Assurance (QA) component of the DTE is to perform
domain-specific (functional, behavioural) validation, in a black-box manner, avoiding
clashes with any complementary evaluation task, such as the validation of performance
metrics done as part of the AI workflows subsystem. However, based on the collected
requirements summarised in Section 2, current assessment capabilities might be
extended to include the evaluation of specific criteria related to (i) data quality (such as
those related to the data quality dimensions) and (ii) AI & ML validation. In addition,
the interfaces of the SQAaaS platform are expected to grow in order to integrate with
data spaces and workflow engines.

5.1 Software Quality Assurance as a Service
The DTE features a specific module for quality assurance (QA) that aims at tackling the
early validation of the DTs, before being deployed as a “living DT”. The main module that
provides this functionality is the Software Quality Assurance as a Service (SQAaaS).

5.1.1 General Description and functionalities
The SQAaaS platform provides graphical and programmatic interfaces to compose
continuous integration and delivery (CI/CD) pipelines. These pipelines might be then
used as fail-fast systems and/or quality gates, so that any indication of a failure is
detected promptly, which enables to adjust the runtime behaviour of the workflows
composed through the DTE.

By means of the SQAaaS platform, the DT developer can choose among a set of
special-purpose, open-sourced libraries and tools to assess QA criteria relative to
models and/or data. The list of criteria (and their means of validation) is then wrapped
into CI/CD pipelines, which once executed, act as quality gates during the validation of a
DT workflow.

Accordingly, the resultant CI/CD pipelines are meant to be triggered both on-demand,
e.g. as the final acceptance check of a pre-trained ML model before moving it to
production (see also the components for AI workflows), or as a response to events,
such as those generated by data ingestion systems (integration with workflow
composition tools) or by repository platforms as a result of new changes in the source
code of the model as depicted in Figure 11.

The primary components in the SQAaaS architecture are summarised below.

SQAaaS API server

This is the key component of the SQAaaS platform. It provides two central building
blocks: i) the composition of CI/CD pipelines, and ii) the quality assessment of three
types of digital assets: source code, (web)services and data. Whilst the latter, known as
Quality Assessment and Awarding, provides a more general and comprehensive
analysis (and crediting) of a given digital object through the execution of a fixed set of

57

interTwin – 101058386

https://www.ibm.com/docs/en/cloud-paks/cp-data/4.8.x?topic=quality-data-dimensions


D6.3 Updated report on requirements and core modules functionalities

criteria and tools, the former, coined as Pipeline as a Service, facilitates the task of
tailoring CI/CD pipelines by selecting the required criteria and the tools to be used in
each stage of the pipeline.

SQAaaS tooling & reporting

The SQAaaS platform has built-in support for a series of open source tools that cover
the validation of individual quality criteria. Tools are selected based on the popularity
and adequate support within the given community. As an example, pycodestyle
(Python’s PEP8 checker) is one of the supported tools to cover the “code style”-related
criteria. The support for a given tool is accompanied by an associated reporting plugin
that is in charge of validating its output.

New libraries and tools will enrich the current catalogue in order to deal with the
requirements of the DTE implementation, both in terms of data quality and model
validation. These tools will assist DT developers to uncover issues in early stages with
extended capabilities on data integrity, cleansing, formatting, profiling, and FAIR
compliance, as well as model performance. Examples of tools already identified are
FAIR-EVA,58 DeepChecks,59 and Great Expectations.60

Jenkins Pipeline Library

Jenkins Pipeline Library (JePL) provides the integration with the CI solution (Jenkins)
through YAML descriptions, where the pipeline work is defined. The file is structured
according to the set of quality criteria being used. The library relies on containers to set
the environment for the execution of the checks clustered in each criterion being
defined.
Uncertainty Quantification (UQ)

Uncertainty Quantification (UQ) aims to enhance the reliability of ML/AI models by
establishing trust in their predictions. This process helps scientists determine the extent
to which they can trust and accept the results obtained from scientific workflows
involving ML/AI models. To achieve this, UQ requires probabilistic distributions rather
than just deterministic predictions or forecasts. In classification problems, the model
should produce discrete probabilistic distributions, while in regression models, it should
generate continuous probabilistic distributions.
This component will be integrated with SQAaaS to be triggered programmatically,
helping the end user understand the uncertainties inherent in the predictions. This
enables users to determine whether the results can be trusted or require further
investigation. The integration will be achieved by containerizing the workflow, which
provides various tools and metrics for uncertainty quantification. This container will be
triggered whenever a new pre-trained model is available in the registry, utilising the
tooling and reporting components to deliver reports and feedback on the results. Also,

60 https://github.com/great-expectations/great_expectations

59 https://github.com/deepchecks/deepchecks

58 https://github.com/EOSC-synergy/FAIR_eva

58

interTwin – 101058386

https://github.com/great-expectations/great_expectations
https://github.com/deepchecks/deepchecks
https://github.com/EOSC-synergy/FAIR_eva


D6.3 Updated report on requirements and core modules functionalities

integrate it with itwinai for allowing DT developers to gain an initial understanding of
potential uncertainties before deploying their models.

