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Abstract

This study highlights the role of computer based Python programming (which is an interpreted, object-oriented,
high-level computer programming language with dynamic semantics) in carp aquaculture by delivering precise
and efficient growth assessments. The condition index of the cultured species, Cirrhinus cirrhosus, showed
variations across the three ponds, namely Pond 1 (P1), Pond 2 (P2), and Pond 3 (Ps). By addressing the
hydrological parameters impacting pond performance and harnessing Python programming technologies,

aquaculture practices can be optimized for greater productivity and sustainability. Future research should aim
to improve the accuracy of Python-based models and explore new applications to further advance aquaculture
practice.
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1. Introduction

The aquaculture industry, particularly in
developing countries, has experienced significant
growth over the past few decades. This growth is
largely driven by the increasing demand for fish as
a primary source of protein for a growing global
population. Among various aquaculture species,
Cirrhinus cirrhosus, commonly known as mrigal,
is one of the most widely cultivated freshwater fish
species in South Asia. Its popularity stems from its
high nutritional value, economic importance, and
adaptability to diverse environmental conditions
[1]. However, optimizing the growth and health of
Cirrhinus cirrhosus in aquaculture systems
remains a challenging task due to the complex
interplay of various environmental factors,
particularly hydrological parameters of the culture
ponds.

Hydrological parameters, including surface water
temperature, dissolved oxygen levels, surface
water pH, and dissolved nutrient level (preferably
nitrate and phosphate), play a crucial role in
influencing the growth, health, and overall
productivity of carp in aquaculture systems. These
parameters directly affect the physiological
processes of fish, such as metabolism, respiration,
and immune responses [2]. Therefore, maintaining
optimal hydrological conditions is essential for
achieving sustainable and efficient aquaculture
practices. Traditional methods of monitoring and
managing these parameters often rely on manual
measurements and empirical knowledge, which
can be time-consuming, labour-intensive, and
prone to human error.

In recent years, advancements in technology and
data science have opened new avenues for
enhancing aquaculture practices. Machine learning
(ML), a subset of artificial intelligence (Al), has
emerged as a powerful tool for analyzing complex
datasets and extracting meaningful insights.
Machine learning algorithms can process vast
amounts of data, identify patterns, and make
accurate predictions, thereby offering significant
potential for optimizing aquaculture operations [3].
By leveraging machine learning techniques, it is
possible to develop predictive models that can
forecast the growth and health of Cirrhinus
cirrhosus (using Condition Index abbreviated as Cl
as proxy) based on relevant hydrological
parameters of the culture pond. These models can
help aquaculturists take decisions regarding water
quality management, feeding regimes, and other
critical aspects of fish farming.
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The application of machine learning in aquaculture
is not entirely new. Several studies have
demonstrated the feasibility and effectiveness of
using machine learning algorithms for various
purposes, such as disease detection, water quality
prediction, and feed optimization [4]. However, the
specific application of machine learning to
optimize the growth of Cirrhinus cirrhosus by
analyzing the hydrological parameters remains an
underexplored area. This study aims to fill this gap
by investigating the potential of machine learning
algorithms to monitor the CI values of the species
during the culture tenure of 210 days during 2023.

The first step in this endeavor is to collect and
preprocess relevant data on hydrological
parameters and fish growth metrics. Data
collection involves continuous monitoring of water
quality parameters using sensors and regular
measurements of fish growth indicators, such as
weight and length [5]. Preprocessing the data
includes cleaning, normalization, and
transformation to ensure it is suitable for analysis
by machine learning algorithms. Once the data is
ready, various machine learning algorithms, can be
applied to identify the relationships between
hydrological parameters and fish growth.

The integration of machine learning models with
real-time monitoring systems can further enhance
the practical utility of this approach. By deploying
sensors and loT (Internet of Things) devices in
aquaculture ponds, it is possible to collect real-time
data on hydrological parameters and feed it into
machine learning models. These models can then
provide real-time predictions and
recommendations to aquaculturists, enabling
proactive management of water quality and other
environmental factors [6]. For instance, if the
model predicts a decline in dissolved oxygen levels
that could negatively affect fish growth,
appropriate aeration measures can be implemented
promptly.

