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 Abstract 

This study highlights the role of computer based Python programming (which is an interpreted, object-oriented, 
high-level computer programming language with dynamic semantics) in carp aquaculture by delivering precise 
and efficient growth assessments. The condition index of the cultured species, Cirrhinus cirrhosus, showed 

variations across the three ponds, namely Pond 1 (P1), Pond 2 (P2), and Pond 3 (P3). By addressing the 
hydrological parameters impacting pond performance and harnessing Python programming technologies, 
aquaculture practices can be optimized for greater productivity and sustainability. Future research should aim 
to improve the accuracy of Python-based models and explore new applications to further advance aquaculture 
practice. 
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1. Introduction 

The aquaculture industry, particularly in 
developing countries, has experienced significant 
growth over the past few decades. This growth is 
largely driven by the increasing demand for fish as 
a primary source of protein for a growing global 
population. Among various aquaculture species, 

Cirrhinus cirrhosus, commonly known as mrigal, 
is one of the most widely cultivated freshwater fish 
species in South Asia. Its popularity stems from its 
high nutritional value, economic importance, and 
adaptability to diverse environmental conditions 
[1]. However, optimizing the growth and health of 
Cirrhinus cirrhosus in aquaculture systems 
remains a challenging task due to the complex 

interplay of various environmental factors, 
particularly hydrological parameters of the culture 
ponds. 

Hydrological parameters, including surface water 
temperature, dissolved oxygen levels, surface 
water pH, and dissolved nutrient level (preferably 
nitrate and phosphate), play a crucial role in 
influencing the growth, health, and overall 
productivity of carp in aquaculture systems. These 
parameters directly affect the physiological 

processes of fish, such as metabolism, respiration, 
and immune responses [2]. Therefore, maintaining 
optimal hydrological conditions is essential for 
achieving sustainable and efficient aquaculture 
practices. Traditional methods of monitoring and 
managing these parameters often rely on manual 
measurements and empirical knowledge, which 

can be time-consuming, labour-intensive, and 
prone to human error. 

In recent years, advancements in technology and 
data science have opened new avenues for 
enhancing aquaculture practices. Machine learning 
(ML), a subset of artificial intelligence (AI), has 
emerged as a powerful tool for analyzing complex 
datasets and extracting meaningful insights. 
Machine learning algorithms can process vast 
amounts of data, identify patterns, and make 

accurate predictions, thereby offering significant 
potential for optimizing aquaculture operations [3]. 
By leveraging machine learning techniques, it is 
possible to develop predictive models that can 
forecast the growth and health of Cirrhinus 
cirrhosus (using Condition Index abbreviated as CI 
as proxy) based on relevant hydrological 

parameters of the culture pond. These models can 
help aquaculturists take decisions regarding water 
quality management, feeding regimes, and other 
critical aspects of fish farming. 

 

The application of machine learning in aquaculture 
is not entirely new. Several studies have 
demonstrated the feasibility and effectiveness of 
using machine learning algorithms for various 
purposes, such as disease detection, water quality 
prediction, and feed optimization [4]. However, the 

specific application of machine learning to 
optimize the growth of Cirrhinus cirrhosus by 
analyzing the hydrological parameters remains an 
underexplored area. This study aims to fill this gap 
by investigating the potential of machine learning 
algorithms to monitor the CI values of the species 
during the culture tenure of 210 days during 2023. 

The first step in this endeavor is to collect and 
preprocess relevant data on hydrological 
parameters and fish growth metrics. Data 

collection involves continuous monitoring of water 
quality parameters using sensors and regular 
measurements of fish growth indicators, such as 
weight and length [5]. Preprocessing the data 
includes cleaning, normalization, and 
transformation to ensure it is suitable for analysis 
by machine learning algorithms. Once the data is 
ready, various machine learning algorithms, can be 

applied to identify the relationships between 
hydrological parameters and fish growth. 

The integration of machine learning models with 
real-time monitoring systems can further enhance 
the practical utility of this approach. By deploying 
sensors and IoT (Internet of Things) devices in 
aquaculture ponds, it is possible to collect real-time 
data on hydrological parameters and feed it into 
machine learning models. These models can then 

provide real-time predictions and 
recommendations to aquaculturists, enabling 
proactive management of water quality and other 
environmental factors [6]. For instance, if the 
model predicts a decline in dissolved oxygen levels 
that could negatively affect fish growth, 
appropriate aeration measures can be implemented 
promptly. 