Figure 11 - Detailed view on the architecture of the quality assurance module

5.1.2 Interfaces
The SQAaaS platform provides an API that allows the composition and triggering of QA
assessments, which shall be leveraged by this component. In the particular case of the
composition of a customised QA assessment or CI/CD pipeline, the DT developer has
the additional possibility of accessing the SQAaaS platform though the web portal.

5.1.3 Technology stack
The technology stack used to deploy and operate the SQAaaS platform is described
below.
CI system

This component is where the CI/CD pipelines described through the JePL library run (i.e.,
Jenkins). The SQAaaS cloud instance already provides a Jenkins CI server with a set of
agents to distribute the work. The SQAaaS can also be deployed on-premises via
Kubernetes. In this case, a Kubernetes Jenkins operator is deployed in the cluster.
Code repository platform

The SQAaaS platform relies on a Git-based repository platform to operate (i.e., store,
track, and access) the pipelines being created. The SQAaaS API stores each defined QA
assessment as a JePL pipeline in an individual code repository. The API is currently

59

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

integrated with the GitHub platform, where the InterTwin project has already an
organisation available61. This approach facilitates the maintenance of the QA
assessment, acting as a catalogue of JePL pipelines so that they can be re-defined and
re-triggered.

Besides using GitHub for the operational needs of the SQAaaS platform, it can be
additional leveraged to store workflow definitions created by the workflow composition
tools, and thus, configure the integration with the SQAaaS’ CI server in order to validate
them upon changes.

Container registry

The libraries and tools that will be used in the CI/CD pipelines, both the ones having
built-in support and/or the specifically selected by the user, shall be available as
container images in some Docker registry.

5.1.4 Interaction with other components
Workflow composition: The workflow composition tool will allow the DT developer to
add QA assessments in one or multiple steps during the workflow composition. The
added value of following this approach is the early detection of any issue, and thus,
having the capability to interrupt the workflow execution as soon as any of the
pre-defined quality standards are not met (quality gate).

ML model deployment: Before performing the black-box validation, the model needs
to be deployed. In the case of ML-based models, the AI/ML module will provide the “ML
model deployment component” that fetches the appropriate version of the model from
the registry and deploys it for further validation.

Data acquisition and event-driven triggering of workflows: The event-driven
architecture implemented by Task 6.1 can be leveraged to perform QA work on the data
to be used to train and operate the DT (DataOps-like approach). For instance, if
connected with a data lake or registry (aka Data Computation and Abstraction) it would
facilitate the quality attributes of the data stored there. Polling-based solutions can also
be considered.

61 https://github.com/interTwin-eu

60

interTwin – 101058386

https://github.com/interTwin-eu


D6.3 Updated report on requirements and core modules functionalities

6 Components for Big Data Analytics
An overview of the deployment of the Data Analytics tools is provided in Section 6.1,
while subsequent sections will detail the specific tools that are involved in Big Data
Analytics. Specifically, Section 6.2 describes Kubernetes clusters, Section 6.3 presents
Horovod environments, Section 6.4 covers Kubeflow environments, Section 6.5 covers
Ophidia , while Section 6.6 deals with openEO clusters, Section 6.7 describes Airflow
clusters, Section 6.8 describes EOEPCA ADES clusters, Section 6.9 shows ecFlow
clusters, Section 6.10 covers MLFlow. Finally, Section 6.11 covers the yProv server.

6.1 Deployment of Big Data Analytics tools
This section describes the deployment module of the Big Data Analytics subsystem.
Figure 12 shows how the modules of the Big Data Analytics deployment work together.
Each of these modules is described in more details below.

6.1.1 General description and functionalities
The goal of the deployment layer is to create a set of topology templates and recipes for
general-purpose data analytic environments to be deployed on demand on top of the
cloud resources.

The cloud topology templates will be created using the OASIS TOSCA Simple YAML
specification [R2]. They will describe all the virtual resources and the software
components required to deploy the final application. Furthermore, they will provide the
user with a set of input parameters enabling them to customise the application
configuration.