Moreover, the use of machine learning in
aquaculture is not limited to optimizing growth. It
can also contribute to sustainability and
environmental conservation. By analyzing data on
water quality and fish health, machine learning
models can help identify the water quality of the
cultured pond, assess the impact of hydrological
parameters of on the cultured species, and develop
strategies for mitigating adverse effects [7]. This
holistic approach aligns with the principles of
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sustainable aquaculture, which aim to balance
economic  productivity with  environmental
stewardship.

In addition to technical and environmental benefits,
the application of machine learning in aquaculture
also has significant economic implications. By
optimizing growth and improving the efficiency of
aquaculture operations, machine learning can
enhance profitability for fish farmers. Reduced
mortality rates, better feed conversion ratios, and
improved fish health translate into higher yields
and lower operational costs [8]. This is particularly
important for small-scale farmers who rely on carp
culture as their primary source of livelihood.

Despite the promising potential of machine
learning in aquaculture, several challenges need to
be addressed to ensure its successful
implementation. Data quality and availability are
critical factors, asaccurate and comprehensive data
is essential for training reliable machine learning
models. The integration of sensors and loT devices
in aquaculture ponds requires significant
investment and technical expertise. Additionally,
the adoption of machine learning technologies in
aguaculture necessitates training and capacity-
building for farmers and aquaculturists to ensure
they can effectively use and interpret the outputs of
machine learning models [9].

Thus, the application of machine learning
algorithms for optimizing the growth of Cirrhinus
cirrhosus in controlled aquaculture environments
holds great promise. By leveraging the power of
machine learning to analyze hydrological
parameters, it is possible to develop predictive
models that enhance growth assessment, improve
water quality management, and contribute to
sustainable aquaculture practices. This study aims
to explore this potential and provide valuable
insights into the role of hydrological parameters in
fish growth, paving the way for more efficient and
sustainable aquaculture systems.

2. Methodology
2.1 Experimental Setup

In this study, three ponds at Moyna in the East
Midnapur district of West Bengal (India) were
designated for the experiment as shown in Figure
1. Traditional feed was provided twice daily, once
in the morning and once in the evening, ensuring
that the feed quantity was adjusted based on the
biomass of the fish to prevent overfeeding and
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maintain water quality. This feeding regime
continued from March to October during 2023.
Regular monitoring of water quality parameters
such as surface water temperature, surface water
pH, dissolved oxygen, dissolved nitrate, and
dissolved phosphate levels was carried out to
ensure optimal conditions for the carp's growth and
health. Soil Organic Carbon (SOC) of the pond
bottom was also analysed to evaluate the pond
bottom environment that often plays important role
in maintaining the pond environment.

Fish CI was assessed monthly by measuring the
weight and length of a random sample of 23-25
fishes from each pond. Health status of the sampled
fishes was evaluated through visual inspection for
any signs of disease or abnormalities. At the end of
the seven-month experimental period, the final
weight and length of the fish were measured, and a
comparative analysis was performed to evaluate
the CI of the cultured species.

2.2 Monitoring of Hydrological Parameters

Water samples for hydrological parameters were
collected from the surface using a clean bucket.
Dissolved oxygen samples were directly collected
in 150 ml BOD bottles without any agitation and
immediately fixed post-collection. Temperature
and pH were measured on-site, while additional
water samples were collected from each pond in
clean plastic bottles and transported to the
laboratory at 4°C for nutrient analysis.
Hydrological parameters were analyzed from the
three selected ponds at Moyna.

0] Surface water temperature: Measured
using a mercury Celsius thermometer ranging from
0°C to 100°C.

(i) Surface water pH: Determined using a
portable pH meter with a sensitivity of +0.02,
calibrated with pH buffers 4.0 and 7.0 before each
use.

(iii) Dissolved oxygen: Initially measured in
the field with a DO meter and then confirmed in the
laboratory using Winkler’s method [10].