Moreover, the use of machine learning in 
aquaculture is not limited to optimizing growth. It 

can also contribute to sustainability and 
environmental conservation. By analyzing data on 
water quality and fish health, machine learning 
models can help identify the water quality of the 
cultured pond, assess the impact of hydrological 
parameters of on the cultured species, and develop 
strategies for mitigating adverse effects [7]. This 

holistic approach aligns with the principles of 
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sustainable aquaculture, which aim to balance 
economic productivity with environmental 
stewardship. 

In addition to technical and environmental benefits, 
the application of machine learning in aquaculture 
also has significant economic implications. By 
optimizing growth and improving the efficiency of 

aquaculture operations, machine learning can 
enhance profitability for fish farmers. Reduced 
mortality rates, better feed conversion ratios, and 
improved fish health translate into higher yields 
and lower operational costs [8]. This is particularly 
important for small-scale farmers who rely on carp 
culture as their primary source of livelihood. 

Despite the promising potential of machine 
learning in aquaculture, several challenges need to 
be addressed to ensure its successful 

implementation. Data quality and availability are 
critical factors, as accurate and comprehensive data 
is essential for training reliable machine learning 
models. The integration of sensors and IoT devices 
in aquaculture ponds requires significant 
investment and technical expertise. Additionally, 
the adoption of machine learning technologies in 
aquaculture necessitates training and capacity-

building for farmers and aquaculturists to ensure 
they can effectively use and interpret the outputs of 
machine learning models [9]. 

Thus, the application of machine learning 
algorithms for optimizing the growth of Cirrhinus 
cirrhosus in controlled aquaculture environments 
holds great promise. By leveraging the power of 
machine learning to analyze hydrological 
parameters, it is possible to develop predictive 

models that enhance growth assessment, improve 
water quality management, and contribute to 
sustainable aquaculture practices. This study aims 
to explore this potential and provide valuable 
insights into the role of hydrological parameters in 
fish growth, paving the way for more efficient and 
sustainable aquaculture systems. 

 

2. Methodology 

2.1 Experimental Setup  

In this study, three ponds at Moyna in the East 
Midnapur district of West Bengal (India) were 
designated for the experiment as shown in Figure 
1. Traditional feed was provided twice daily, once 
in the morning and once in the evening, ensuring 
that the feed quantity was adjusted based on the 
biomass of the fish to prevent overfeeding and 

maintain water quality. This feeding regime 
continued from March to October during 2023. 
Regular monitoring of water quality parameters 
such as surface water temperature, surface water 
pH, dissolved oxygen, dissolved nitrate, and 

dissolved phosphate levels was carried out to 
ensure optimal conditions for the carp's growth and 
health. Soil Organic Carbon (SOC) of the pond 
bottom was also analysed to evaluate the pond 
bottom environment that often plays important role 
in maintaining the pond environment. 

Fish CI was assessed monthly by measuring the 
weight and length of a random sample of 23-25 
fishes from each pond. Health status of the sampled 
fishes was evaluated through visual inspection for 

any signs of disease or abnormalities. At the end of 
the seven-month experimental period, the final 
weight and length of the fish were measured, and a 
comparative analysis was performed to evaluate 
the CI of the cultured species.  

2.2 Monitoring of Hydrological Parameters 

Water samples for hydrological parameters were 
collected from the surface using a clean bucket. 
Dissolved oxygen samples were directly collected 
in 150 ml BOD bottles without any agitation and 
immediately fixed post-collection. Temperature 
and pH were measured on-site, while additional 

water samples were collected from each pond in 
clean plastic bottles and transported to the 
laboratory at 4°C for nutrient analysis. 
Hydrological parameters were analyzed from the 
three selected ponds at Moyna. 

(i) Surface water temperature: Measured 
using a mercury Celsius thermometer ranging from 
0°C to 100°C. 

(ii) Surface water pH: Determined using a 
portable pH meter with a sensitivity of ±0.02, 
calibrated with pH buffers 4.0 and 7.0 before each 
use. 

