Enhancing the application of large language models
with retrieval-augmented generation for a research
community

Juan José Garcia Mesa®, Gil Speyer
Computational Research Accelerator
Arizona State University
Tempe, Arizona, USA
jgarcl11@asu.edu, speyer@asu.edu

Abstract—The demand for efficient and innovative
tools in research environments is ever-increasing in
the rapidly evolving landscape of artificial intelligence
(AI) and machine learning (ML). This paper explores
the implementation of retrieval-augmented generation
(RAG) to enhance the contextual accuracy and appli-
cability of large language models (LLMs) to meet the
diverse needs of researchers. By integrating RAG, we
address various tasks such as synthesizing extensive
questionnaire data, efficiently searching through doc-
ument collections, and extracting detailed information
from multiple sources. Our implementation leverages
open-source libraries, a centralized repository of pre-
trained models, and high-performance computing re-
sources to provide researchers with robust, private, and
scalable solutions.

Index Terms—Large Language Models, Retrieval-
Augmented Generation

I. INTRODUCTION

In the epoch of the artificial intelligence (AI) revolution,
ever-growing demands for AI and Machine learning (ML)
applications in research and academic environments have
created a pressing need for continuous development of
software engineering tools and methodologies. Al and
ML are applied in numerous domains, including scientific
computing, data analysis, and decision-making, driving
the requirement for automation, efficiency, and innovation
in academic research and education.

Previous work at our institution has focused on design-
ing and implementing an efficient framework for lever-
aging locally operated large language models (LLMs),
harnessing the benefits of generative artificial intelligence
while providing control over data privacy and intellectual
property, and managing the extensive size of the models
[1]. LLMs, currently at the forefront of AI development,
are tools capable of processing and generating human-like
language, enabling various applications such as text clas-
sification, sentiment analysis, and language translation.
Locally operating these models is possible thanks to open-
source libraries such as HuggingFace [2] and Langchain,
thus providing a myriad of resources while simultaneously
addressing the complexities of intellectual property own-
ership and data security inherent to this technology.

II. MOTIVATION

The landscape of LLMs is rapidly evolving, marked by
the emergence of new architectures, training methods, and
applications. This dynamic environment has captured the
interest of researchers from various fields, eager to utilize
LLMs to innovate and improve their methodologies. As
LLMs continue to advance natural language understand-
ing, generation, and processing, scientists are increas-
ingly interested in integrating these technologies into their
workflows. With the promise of enhanced productivity
and innovation, the allure of LLMs has sparked a new
wave of exploration and experimentation in the research
community, driving the need for novel solutions and best
practices to leverage these powerful models.

During the last few months alone, researchers at our
institution have presented with a variety of use cases:

1) Data Synthesis and Analysis

o A researcher wants to synthesize extensive ques-
tionnaire data from a study that explores the
perception of DNA and genetic inheritance in a
selection of African tribes.

e A professor wants an LLM to classify the types of
products for many companies according to a code
list, facilitating decision-making in the manufactur-
ing sector.

2) Information Retrieval and Search

o A professor aims to scrape the web of a collection
of manufacturing companies that operate at the
county level and use an LLM to extract the type
of products each company processes.

e A researcher wants to efficiently search through a
collection of previous science grant applications to
retrieve technical information.

o A staff member intends to extract detailed informa-
tion such as required format and specific deadlines
from documents describing guidelines for national
science funding opportunities.

Most of the applications highlighted require retriev-
ing and incorporating relevant information from existing
sources in addition to generation text, emphasizing the

https://orcid.org/0009-0001-5267-5638
https://orcid.org/0000-0001-5888-5209

need for LLMs to move beyond standalone generation and
integrate retrieval capabilities. This is a perfect scenario
for retrieval-augmented generation (RAG), a tool that
can effectively combine the strengths of both generation
and retrieval models to produce accurate and contextu-
ally relevant outputs by grounding generation in specific,
reliable data sources. By targeting a specific corpus and
providing citations, RAG can mitigate hallucinations, a
common problem with LLMs. Hallucinations occur when
LLMs generate plausible albeit incorrect or non-sensical
information. Sourcing the content generation in a reliable
and curated dataset RAG reduces these errors, producing
more accurate and reliable outputs.

A special scenario is the use case where a researcher
wants to combine web scraping features, the ability of
LLMs to process a multitude of different inputs, and
using RAG to perform classification using a detailed and
comprehensive list of codes spanning a wide range of
manufacturing sectors. By leveraging RAG and embracing
the interdisciplinary nature of these applications, we can
develop innovative solutions that bridge the gap between
language processing, information retrieval, and domain-
specific expertise, ultimately enhancing the productivity,
efficiency, and accuracy of researchers and practitioners
across various fields. In addition, hosting these models
locally provides a secure environment for researchers to use
unpublished and private data without the risk of uploading
to third-party cloud services.