All the defined templates will be stored in a public repository that will be made available
to the users by the Orchestrator Dashboard. It will render the templates, enabling the
users to set the defined input parameters and will contact the PaaS Orchestrator that
will be in charge of processing the TOSCA template and creating all the required cloud
resources, configuring the selected big analytics tool, and making it available for the
final user. Finally, the Dashboard will show the TOSCA specified output values with the
required information to connect with the application (endpoints, credentials, etc.).

The artefacts with the recipes to configure the desired big analytics tools will be
described using the Ansible Language (in Ansible terms, “playbooks”). All the ansible
playbooks referenced in the TOSCA templates will also be stored in a public repository.
Moreover, the main installation recipes will be packaged as Ansible roles thus
enhancing their reusability in different playbooks. Also, all the defined Ansible roles will
be stored in public repositories and made available for the playbooks using the ansible
galaxy tool.

61

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

Figure 12 - General architecture of the data analytics tools

PaaS Orchestrator

The Platforms as a Service (PaaS) Orchestrator allows federating heterogeneous
resource providers and orchestrates the deployment of TOSCA templates, selecting the
best provider according to criteria like the data location, the SLA and monitoring
information. It provides a set of APIs to create, monitor and manage the deployments.

Orchestrator dashboard

The PaaS Orchestrator dashboard is a web application that enables users to easily
interact with the services of the PaaS, particularly the Orchestrator, to create
TOSCA-based deployments. The dashboard provides a user-friendly interface for
managing and monitoring deployments.

Big Data Analytics TOSCA templates repository

This repository will store the set of TOSCA templates with the definition of the software
component and the underlying virtual infrastructures needed to execute the Big Data
Analytics tools. Some of these TOSCA templates will require the creation of new TOSCA
custom types to define particular elements (mainly software components) of the cloud
topology. These new custom types will also be defined in a separate YAML file but
stored in the same repository.

Configuration artefacts repository

TOSCA templates define the topology and the set of components needed to fully deploy
an application, but these templates refer to a set of artefacts with the recipes needed to
install/configure every software component needed. These artefacts will also be stored

62

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

in a public repository (or set of them). These artefacts will be defined using the Ansible
DSL language.

Ansible roles repositories

The artefacts defined to install/configure software components may also use Ansible
roles. Ansible roles are ways of getting content contributions from various Ansible
Developers, they are similar to libraries in programming languages. These roles use a
central service provided by Ansible (Ansible Galaxy) to search for the required roles to
be used in an Ansible playbook, but the actual recipes are stored in public GitHub
repositories.

6.1.2 Interfaces
For the final user the Orchestrator Dashboard offers a graphical web UI where any user
without knowledge about TOSCA can easily deploy their own Big Data Analytics tools
with the underlying virtual infrastructure required.

The PaaS Orchestrator also offers a REST API
(https://indigo-dc.github.io/orchestrator/) that can be used programmatically to
create the required virtual infrastructures.

6.1.3 Technology stack
The PaaS Orchestrator needs the presence of the following services:

SLA Manager

The SLA Manager (SLAM) stores all Service Level Agreements (SLAs) of the user and
allows for their programmatically retrieval.

Configuration Management DataBase

The Configuration Management DataBase (CMDB) is where the Cloud sites store the
necessary information for delivering their services and/or resources. Information like
service endpoints, contact emails, people responsible for the services,
planned/unplanned interventions, and downtime, etc. The information stored in the
CMDB is regularly reviewed and validated.

Monitoring System

The monitoring system collects and generates Availability and Reliability metrics for the
services registered in CMDB, via monitoring probes deployed at each Cloud site. It
allows querying monitoring metrics through a REST interface.

Cloud Provider Ranker

Cloud Provider Ranker (CPR) receives all the information retrieved from the
aforementioned services and provides the ordered list of the best sites.

Infrastructure Manager

Infrastructure Manager62 (IM) is the component that actually deploys and configures the
virtual infrastructure once the site has been selected.

62 https://www.grycap.upv.es/im/index.php

63

interTwin – 101058386

https://indigo-dc.github.io/orchestrator/
https://www.grycap.upv.es/im/index.php


D6.3 Updated report on requirements and core modules functionalities

6.1.4 Interaction with other components
The PaaS orchestrator by means of the Infrastructure Manager will interact with the set
of cloud providers (either resources of the testbed infrastructure, the EGI Federated
cloud, on–premises cloud or public cloud offerings) to deploy the virtual resources
needed.

The PaaS orchestrator also allows the deployment of dockerized services and jobs on
Mesos and Kubernetes clusters on HPC providers.

6.2 Elastic Kubernetes clusters on demand
This section describes the Kubernetes clusters as part of the Big Data Analytics
subsystem.

