
Project Title Expanding FAIR solutions across EOSC

Project Acronym FAIR-IMPACT

Grant Agreement No. 101057344

Start Date of Project 2022-06-01

Duration of Project 36 months

Project Website fair-impact.eu

Comparison of tools for automated FAIR

software assessment

Work Package WP5 - Metrics, certification, and guidelines

Lead Author (Org) Mario Antonioletti (UEDIN-SSI), Chris Wood (UEDIN-SSI)

Contributing

Author(s) (Org)

Neil Chue Hong (UEDIN-SSI), Elena Breitmoser (UEDIN-SSI), Kara

Moraw (UEDIN-SSI), Maaike Verburg (KNAW-DANS)

Date 2024-08-08

Version V1.0

Dissemination Level

X PU: Public

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the Commission)

CO: Confidential, only for members of the consortium (including the Commission)

Versioning and contribution history

Version Date Author Notes

0.1 05.05.2023 Neil Chue Hong, Elena Breitmoser

(UEDIN-SSI)

TOC and V0.1

0.2 01.08.2023 Mario Antonioletti, Chris Wood, Elena

Breitmoser, Neil Chue Hong (UEDIN-SSI)

Draft split from D5.2

0.3 30.05.2024 Mario Antonioletti (UEDIN-SSI) Revised draft for

internal task

reviewers

0.4 31.07.2024 Elena Breitmoser, Mario Antonioletti,

Chris Wood, Kara Moraw, Neil Chue Hong

(UEDIN-SSI)

Revised draft for

internal

FAIR-IMPACT review

1.0 08.08.2024 Elena Breitmoser, Mario Antonioletti,

Chris Wood, Kara Moraw, Neil Chue Hong

(UEDIN-SSI), Maaike Verburg (DANS)

Finalised and

published on

Zenodo

Disclaimer

FAIR-IMPACT has received funding from the European Commission’s Horizon Europe funding

programme for research and innovation programme under the Grant Agreement no. 101057344. The

content of this document does not represent the opinion of the European Commission, and the

European Commission is not responsible for any use that might be made of such content.

2 | Page

Table of Contents

Versioning and contribution history 2

Table of Contents 3

TERMINOLOGY 4

1 Introduction 5

2 Rationale for this report 6

3 FAIR4RS principles and domain subject specificity 9

4 The tools examined 12

5 Evaluation methodology 16

6 Result of the comparison of the tools 17

7 Analysis 23

8 Conclusions and next steps 28

References 29

Appendix 1: howfairis tests 31

3 | Page

TERMINOLOGY

Terminology/Acronym Description

API Application Programming Interface

DOI Digital Object Identifier

FAIR Findable Accessible Interoperable Reusable

FAIR4RS FAIR for Research Software

FsF FAIRsFAIR

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IGSN International Geo Sample Numbers

PID Persistent Identifier

RRID Research Resource Identifier

SCP Secure CoPy

SFTP Secure File Transfer Protocol

URL Uniform Resource Locator

4 | Page

1 Introduction

This document summarises work by the FAIR-IMPACT project to examine the application and

potential repurposing of three existing automated assessment tools built to assess FAIR data

principles (Wilkinson et al, 2016), to assess compliance with the FAIR for Research Software

(FAIR4RS) principles (Chue Hong et al., 2022). At the time this activity was carried out (2023),

no automated assessment tools explicitly assessed the FAIR4RS principles, though there are

some principles shared by FAIR data and software, in part due to the lack of metrics for FAIR

software at the time. The viability of repurposing these tools is based on the similarity

between the corresponding FAIR principles applied to data and research software. However,

sufficient differences exist that make the direct assessment of FAIR4RS from a FAIR data

perspective difficult for some of the principles. In addition, a software assessment tool that

uses a different set of recommendations for software based on the FAIR principles was also

examined. After the initial explorations presented in this output, FAIR-IMPACT Deliverable

5.2 was created to propose a set of metrics for assessing the FAIR4RS principles (Chue Hong

et al, 2023). A companion document (Moraw et al, 2024) extends one of the existing FAIR

data assessment tools to provide assessments of research software against the FAIR4RS

principles. This exploratory activity has now been published as a companion output to this

line of work, presenting enriching background context as well as recommendations for tool

developers and users towards a further development of FAIR assessment tools.

5 | Page

2 Rationale for this report

Several tools have been, or are in the process of being, developed to provide an automated

way to determine compliance against the FAIR data principles (Wilkinson et al, 2016). As the

FAIR principles are advisory and not prescriptive, those interested in performing automated

assessments of the FAIR principles have for each principle proposed one or more abstract

criteria to evaluate whether a FAIR principle has been met. These criteria are referred to as

metrics. For example, Figure 1 shows the structure adopted to specify metrics by FAIRsFAIR1

(FsF). Note that different levels of compliance or maturity indicators (Bahim et al, 2020) may

also be defined as part of a metric requiring different levels of testing. Others employ similar

but slightly different templates for their metrics, see (Wilkinson et al, 2018).