III. IMPLEMENTATION

RAG represents a powerful paradigm in natural lan-
guage processing, combining the strengths of LLMs with
efficient retrieval-based techniques. RAG enables targeted
questioning within a specific dataset, leveraging the ca-
pabilities of LLMs to extract contextually relevant re-
sponses. Our implementation of RAG exploits a central-
ized repository of open-source pre-trained models down-
loaded from HuggingFace, strategically stored in a scratch
directory with high data transfer bandwidths facilitated by
a 200GiB/s InfiniBand infrastructure. This ensures rapid
model loading times while avoiding the redundancy of
multiple identical models stored in the system.

The initial step involves creating a vector database from
the corpus of text we want to query. This begins by
parsing the documents, mainly PDFs, CSV files, and plain
text documents, although expandable to comprise a list of
formats supported by the LangChain document loaders,
including a user-defined custom class. These documents
can be read from a directory, as a zip compressed file,
or as a URL pointing to a zip file. The pre-processing
of the documents entails splitting the text and creating
chunks of a selected size and overlap. We employ a pre-
trained transformer-based language model to convert the
split text data into dense vector embeddings, which cap-
ture the semantic meaning of the text enabling efficient
similarity searches. Specifically, we selected to store the

vector embeddings in a chroma database for its speed,
simplicity, and ample documentation for developers. The
final step is to create a retriever to search the chroma
database utilizing similarity search techniques, where the
query is compared against the document embeddings. We
specify two adjustable parameters, the number of sources
and the amount of top-k most similar documents retrieved
per answer. Notably, the user creates the database and
persists in memory, only having to be recreated to include
new documents. Alternatively, research computing staff
can facilitate this step.

Central to our system’s functionality is a question-
answering chain, powered by a local LLM. We load the
LLM, which has been pre-trained and fine-tuned for text
generation, and a tokenizer, laying the groundwork for
the system’s generative capabilities. By default, given the
performance quality and relatively manageable size, the
selected model is the Llama 2 13B [3]. Loaded quan-
tized, the model takes 13 GiB and fits in one of our
20 GiB NVIDIA A100 multi-instance GPU (MIG) slices,
facilitating an efficient utilization of resources across our
supercomputer. The use of an LLM allows us to take the
retrieved documents as context and generate coherent and
contextually relevant responses to the input queries. More-
over, our system goes beyond simple question answering
by incorporating a memory mechanism.

#!/bin/bash

#SBATCH —p general
#SBATCH —q public

#SBATCH —--time=0-00:30:00
#SBATCH ——gres=gpu:ale0:1

set up the environment
module load mamba/latest
source activate genai

create the database

python scripts/create_db.py <data_dir> <db_dir>

RAG

python scripts/query.py <db_dir> <query> <output>

Fig. 1. Template bash script to create a vector database and perform
retrieval-augmented generation in a Linux-based supercomputer.

A novelty characteristic of our RAG pipeline is the abil-
ity to retain a summary of previous questions and answers
in memory to aid in future queries during the question
and answer session. This is implemented by building a
conversation summary memory that uses an LLM to create
a summary of the conversation over time. Synthesizing the
conversation and inserting it into the LLM prompt, this
memory reduces the number of tokens required to retain
the essence of previous information, preventing exceeding
the context length and resulting in answers with better

context.

The usage of our RAG implementation spans two pri-
mary modes: interactive and batch queries. Interactive
usage allows users to engage in real-time dialogue, posing
questions and receiving immediate responses (Fig. 2). To
facilitate user interaction, we’ve integrated a user-friendly
Gradio interface [4], providing users with a seamless plat-
form to interact with our system. Through this interface,
users can input questions effortlessly, while advanced op-
tions such as temperature control and maximum token
generation offer additional customization. On the other
hand, batch queries facilitate large-scale data processing
tasks, enabling efficient processing of extensive datasets
with minimal user intervention (Fig. 1). This dual ap-
proach ensures versatility and adaptability, catering to
diverse user needs and application scenarios. Note that our
RAG implementation is easily adaptable to any centralized
system that uses Slurm and supports Jupyter Notebooks.

& Chatbot

What are the similarities between the Llama 2 and the ALiBi large language
models?

Based on the context, the similarities between the Llama 2 and the ALIiBi large
language models are:
1. Both models use a bias to attention scores that is a function of the distance
between the key and query elements.
2. Both models are optimized for dialogue use cases.
3. Both models outperform open-source chat models on most benchmarks.
4. Both models have been fine-tuned for specific tasks.

Note that the ALiBi method uses a non-learned linear function, while the
Wennberg & Henter method uses a radial-basis function with multiple trainable
parameters.

Source:

Page number:0 Document.../example/llm_papers/llama-2-paper.pdf

Prompt

Advanced options

Submit

Clear console

Fig. 2. Example Gradio interaction for an implemented RAG.
Specifically, the Llama 2 model with 13 billion parameters was
initialized in a background Jupyter notebook with Gradio enabled,
launching an independent, temporary and publicly accessible Gradio
powered chat-like web application.