6.2.1 General Description and functionalities
One of the main components required for deploying other data analytic environments is
a container orchestration platform based on Kubernetes (K8s). This will facilitate the
deployment of containerised data analytic components. The innovative aspect of this
component will be the ability to extend and shrink the number of nodes of the K8s
cluster according to the workload. This way the number of nodes in the cloud
infrastructure will be minimised and adjusted to the real need.

The variation in the number of nodes of a Kubernetes cluster is performed according to
two criteria:

● Powering on new nodes and adding them to the Kubernetes cluster. This is
triggered when an object that has indicated a request on resources and it
entered in the “pending” state due to the lack of resources. After a period of time
defined in the configuration of CLUES, the deployment of a new node is triggered
so the object can be scheduled.

● Powering off nodes and removing them from the Kubernetes clusters. Idle nodes
that remain without processing objects allocated are powered off after a given
time threshold. Powered off nodes automatically disappear from the available
nodes of Kubernetes.

6.2.2 Interfaces
Kubernetes objects are managed through the Kube apiserver using the Kubernetes
API63. This API permits the management of any type of Kubernetes object coded into
JSON or YAML formats. Authentication can be performed by means of tokens, which
could be defined on the instantiation of the cluster.

In order to facilitate the management of Kubernetes objects, two additional applications
can be optionally deployed with the Kubernetes cluster (supported by the TOSCA
recipe). On the one hand, the Kubernetes Dashboard64 is a Graphical User Interface

64 https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

63 https://kubernetes.io/docs/concepts/overview/kubernetes-api/

64

interTwin – 101058386

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/


D6.3 Updated report on requirements and core modules functionalities

(GUI) that can manage any type of K8s object and provides a monitoring system to
explore the usage of resources. This interface facilitates the management of K8s objects
especially if a Command Line Interface (e.g., kubectl) is not available. On the other hand,
the TOSCA recipe is enabled to install Helm and Kubeapps, so Helm charts65 can be
deployed from the GUI of Kubeapps.

6.2.3 Technology stack
The cluster will be described as a TOSCA Infrastructure as Code blueprint, which could
be deployed on top of the infrastructure through either the PaaS orchestrator or the
Infrastructure Manager. The infrastructure recipe is available in GitHub66. This recipe
comprises the following components:

Kubernetes

Kubernetes (K8s) is an open source platform for automating the deployment, scaling,
and management of containerized applications.67

Elastic Cloud Computing Cluster

The Elastic Cloud Computing Cluster (EC3)68 is a platform that allows creating elastic
virtual clusters on top of Infrastructure as a Service (IaaS) providers, either public (such
as Amazon Web Services, Google Cloud, or Microsoft Azure) or on-premises (such as
OpenStack or OpenNebula). It uses CLUES as the elasticity management component of
EC3. The CLUES system integrates with the cluster management middleware, such as
container orchestrators, batch-queuing systems, or cloud infrastructure management
systems, by means of different connectors.

6.2.4 Interaction with other components
The on-demand elastic Kubernetes cluster module acts as the framework using which
Kubeflow clusters (see Section 6.4),Ophidia clusters (see Section 6.5), openEO clusters
(see Section 6.6), Airflow clusters (see Section 6.7), EOEPCA ADES clusters (see Section
6.8) and yProv server (see Section 6.11) will be deployed.

6.3 Horovod environment
This section details how the Horovod environment can be included as part of the Big
Data Analytics subsystem.

6.3.1 General Description and functionalities
Horovod can be used to run distributed deep learning workloads. It provides a
framework for scaling the deep learning training jobs allowing users to efficiently train
large deep learning models on big data sets.

68 https://eosc-portal.eu/news-and-events/news/elastic-cloud-compute-cluster-ec3

67 https://kubernetes.io/es/

66 https://github.com/grycap/im-dashboard/blob/master/tosca-templates/kubernetes_elastic.yaml

65 https://helm.sh/es/docs/topics/charts/

65

interTwin – 101058386

https://eosc-portal.eu/news-and-events/news/elastic-cloud-compute-cluster-ec3
https://kubernetes.io/es/
https://github.com/grycap/im-dashboard/blob/master/tosca-templates/kubernetes_elastic.yaml
https://helm.sh/es/docs/topics/charts/


D6.3 Updated report on requirements and core modules functionalities

Horovod

Horovod is a distributed deep learning training framework for TensorFlow, Keras,
PyTorch, and Apache MXNet69. It provides an easy-to-use interface for scaling deep
learning training jobs across multiple nodes and GPUs. Horovod can be used to train
large deep learning models on big data sets.