(iii) Dissolved oxygen: Initially measured in 
the field with a DO meter and then confirmed in the 
laboratory using Winkler’s method [10]. 

(iv) Dissolved inorganic nutrients: Surface 
water for dissolved nutrient analysis was collected 

in clean plastic bottles and transported to the lab in 
ice-cooled conditions. Triplicate samples ensured 
data quality. Nutrient concentrations in surface 
water were determined using the standard 
spectrophotometric method [10]. Nitrate was 
reduced to nitrite by passing the sample through a 
glass column with ammonium chloride buffer and 
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amalgamated cadmium filings. The nitrite was then 
treated with sulphanilamide to form a diazonium 
ion, which was coupled with N-1-naphthyl 
ethylenediamine to produce a pink azo dye. 
Phosphate was measured by treating a sample 

aliquot with an acidic molybdate reagent 
containing ascorbic acid and a small amount of 
potassium antimony tartrate. 

(v) Soil Organic Carbon (SOC): Soil 
samples from the top 5 cm were collected from 
each pond and dried at 60°C for 48 hours. During 
preparation, visible plant particles were 
handpicked and removed from the soil. The soil 
was then sieved through a 2 mm mesh. A 50-gram 
sample of bulk soil from each pond was finely 

ground using a ball mill. The finely ground samples 
were then randomly mixed to create a 
representative sample of the selected pond. The 
soil organic carbon (SOC) percentage was 
determined using a modified Walkley and Black 

method [11]. This meticulous approach to 
monitoring and maintaining water quality aligns 
with the broader goals of sustainable aquaculture 
practices and can significantly contribute to 
optimizing the health and growth of Cirrhinus 
cirrhosus, much like how advancements in AI and 
machine learning are transforming various sectors 

by enhancing efficiency and sustainability. 

 

 

Figure 1: Location of ponds at Moyna in the East Midnapur district of West Bengal, India. 

 

Source: Authors. 

 

3. Results & Discussion 

3.1 Condition Index 

The results indicated that the machine learning 
models provided accurately the value of condition 
index for three selected ponds (Figures 2-4). The 
condition factor (K) values indicate better health 
and well-being of the fish in the culture pond. 
Higher K values indicate better health and growth 
conditions for the carp. The results of our 

computations are presented here. 

 

 

 Pond P1: The K value indicated robust 
growth conditions, reflecting good health 
and well-being of the carp. The condition 
index is highest in this pond with a value 
of 1.66.  

 Pond P2: The K value of this pond is 1.36, 
which is lowest amongst the three ponds 
suggesting stressful environment. 
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 Pond P3: The K value of this pond is 1.58, 
which indicate that the environment is 
better than pond P2. 

 

Figure 2: Condition Index of Cirrhinus cirrhosus in Pond P1 based on ABW and ABL during October, 2023. 

 

                                                     Source: Authors. 

 

Figure 3: Condition Index of Cirrhinus cirrhosus in Pond P2 based on ABW and ABL during October, 2023. 

 

                                                        Source: Authors 

 

Figure 4: Condition Index of Cirrhinus cirrhosus in Pond P3 based on ABW and ABL during October, 2023. 

 

                                                         Source: Authors. 

 

3.2 Hydrological Parameters The relevant hydrological parameters of three 
ponds along with the soil organic carbon is 
presented in the Figures 5-10. 
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Figure 5: Monthly variation of surface water temperature (°C) in the three selected ponds 

 

Source: Authors. 

 

Figure 6: Monthly variation of surface water pH in the three selected ponds. 

 

Source: Authors. 
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Figure 7: Monthly variation of dissolved oxygen (in ppm) in the three selected ponds. 

 

Source: Authors. 

 

Figure 8: Monthly variation of dissolved nitrate (in µgm at l-1) in the three selected ponds. 

 

Source: Authors. 
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Figure 9: Monthly variation of dissolved phosphate (in µgm at l-1) in the three selected ponds. 

 

Source: Authors. 

 

Figure 10: Monthly variation of soil organic carbon (in %) in the three selected ponds. 

 

Source: Authors. 
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The provided ANOVA table (Table 1) present the 
variations of hydrological parameters and Soil 
Organic Carbon (SOC) among different ponds and 
across different months during the culture period of 
Cirrhinus cirrhosus in the Moyna region, East 

Midnapur district, West Bengal. 