A. Models

The integration of LLMs remains a highly relevant
and sought-after area in the field, with users frequently
requesting and showing great interest in utilizing the latest

models. At our institution, in addition to supporting open-
source models including Llama 2 (7b, 13b, and 30b) chat
and Falcon 180B chat versions, we have incorporated the
newest Llama 3 model from Meta (8b and 70b instruct)
[5] and the colossal Grok-1 from xAI. Llama 3 offers sub-
stantial advancements, including a large context window,
and can be easily integrated with previous pipelines after
finessing its prompt syntax. On the other hand, Grok-1 has
only been run as a proof-of-concept test, since loaded in its
original size the model requires 520 GiB of GPU memory,
which only one node at our institution can provide.

The decision of which LLMs we support and recommend
is a carefully considered process, driven by user requests.
To ensure a model is suitable for support, it must be open-
source, have no limitations on intellectual property, and be
feasible to run within our computational infrastructure.
For instance, we do not recommend closed-source models
as they limit accessibility, transparency, and may have
an accompanying cost. In addition, we discourage heavy
usage of models that require a large amount of resources,
as these may result in large waiting times for the allocation
of resources and limit the effective computing time in our
system.

Moving forward, we plan to support newer models using
the current framework that leverages HuggingFace and
evaluate their performance via user feedback. Further-
more, after engaging with the community of facilitators
at other universities that support LLMs, we are exploring
alternative methods to provide LLM access that utilize
ollama.

IV. CONCLUSION

In this paper, we have explored the local implementation
of retrieval-augmented generation (RAG) to enhance the
contextual accuracy of large language models within our
computational infrastructure. RAG significantly reduces
hallucinations, leading to more accurate and reliable out-
puts. In addition, locally hosting the models creates a
secure framework, allowing researchers to analyze their
data unpublished data. Therefore, by leveraging this tool,
researchers at our institution are exploring innovative
approaches to their work. Most of the user requests men-
tioned previously have already started using this technol-
ogy.

As the field of generative artificial intelligence continues
to evolve, our mission is to stay at the forefront to assist
and facilitate research and innovation. Specifically, future
work in this area involves general support and guidelines
for fine-tuning, expanding the number of models available,
and improving the adaptability of this technology in mul-
tidisciplinary projects.

V. CODE AVAILABILITY

The source code for the project, along with docu-

mentation and example data, is freely available on the

GitHub repository: https://github.com/jgarciamesa/US-
RSE24-RAG (doi: 10.5281/zenodo.13363087).

https://github.com/jgarciamesa/US-RSE24-RAG
https://github.com/jgarciamesa/US-RSE24-RAG

ACKNOWLEDGMENT

The authors acknowledge Research Computing at Ari-

zona State University for providing HPC and storage
resources [6].

1]

REFERENCES

D. Shah, G. Speyer, and J. Yalim, “Centralized provi-
sioning of large language models for a research com-
munity,” in Proceedings of the SC’23 Workshops of
The International Conference on High Performance
Computing, Network, Storage, and Analysis, 2023, pp.
704-707.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. De-
langue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz et al., “Huggingface’s transformers: State-of-
the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

H. Touvron, L. Martin, K. Stone, P. Albert,
A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C.
Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes,
J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami,
N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan,
M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann,
A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril,
J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet,
T. Mihaylov, P. Mishra, I. Molybog, Y. Nie,
A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Subramanian,
X. E. Tan, B. Tang, R. Taylor, A. Williams,
J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang,
A. Fan, M. Kambadur, S. Narang, A. Rodriguez,
R. Stojnic, S. Edunov, and T. Scialom, “Llama 2:
Open foundation and fine-tuned chat models,” 2023.
[Online]. Available: https://arxiv.org/abs/2307.09288

A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan,
and J. Y. Zou, “Gradio: Hassle-free sharing and
testing of ML models in the wild,” CoRR, vol.
abs/1906.02569, 2019. [Online]. Available: http://
arxiv.org/abs/1906.02569

Meta, 2024-. [Online]. Available: https://ai.meta.com/
blog/meta-llama-3/

D. M. Jennewein, J. Lee, C. Kurtz, W. Dizon, I. Sha-
effer, A. Chapman, A. Chiquete, J. Burks, A. Carlson,
N. Mason, A. Kobwala, T. Jagadeesan, P. Barghav,
T. Battelle, R. Belshe, D. McCalffrey, M. Brazil, C. Inu-
mella, K. Kuznia, J. Buzinski, S. Dudley, D. Shah,
G. Speyer, and J. Yalim, “The sol supercomputer at
arizona state university,” in Practice and Fxperience in
Advanced Research Computing, ser. PEARC ’23. New
York, NY, USA: Association for Computing Machin-
ery, 2023.

https://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1906.02569
http://arxiv.org/abs/1906.02569
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

	Introduction
	Motivation
	Implementation
	Models

	Conclusion
	Code Availability