6.3.2 Interfaces
Once deployed, users can interact with the Horovod environment by submitting a script
written in Python that includes the Horovod libraries.

6.3.3 Technology stack
Horovod is installed through a set of Ansible recipes70.

6.3.4 Interaction with other components
Components for AI Workflow: Horovod is one of the distributed training frameworks
analysed.

6.4 KubeFlow clusters
This section details how Kubeflow clusters are being used in the Big Data Analytics
subsystem.

6.4.1 General Description and functionalities
Kubeflow is a free, open-source machine learning platform that allows machine learning
pipelines to orchestrate complicated workflows running on Kubernetes. Kubeflow is a
collection of cloud native tools for all stages of the machine learning lifecycle, including
data exploration, feature preparation, model training/tuning, model serving, model
testing, and model versioning. Each component of Kubeflow can be deployed
separately.

The Kubeflow project is dedicated to making deployments of machine learning (ML)
workflows on Kubernetes simple, portable, and scalable. Its goal is not to recreate other
services, but to provide a straightforward way to deploy best-of-breed open-source
systems for ML to diverse infrastructures.

Kubeflow translates steps in the data science workflow into Kubernetes jobs. It is a
platform for data scientists who want to build and experiment with ML pipelines.
Kubeflow is also for ML engineers and operational teams who want to deploy ML
systems to various environments for development, testing, and production-level
serving.

It includes services to create and manage interactive Jupyter notebooks. You can
customise your notebook deployment and your compute resources to suit your data
science needs.

70 https://github.com/grycap/tosca/tree/main/artifacts/horovod

69 https://horovod.ai/

66

interTwin – 101058386

https://github.com/grycap/tosca/tree/main/artifacts/horovod
https://horovod.ai/


D6.3 Updated report on requirements and core modules functionalities

Kubeflow provides training operators for several ML frameworks such as TensorFlow
(TFJob), PyTorch (PyTorchJob), MXNet (MXJob), XGBoost (XGBoostJob), and PaddlePaddle
(PaddleJob). Furthermore, it supports a TensorFlow Serving container to export trained
TensorFlow models to Kubernetes. Kubeflow is also integrated with Seldon Core, an
open source platform for deploying machine learning models on Kubernetes, NVIDIA
Triton Inference Server for maximised GPU utilisation when deploying ML/DL models at
scale, and MLRun Serving, an open source serverless framework for deployment and
monitoring of real-time ML/DL pipelines. Kubeflow Pipelines is a comprehensive
solution for deploying and managing end-to-end ML workflows.

Furthermore the recipe has been extended to also include an integrated MLFlow
instance that can be used to track the ML workflows.

6.4.2 Interfaces
Once Kubeflow has been deployed, users can interact with it through the Kubeflow
Dashboard. The dashboard provides a central user interface for managing and
monitoring Kubeflow resources such as notebooks, pipelines, and experiments.

Users can also use the Kubeflow command line interface (CLI) to interact with Kubeflow
resources.

6.4.3 Technology stack
KubeFlow is installed through an Ansible recipe71 on top of an elastic Kubernetes
cluster.

6.4.4 Interaction with other components
Elastic Kubernetes clusters: This module will be deployed on top of the Elastic
Kubernetes framework described earlier. It requires the PaaS orchestrator or the
Infrastructure Manager for being deployed on the resource provider (either resources
of the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or
public cloud offerings).

Components for AI Workflow: Kubeflow is one of the solutions analysed to launch the
AI pipeline in cloud/HPC infrastructure.

6.5 Ophidia Cluster
This section covers Ophidia clusters as part of the Big Data Analytics subsystem.

6.5.1 General description and functionalities
Ophidia provides support for data-intensive analysis exploiting advanced parallel
computing techniques and smart data distribution methods. It exploits an array-based
storage model and a hierarchical storage organisation to partition and distribute
multidimensional scientific datasets over multiple nodes. The Ophidia analytics
framework can be exploited in different scientific domains (e.g., Climate Change, Earth

71 https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/artifacts/kubeflow.yml

67

interTwin – 101058386

https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/artifacts/kubeflow.yml


D6.3 Updated report on requirements and core modules functionalities

Sciences, Life Sciences) and with very heterogeneous sets of data. Further details on the
framework can be found in Section 3.2.3.

Ophidia is offered using a JupyterLab instance, deployed on top of a Kubernetes cluster,
jointly with a large set of pre-installed Python libraries and a ready-to-use Ophidia HPDA
framework instance for running data manipulation, analysis, and visualisation.

