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A. Additional Results for MO-Highway Envi-
ronment
Figure 1 shows the trade-offs offered by the policies in the objective
space.

Figure 1: Solution Set consisting of 12 policies represented by the
objective vectors in the Objective Space.

Figure 2 displays the normalized distances utilized for k-medoid
clustering from Section 5.2. It is evident from the two heatmaps that
they appear distinct, indicating the policies are spread differently
across the various spaces.

The sankey charts (figure 3) were generated based on the outputs
of k-medoid clustering, which can be found in the table 1.

Figure 3 showcases convergence plot of hypervolume over gener-
ations for PAN clustering in MO-Highway.

B. PAN parameter configuration
Table 2 showcases parameter configuration for PAN for specific en-
vironments.
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Figure 2: Heatmaps of normalized distances between policies based
on different information used (objectives on the left-hand side and
highlights on the right-hand side).

k Clusters: Objective Space Clusters: behavior Space ARI
2 [0, 1, 5, 6], [2, 3, 4, 7, 8, 9,

10, 11]
[0, 3, 4 ,7, 9], [1, 2, 5, 6, 8,

10, 11]
-0.06

3 [8, 9, 11], [0, 1, 5, 6], [2, 3,
4, 7, 10]

[0, 4, 7], [2, 3, 6, 9], [1, 5,
8, 10, 11]

-0.11

4 [2, 3, 4, 7, 10], [0, 1, 5, 6],
[9], [8, 11 ]

[10], [0, 4, 7], [1, 5, ,8, 11],
[2, 3, 6, 9]

0.01

5 [6], [2, 3, 4, 7, 10], [0, 1,
5], [8, 11], [9]

[0, 4, 7], [10], [2, 6, 9], [1,
5, 11], [3, 8]

-0.01

6 [2, 4, 7, 10], [8, 11], [6], [0,
1, 5], [ 3], [9]

[3, 8], [2, 6], [10], [1, 5,
11], [0, 4, 7], [9]

-0.03

Table 1: K-medoids clustering of the policies, with cluster sizes rang-
ing from 2 - 6 done seperetly for objective space (distance: euclidean
distance) and behavior space (distance: Frobenius norm)
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Figure 3: Convergence plot for MO-Highway. Convergence plot
showing the mean hypervolume over generations, averaged across
multiple seeds (solid line). The shaded area represents the range
of performance, illustrating the algorithm’s performance variability
across different initial conditions.
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environment g n pr pu ps pm
MO-Highway 200 10 0.7 0.2 0.2 0.6
MO-Reacher 100 10 0.7 0.4 0.4 0.6
MO-Minecart 200 10 0.9 0.6 0.6 0.8

MO-Lunar-lander 500 10 0.9 0.6 0.6 0.8
Table 2: Parameter configuration for PAN for various environments.

C. Additional Environments
All the solution sets were achieved through training a GPI-PD agent
with default parameters, as in benchmarks in Felton et al. ([2]).

MO-Minecart In this environment, the agent must collect two
types of ores and minimize fuel consumption (3 objectives). The ob-
servation is a 7-dimensional vector containing information about the
position, speed, and orientation of the cart as well as the contents in-
side it. The action space is a discrete space with 6 actions, and the
reward space is 3-dimensional [1]. The solution set achieved con-
sisted of 302 policies. Figure 4 presents the convergence plot of our
clustering approach, where the performance is measured using the
hypervolume of the set containing different clustering. The number
of generations was chosen based on the tuning of the parameters to
achieve the best performance over time. Each point in Figure 5 rep-
resents a partitioning of the solution set achieved by PAN and for
comparison by iterative k-medoid clustering (as described in sec-
tion 4). We observe that the majority of the PAN’s clusterings ex-
hibit similar or higher silhouette index values in both spaces. The k-
medoids approach demonstrates greater variability, achieving better
performance in the behavior space for some clustering. The increased
variability in clustering (notably, the clusters being more dispersed)
is the reason why, in this specific environment, the k-medoids algo-
rithm outperforms PAN slightly, achieving an improvement of 0.1 in
hypervolume.
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Figure 4: Convergence plot for MO-Minecart. Convergence plot
showing the mean hypervolume over generations, averaged across
multiple seeds (solid line). The shaded area represents the range
of performance, illustrating the algorithm’s performance variability
across different initial conditions.

MO-Reacher MO-Reacher is based on the Mujoco’s Reacher,
which is a two-jointed robot arm. The goal is to move the robot’s
end effector (called fingertip) close to a target that is spawned at a
random position. It is a 4-objective problem, where the reward is
defined based on the distance of the tip of the arm and the four tar-
get locations. The observation is 6-dimensional and contains sin and
cos of the angles of the central and elbow joints as well as angular
velocity of the central and elbow joints. The solution set achieved
consisted of 357 policies. Figure 6 presents the convergence plot of
our clustering approach, where the performance is measured using
the hypervolume of the set containing different clustering. The num-
ber of generations was chosen based on the tuning of the parameters
to achieve the best performance over time. Each point in Figure 7

Figure 5: Clusters achieved by PAN and k-medoid for MO-Minecart.

represents a partitioning of the solution set achieved by PAN and for
comparison by iterative k-medoid clustering (as described in section
4). We observe that the clusterings of PAN appear to form a Pareto
front, presenting trade-offs between silhouette values in the behavior
and objective spaces. In contrast, k-medoids clustering performs well
either in the objective space or the behavior space but not both. Thus,
PAN clustering aligns closely with our desired outcomes.
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Figure 6: Convergence plot for MO-Reacher. Convergence plot show-
ing the mean hypervolume over generations, averaged across multi-
ple seeds (solid line). The shaded area represents the range of per-
formance, illustrating the algorithm’s performance variability across
different initial conditions.

MO-Lunar-lander Multi-objective version of the LunarLander, an
environment representing a classic rocket trajectory optimization
problem. The reward is 4-dimensional: -100 if crash, +100 if lands
successfully, shaping reward, fuel cost (main engine), fuel cost (side
engine). The solution set achieved consisted of 157 policies. Figure 6
presents the convergence plot of our clustering approach, where the
performance is measured using the hypervolume of the set contain-
ing different clustering. The number of generations was chosen based
on the tuning of the parameters to achieve the best performance over
time. Each point in Figure 7 represents a partitioning of the solution
set achieved by PAN and for comparison by iterative k-medoid clus-
tering (as described in section 4). We observe that PAN’s clusterings
significantly outperform k-medoids, achieving higher values on both
indices for all clusterings and resulting in a much higher hypervol-
ume compared to k-medoids.



Figure 7: Clusters achieved by PAN and k-medoid for MO-Reacher.
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Figure 8: Convergence plot for MO-Lunar-lander. Convergence plot
showing the mean hypervolume over generations, averaged across
multiple seeds (solid line). The shaded area represents the range
of performance, illustrating the algorithm’s performance variability
across different initial conditions.

Figure 9: Clusters achieved by PAN and k-medoid for MO-Lunar-
lander.
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