 Surface Water Temperature: ANOVA 

results indicate significant variations between 
months (F = 811.2837, p < 0.0001) and 
between ponds (F = 5.30562, p = 0.0372). This 
suggests that both temporal and spatial factors 
significantly influence the variations of 
surface water temperature that can affect the 
CI of Cirrhinus cirrhosus. 

 Surface Water pH: Similar to temperature, 
surface water pH showed significant 
variations between months (F = 813.2097, P < 

0.0001) and ponds (F = 5.48462, p = 0.0372), 
indicating that the pH levels fluctuate over 
time and vary across different ponds. 

 Dissolved Oxygen (DO): The variations in 
dissolved oxygen were also significant 
between months (F = 15.4274, p < 0.0001) and 
between ponds (F = 152.6417, p < 0.0001), 

suggesting that dissolved oxygen levels are 
influenced by both temporal and spatial 
factors. The abundance of natural fish feed of 
carp may influence the values of DO. 

 Dissolved Nitrate: ANOVA results for 
dissolved nitrate show highly significant 
variations between months (F = 43.2739, p < 

0.0001) and ponds (F = 227.9101, p < 0.0001), 
indicating that nitrate concentrations vary 
significantly over time and among ponds. 

 Dissolved Phosphate: The dissolved 
phosphate levels exhibited significant 
variations between months (F = 226.8215, p < 
0.0001) and between ponds (F = 6619.6170, p 
< 0.0001), highlighting that both temporal and 
spatial differences significantly affect 
phosphate concentrations. 

 Soil Organic Carbon (SOC): The SOC 
content showed significant variations between 
months (F = 156.1110, p < 0.0001) and ponds 

(F = 2550.7040, p < 0.0001), indicating that 
the SOC levels are influenced by both the time 
of the year and the specific pond. 

 

Table 1. ANOVA for hydrological parameters. 

Parameters Variation (Between)             Fcal          Fcrit            p-value 

Surface water 

temperature  

Months 811.2837 2.9941 6.31E-15 

Ponds  5.30562 3.8752 0.0372 

Surface water pH Months 813.2097 2.9971 6.31E-15 

Ponds  5.48462 3.8842 0.0372 

Dissolved Oxygen  Months 15.4274 2.7161 1.37E-05 

Ponds  152.6417 3.7588 3.14E-10 

Dissolved Nitrate  Months 43.2739 2.9541 2.39E-08 

Ponds  227.9101 3.8488 2.1E-11 

Dissolved Phosphate Months 226.8215 2.7641 2.59E-13 

Ponds  6619.617 3.7188 1.47E-21 

Soil Organic Carbon  Months 156.111 2.7841 3.57E-12 

Ponds  2550.704 3.7388 1.15E-18 

Note: Fcal =  Calculated value of F; Fcrit = Critical value of F; p-value = standard deviation. 

Source: Authors. 
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These findings underscore the importance of 
considering both temporal and spatial variations in 
hydrological parameters and SOC during 
aquaculture practices. Future research should focus 
on identifying the underlying factors causing these 

variations to optimize aquaculture productivity and 
sustainability. 

 

Conclusions 

The Python program accurately determined the 
condition index values for the three ponds (Figures 
2-4), reflecting the health and well-being of the fish 

under different environmental conditions. Pond P1 
exhibited the highest condition index value of 1.66, 
indicating robust growth conditions. In contrast, 
Pond P2 had the lowest condition index value of 
1.36, suggesting a more stressful environment. 
Pond P3 had a condition index value of 1.58, 
indicating better conditions than Pond P2 but not as 
optimal as Pond P1. These variations highlight the 

differing environmental impacts on fish health 
across the ponds. This study demonstrated the 
potential of Python programming to monitor the 
condition index and management in carp 
aquaculture, offering a promising approach to 
improving productivity and sustainability in the 
industry. Several factors could influence the 

variation in the values of condition index across the 
ponds. The quality of water, including parameters 
such as pH, dissolved oxygen, and temperature, 
plays a critical role in fish health. Deviation of their 
values from the optimum levels could lead to 
alteration in the condition index. 
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