6.5.2 Interfaces
Once deployed, users can interact with the JupyterHub interface. JupyterHub provides a
web-based interface where users can launch a Jupyter server, use notebooks (e.g., the
DT applications) and access computational resources. From within a Jupyter notebook,
users can run the Ophidia HPDA framework to perform computations.

PyOphidia, the Ophidia Python bindings, can be used together with other libraries from
the scientific Python ecosystem for implementing data analytics applications.

6.5.3 Technology stack
Ophidia is installed through an Ansible recipe72 on top of an elastic Kubernetes cluster.

6.5.4 Interaction with other components
Elastic Kubernetes clusters: This module will be deployed on top of the Elastic
Kubernetes framework described earlier. It requires the PaaS orchestrator or the
Infrastructure Manager for being deployed on the resource provider (either resources
of the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or
public cloud offerings).

Provenance: Ophidia will also interact with the provenance module (deployed as a
containerized module) to track lineage metadata during (or at the end of) the analytics
workflow execution. The integration between the two components is described in
Section 3.3.

Workflow Composition: Ophidia is one of the proposed solutions as Workflow
Management engines requested/suggested by the user communities.

6.6 openEO clusters
This section details how openEO clusters are being used in the Big Data Analytics
subsystem.

6.6.1 General Description and functionalities
Earth Observation data are becoming too large to be downloaded locally for analysis.
Also, the way they are organised (as tiles, or granules: files containing the imagery for a
small part of the Earth and a single observation date) makes it unnecessarily
complicated to analyse them. The solution to this is to store these data in the cloud, on
compute back-ends, process them there, and browse the results or download resulting
figures or numbers.

72 https://github.com/grycap/ec3/blob/tosca/tosca/artifacts/enes/enes.yml

68

interTwin – 101058386

https://github.com/grycap/ec3/blob/tosca/tosca/artifacts/enes/enes.yml


D6.3 Updated report on requirements and core modules functionalities

6.6.2 Interfaces
openEO develops an open application programming interface (API) that connects clients
like R, Python and JavaScript to big Earth observation cloud back-ends in a simple and
unified way.

With such an API, each client can work with every back-end, and it becomes possible to
compare back-ends in terms of capacity, cost, and results (validation, reproducibility).

6.6.3 Technology stack
OpenEO is installed through a Helm Chart73 on top of an elastic Kubernetes cluster.
Underneath it also relies on Argo-Worflows and Redis

6.6.4 Interaction with other components
Elastic Kubernetes clusters: This module will be deployed on top of the Elastic
Kubernetes framework described earlier. It requires the PaaS orchestrator or the
Infrastructure Manager for being deployed on the resource provider (either resources
of the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or
public cloud offerings).

Workflow Composition: openEO is one of the proposed solutions as Workflow
Management engines requested/suggested by the user communities.

6.7 Airflow clusters
This section details how Airflow clusters are being used in the Big Data Analytics
subsystem.

6.7.1 General Description and functionalities
Apache Airflow is a platform created by the community to programmatically author,
schedule and monitor workflows.

6.7.2 Interfaces
Once Airflow has been deployed, it exposes a web interface the user can use to launch
and manage the workflow executions. It is configured with a synchronisation with an
external git repository where the users can edit the available workflows.

6.7.3 Technology stack
Airflow is installed through a Helm Chart74 on top of an elastic Kubernetes cluster.
Furthemore ElasticSearch will be also installed to enable store logging information.

6.7.4 Interaction with other components
Elastic Kubernetes clusters: This module will be deployed on top of the Elastic
Kubernetes framework described earlier. It requires the PaaS orchestrator or the
Infrastructure Manager for being deployed on the resource provider (either resources

74 https://airflow.apache.org/docs/helm-chart/stable/index.html

73 https://github.com/eodcgmbh/charts/tree/main/eodc/openeo-argo

69

interTwin – 101058386

https://airflow.apache.org/docs/helm-chart/stable/index.html
https://github.com/eodcgmbh/charts/tree/main/eodc/openeo-argo


D6.3 Updated report on requirements and core modules functionalities

of the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or
public cloud offerings).

Workflow Composition: Airflow is one of the proposed solutions as Workflow
Management engines requested/suggested by the user communities.

Components for AI Workflow: Kubeflow is one of the solutions analysed to launch the
AI pipeline in cloud/HPC infrastructure.

6.8 EOEPCA ADES clusters
This section details how EOEPCA ADES clusters are being used in the Big Data Analytics
subsystem.

6.8.1 General Description and functionalities
EOEPCA ADES75 is an open source processing platform that provides a server
implementation of the Web Processing Service (WPS) (1.0.0 and 2.0.0) and the OGC API -
Processes standards published by the OGC. It contains a minimal set of ready-to-use
services that can be used as a base to create more useful services.