(iv) Dissolved inorganic nutrients: Surface
water for dissolved nutrient analysis was collected
in clean plastic bottles and transported to the lab in
ice-cooled conditions. Triplicate samples ensured
data quality. Nutrient concentrations in surface
water were determined using the standard
spectrophotometric method [10]. Nitrate was
reduced to nitrite by passing the sample through a
glass column with ammonium chloride buffer and


https://sites.google.com/site/pjsciencea
https://sites.google.com/site/pjsciencea
https://sites.google.com/site/pjsciencea

amalgamated cadmium filings. The nitrite was then
treated with sulphanilamide to form a diazonium
ion, which was coupled with N-1-naphthyl
ethylenediamine to produce a pink azo dye.
Phosphate was measured by treating a sample
aliquot with an acidic molybdate reagent
containing ascorbic acid and a small amount of
potassium antimony tartrate.

(V) Soil Organic Carbon (SOC): Soil
samples from the top 5 cm were collected from
each pond and dried at 60°C for 48 hours. During
preparation, visible plant particles were
handpicked and removed from the soil. The soil
was then sieved through a 2 mm mesh. A 50-gram
sample of bulk soil from each pond was finely
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ground using a ball mill. The finely ground samples
were then randomly mixed to create a
representative sample of the selected pond. The
soil organic carbon (SOC) percentage was
determined using a modified Walkley and Black
method [11]. This meticulous approach to
monitoring and maintaining water quality aligns
with the broader goals of sustainable aquaculture
practices and can significantly contribute to
optimizing the health and growth of Cirrhinus
cirrhosus, much like how advancements in Al and
machine learning are transforming various sectors
by enhancing efficiency and sustainability.

Figure 1: Location of ponds at Moyna in the East Midnapur district of West Bengal, India.
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3. Results & Discussion
3.1 Condition Index

The results indicated that the machine learning
models provided accurately the value of condition
index for three selected ponds (Figures 2-4). The
condition factor (K) values indicate better health
and well-being of the fish in the culture pond.
Higher K values indicate better health and growth
conditions for the carp. The results of our
computations are presented here.
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» Pond Pi: The K value indicated robust
growth conditions, reflecting good health
and well-being of the carp. The condition
index is highest in this pond with a value
of 1.66.

» Pond P2: The K value of this pond is 1.36,
which is lowest amongst the three ponds
suggesting stressful environment.
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» Pond P3: The K value of this pond is 1.58,
which indicate that the environment is
better than pond P2.
Figure 2: Condition Index of Cirrhinus cirrhosus in Pond P1 based on ABW and ABL during October, 2023.
{ Condition Index Result - 0 X
Condition Index: 1,66
Total Stocking: 1000.0
Total Live Population: 700.0
Suggestion: The condition index is within the optimal range. Maintain current management practices.
=
Source: Authors.
Figure 3: Condition Index of Cirrhinus cirrhosus in Pond P2 based on ABW and ABL during October, 2023.
I Condition Index Result = @ X
Condition Index: 136
Total Stocking: 1000.0
Total Live Population: 700.0
Suggestion: The condition index is within the optimal range. Maintain current management practices,
e
Source: Authors
Figure 4: Condition Index of Cirrhinus cirrhosus in Pond Ps based on ABW and ABL during October, 2023.
{f Concition Index Result =R R
Condition Index: 1,58
Total Stocking: 1000.0
Total Live Population: 700.0
Suggestion: The condition index is within the optimal range. Maintain current management practices,
Close
Source: Authors.
3.2 Hydrological Parameters The relevant hydrological parameters of three

ponds along with the soil organic carbon is
presented in the Figures 5-10.
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Figure 5: Monthly variation of surface water temperature (°C) in the three selected ponds
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Figure 6: Monthly variation of surface water pH in the three selected ponds.
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Figure 7: Monthly variation of dissolved oxygen (in ppm) in the three selected ponds.
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Figure 8: Monthly variation of dissolved nitrate (in ugm at I'?) in the three selected ponds.
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Figure 9: Monthly variation of dissolved phosphate (in pgm at I'%) in the three selected ponds.
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Figure 10: Monthly variation of soil organic carbon (in %) in the three selected ponds.
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The provided ANOVA table (Table 1) present the
variations of hydrological parameters and Soil
Organic Carbon (SOC) among different ponds and
across different months during the culture period of
Cirrhinus cirrhosus in the Moyna region, East
Midnapur district, West Bengal.