6.8.2 Interfaces
EOEPCA ADES provides Web Processing Service (WPS) (1.0.0 and 2.0.0) and the OGC API
Processes standards published by the OGC

6.8.3 Technology stack
EOEPCA ADES is installed through an Ansible recipe76 on top of an elastic Kubernetes
cluster. It combines ZOO-Project DRU77, for the computing part and MinIO for the
storage.

6.8.4 Interaction with other components
Elastic Kubernetes clusters: This module will be deployed on top of the Elastic
Kubernetes framework described earlier. It requires the PaaS orchestrator or the
Infrastructure Manager for being deployed on the resource provider (either resources
of the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or
public cloud offerings).

6.9 ecFlow clusters
This section details how ecFlow clusters are being used in the Big Data Analytics
subsystem.

6.9.1 General Description and functionalities
ecFlow is a workflow management system developed and maintained by the European
Centre for Medium-Range Weather Forecasts (ECMWF). It is designed to handle complex

77 https://github.com/ZOO-Project/ZOO-Project

76 https://raw.githubusercontent.com/grycap/tosca/main/artifacts/ades_k8s.yml

75 https://github.com/EOEPCA

70

interTwin – 101058386

https://github.com/ZOO-Project/ZOO-Project
https://raw.githubusercontent.com/grycap/tosca/main/artifacts/ades_k8s.yml
https://github.com/EOEPCA


D6.3 Updated report on requirements and core modules functionalities

workflows, particularly in the field of weather forecasting and numerical weather
prediction.

6.9.2 Interfaces
ecFlow server provides an API to be consumed by ecFlow client to schedule and execute
workflow jobs.

6.9.3 Technology stack
ecFlow will be installed through an Ansible recipe.

6.9.4 Interaction with other components
Workflow Composition: ecFlow is one of the proposed solutions as Workflow
Management engines requested/suggested by the user communities.

6.10 MLFlow server
This section details how a MLFlow server are being used in the Big Data Analytics
subsystem.

6.10.1 General Description and functionalities
MLFlow is an open source platform for the complete ML lifecycle management,
including experimentation, reproducibility, deployment, and monitoring.

6.10.2 Interfaces
MLFlow server provides an API to interact with the model registry and logger and a GUI
to show the results to the users.

6.10.3 Technology stack
MLFow is installed through an Ansible recipe78 that relies on docker compose to deploy
all MLFlow related services.

6.10.4 Interaction with other components
Components for AI Workflow: MLFlow is used as a metrics logger tool.

Model Registry: MLFlow is used as a model registry tool.

6.11 yProv server
This section details how a yProv server is being used in the Big Data Analytics
subsystem.

6.11.1 General Description and functionalities
yProv service is a cross-domain service focusing on the management of provenance
documents. It consists of 3 components: (i) Web Service front-end, (ii) Graph database
engine back-end (Neo4J and (iii) a Command Line Interface (CLI).

78 https://github.com/grycap/tosca/blob/main/artifacts/mlflow_compose.yml

71

interTwin – 101058386

https://github.com/grycap/tosca/blob/main/artifacts/mlflow_compose.yml


D6.3 Updated report on requirements and core modules functionalities

The authentication/authorization is based on JSON Web Token (JWT), the service
exposes a RESTful API (OpenAPI) providing an easy way to interact with the service and
manage provenance information according to the W3C PROV family of standards.

6.11.2 Interfaces
The yProv API has been designed by following the REST principles. A list of methods and
the corresponding action for each HTTP verb is available on the service repo as a
Swagger document.

More in detail, five classes of resources have been identified, namely documents, entity,
activity, agent and relation.

Document is the abstraction of the full provenance information associated with a
workflow. For each abstract document there is a one-to-one association with a graph
database. Entity, activity and agent are sub-resources of the document resource, and
they allow to perform the CRUD operations on the three types of elements stored in a
provenance graph according to the W3C PROV data model, thus ensuring a fine-grain
control on each node stored in the graph database; similarly, relation allows to act on
each single relationships of the graph.

6.11.3 Technology stack
yProv can be installed through a Helm Chart79. It can be deployed in the cloud on a
Kubernetes cluster thanks to the availability of the respective docker containers.

6.11.4 Interaction with other components
Elastic Kubernetes clusters: This module will be deployed on top of the Elastic
Kubernetes framework described earlier. It requires the PaaS orchestrator or the
Infrastructure Manager for being deployed on the resource provider (either resources
of the interTwin testbed infrastructure, the EGI Federated cloud, on–premises cloud, or
public cloud offerings).

Components Advanced Workflow Composition: yProv is the tool used for storing
provenance data in scientific workflows

Ophidia Cluster: testing of Ophidia with yProv has been performed for provenance
tracking within climate analytics workflows. Examples of use cases include the inference
pipelines in extreme events digital twins.

MLFlow server: Prov4ML can interact with MLFlow server thus enriching the
opportunities for the user to manage and view metrics tracked in terms of provenance
during the training process.

Other ongoing integration activities relate to the yProv & itwinai framework as well as
the yProv & SQAaaS platform. The former activity has been piloted by integrating
provenance into the HEP Detector Simulation DT application whereas the latter is
expanding SQA for yProv by integrating unit tests into CI/CD pipelines managed via
SQAaaS.

79 https://github.com/HPCI-Lab/yProv/tree/main/cloud

72

interTwin – 101058386

https://github.com/HPCI-Lab/yProv/tree/main/cloud


D6.3 Updated report on requirements and core modules functionalities

7 Conclusions
The second version of the interTwin Digital Twin Engine (DTE) core modules has been
designed taking into consideration the evolution from the Digital Twin applications in
the initial 20 months of the project and the maturity of the technological solutions
available. An update on the core requirements addressing more specifically questions
such as Data Fusion has been included as part of this deliverable.

The design of the modules was guided by the C4 methodology [R2], providing clear
insights into the Containers, Components and Connectors that make up the DTE core
modules. In the current state DTE developers can pick from the set of core modules the
desired components to incorporate features such as advanced workflow composition,
quality assurance models, AI/ML tools, big data analytics tools, etc.

The design also includes a list of technologies that have been analysed and selected for
integration and extension/customisation. Overall effort has been placed specially in
integration work to incorporate to the set of available core modules the required
interoperability features. We want to stress the coordination and development effort
made project-wide to come up with solutions that are deployable in infrastructures that
serve different computing models, such as Cloud or HPC-batch oriented processing.

The next deliverables on WP6 (D6.4) is due in January 2025, with the description of the
final release of the core components described here.

73

interTwin – 101058386



D6.3 Updated report on requirements and core modules functionalities

8 References

Reference
No Description / Link

R1 PROV-DM: The PROV Data Model, W3C Recommendation, 30 April 2013, Luc
Moreau, University of Southampton. Paolo Missier, Newcastle University

https://www.w3.org/TR/2013/REC-prov-dm-20130430/

R2 TOSCA Simple Profile in YAML Version 1.3, OASIS Standard. 26 February
2022, Matt Rutkowski, Chris Lauwers. Claude Noshpitz, Calin Curescu

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/T
OSCA-Simple-Profile-YAML-v1.3-os.html

R3 C4 model in a Software Engineering subject to ease the comprehension
of UML and the software. A. Vázquez-Ingelmo, A. García-Holgado and F. J.
García-Peñalvo, 2020 IEEE Global Engineering Education Conference
(EDUCON), Porto, Portugal, 2020.

DOI: 10.1109/EDUCON45650.2020.9125335

R4 interTwin D5.1 First Architecture design and Implementation Plan
Diego Ciangottini, Paul Millar, Liam Atherton, Marica Antonacci, Daniele Spiga,
Andrea Manzi, Renato Santana, David Kelsey, Adrian Coventry, & Shiraz
Memon.
DOI: https://doi.org/10.5281/zenodo.10417147

R5 interTwin D3.4 Blueprint architecture, functional specifications, and
requirements analysis second version

Bardaji, R., Manzi, A., Rodero, I., Geenen, T., & Warde, A.

DOI. https://doi.org/10.5281/zenodo.10650440

R6 interTwin D6.1 Report on requirements and core modules definition

Isabel Campos, Donatello Elia, Germán Moltó, Ignacio Blanquer, Alexander
Zoechbauer, Eric Wulff, Matteo Bunino, Andreas Lintermann, Rakesh Sarma,
Pablo Orviz, Alexander Jacob, Sandro Fiore, Miguel Caballer, Bjorn Backeberg,
Mariapina Castelli, Levente Farkas, & Andrea Manzi.

DOI. https://doi.org/10.5281/zenodo.10417153

74

interTwin – 101058386

http://www.ecs.soton.ac.uk/~lavm/
http://www.ecs.soton.ac.uk/~lavm/
http://www.cs.ncl.ac.uk/people/Paolo.Missier
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://doi.org/10.1109/EDUCON45650.2020.9125335
https://doi.org/10.5281/zenodo.10417147
https://doi.org/10.5281/zenodo.10650440
https://doi.org/10.5281/zenodo.10417153