» Surface Water Temperature: ANOVA
results indicate significant variations between
months (F = 811.2837, p < 0.0001) and
between ponds (F =5.30562, p =0.0372). This
suggests that both temporal and spatial factors
significantly influence the wvariations of
surface water temperature that can affect the
Cl of Cirrhinus cirrhosus.

» Surface Water pH: Similar to temperature,
surface water pH showed significant
variations between months (F = 813.2097, P <
0.0001) and ponds (F = 5.48462, p = 0.0372),
indicating that the pH levels fluctuate over
time and vary across different ponds.

» Dissolved Oxygen (DO): The variations in
dissolved oxygen were also significant
between months (F =15.4274, p <0.0001) and
between ponds (F = 152.6417, p < 0.0001),

Parana Journal of Science and Education (PJSE) —v.10, n.5, (1-10) October 1, 2024
ISSN: 2447-6153 https://sites.google.com/site/pjsciencea

9

suggesting that dissolved oxygen levels are
influenced by both temporal and spatial
factors. The abundance of natural fish feed of
carp may influence the values of DO.

Dissolved Nitrate: ANOVA results for
dissolved nitrate show highly significant
variations between months (F = 43.2739, p <
0.0001) and ponds (F =227.9101, p <0.0001),
indicating that nitrate concentrations vary
significantly over time and among ponds.

Dissolved  Phosphate:  The  dissolved
phosphate  levels exhibited significant
variations between months (F = 226.8215, p <
0.0001) and between ponds (F = 6619.6170, p
< 0.0001), highlighting that both temporal and
spatial ~ differences significantly affect
phosphate concentrations.

Soil Organic Carbon (SOC): The SOC
content showed significant variations between
months (F = 156.1110, p <0.0001) and ponds
(F = 2550.7040, p < 0.0001), indicating that
the SOC levelsare influenced by both the time
of the year and the specific pond.

Table 1. ANOVA for hydrological parameters.

Parameters Variation (Between)
Surface water Months
temperature Ponds
Surface water pH Months

Ponds
Dissolved Oxygen Months

Ponds
Dissolved Nitrate Months

Ponds

Dissolved Phosphate Months
Ponds
Soil Organic Carbon Months

Ponds

Fea Ferit p-value
811.2837 2.9941 6.31E-15
5.30562 3.8752 0.0372
813.2097 2.9971 6.31E-15
5.48462 3.8842 0.0372
15.4274 2.7161 1.37E-05
152.6417 3.7588 3.14E-10
43.2739 2.9541 2.39E-08
227.9101 3.8488 2.1E-11
226.8215 2.7641 2.59E-13
6619.617 3.7188 1.47E-21
156.111 2.7841 3.57E-12
2550.704 3.7388 1.15E-18

|
Note: Fca = Calculated value of F; Ferit = Critical value of F; p-value = standard deviation.

Source: Authors.


https://sites.google.com/site/pjsciencea
https://sites.google.com/site/pjsciencea
https://sites.google.com/site/pjsciencea

These findings underscore the importance of
considering both temporal and spatial variations in
hydrological parameters and SOC during
aquaculture practices. Future research should focus
on identifying the underlying factors causing these
variations to optimize aquaculture productivity and
sustainability.

Conclusions

The Python program accurately determined the
condition index values for the three ponds (Figures
2-4), reflecting the health and well-being of the fish
under different environmental conditions. Pond P
exhibited the highest condition index value of 1.66,
indicating robust growth conditions. In contrast,
Pond P2 had the lowest condition index value of
1.36, suggesting a more stressful environment.
Pond Ps had a condition index value of 1.58,
indicating better conditions than Pond P2 but not as
optimal as Pond P1. These variations highlight the
differing environmental impacts on fish health
across the ponds. This study demonstrated the
potential of Python programming to monitor the
condition index and management in carp
aquaculture, offering a promising approach to
improving productivity and sustainability in the
industry. Several factors could influence the
variation in the values of condition index across the
ponds. The quality of water, including parameters
such as pH, dissolved oxygen, and temperature,
plays a critical role in fish health. Deviation of their
values from the optimum levels could lead to
alteration in the condition index.
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