Field Description
Metric Identifier The local (FAIRsFAIR) identifier of the metric (following a prescribed

naming convention).
Metric Name Metric name in a human-readable form.
Description The definition of the metric, including examples.
FAIR principle The FAIR principle most related to the metric.
Assessment Requirements and methods to perform the assessment against the

metric.
Comments A list of related resources which may be used as a reference basis to

implement the assessment, constraints and limitations of the
proposed assessment

Figure 1: Structure of an FsF metric (Devaraju et al, 2022)

To perform an automated assessment of a principle, each metric has to be turned into one

or more specific tests. This is a practical way of checking whether the metric is satisfied.

Finally, the tests can be scripted so that they can be used by the corresponding tool to

evaluate the level of FAIR compliance. This hierarchy is schematically shown in Figure 2.

As a case in point, we can take the principle “A1.2: The protocol allows for an authentication

and authorisation procedure where necessary”, identical for FAIR data and FAIR4RS, for

which metrics could be developed:

● Is the resource available through HTTP(S)?

○ An attempt to access a URL/DOI/etc with HTTP(s) returns a 200, 202, 203 or

206 HTTP response.

● Is the code available through other authenticated protocols, such as ftp, sftp, scp,

etc?

1 FAIRsFAIR https://www.fairsfair.eu last accessed 01/04/24.

6 | Page

https://www.fairsfair.eu

In practice, testing for the availability of HTTP(S) may suffice as most software repositories

support HTTP(S) and the protocol supports the authentication and authorisation

requirements. The tests need to be specific to be applicable and may result in introducing

normative behaviour to effect compliance, e.g. look for a LICENSE file, i.e. license is both a

verb and a noun in US English but other forms of English use licence for the noun, but may

not accept LICENCE or LICENSE.txt as satisfying this test. It is also important to note that the

communities generating and using these metrics need to observe a level of coherency and

alignment for the assessment of each FAIR principle so that the different tools provide

consistent results, see Wilkinson et al (2022).

Figure 2: Principles to metrics, to tests and implementations.

Other FAIR principles are being developed for other specific types of digital objects, such as

computational workflows2, ontologies3, etc. In particular, groups involved in developing

automated assessment tools for the FAIR4RS principles (Chue Hong et al, 2022) are in the

process of establishing metrics to be able to assess the FAIRness of Research Software and

incorporate these into the same tooling that has been developed to assess FAIR data. The

motivation for this part of the work was thus partly driven by a need to choose a tool that

3 See https://www.excelra.com/blogs/ontologies-and-the-fair-data-principles/ last accessed 29/05/24.

2 See https://workflows.community/groups/fair/ last accessed 29/05/24.

7 | Page

https://www.excelra.com/blogs/ontologies-and-the-fair-data-principles/
https://workflows.community/groups/fair/

would facilitate an attempt to incorporate the FAIR4RS principles and inform the provision of

a set of metrics for FAIR4RS tailored to a specific subject domain - the social sciences (Chue

Hong et al, 2023) and suggest a tool that could be extended to implement these metrics as

tests (Moraw et al, 2024).

In contrast, an alternative approach taken for a FAIR compliance assessment is to let users

perform self-assessments based on guided questionnaires of their repositories to evaluate

how FAIR they are for data such as in the SATISFYD4 questionnaire or to use the

“Self-assessment for FAIR research software” questionnaire5 for FAIR4RS. Through a limited

set of questions, a user can become more aware of the issues involved in increasing the

FAIRness of their digital assets. These variants are noted in passing here and are not

considered further as the focus here is on tools that can automate the assessment.

Most metrics required to assess the FAIR principles, both for data or research software, are

largely domain-agnostic so specific domain knowledge is not required. In the next section,

we briefly consider metrics requiring domain knowledge to properly assess those particular

principles.

5 See https://fairsoftwarechecklist.net/v0.2/ last accessed 31/01/24.

4 See https://satifyd.dans.knaw.nl last accessed 31/01/24.

8 | Page

https://fairsoftwarechecklist.net/v0.2/
https://satifyd.dans.knaw.nl/

3 FAIR4RS principles and domain subject specificity

Most metrics do not require specific domain knowledge. For instance, from the FAIR4RS

principles, F1 states that: “software is assigned a globally unique and persistent identifier”

and A1.1 states that “the protocol is open, free, and universally implementable” could both

be tested in a general way although there is always the possibility that domain-specific

communities could add their domain-specific identifiers as a requirement, e.g. IGSN

(International Geo Sample Numbers) for geoscientists, RRIDs (Research Resource Identifiers)

for biologists, etc. see (Plomp, 2020). On the other hand, some of the FAIR4RS principles do

necessitate input from the domain being tested if anything other than a superficial

evaluation is to be performed. For instance, I1 states: “software reads, writes and exchanges

data in a way that meets domain-relevant community standards” and for R3 “software

meets domain-relevant community standards”. The metrics for these principles would

require input from the particular subject domains to be evaluated. Table 1 outlines the

FAIR4RS principles that may require domain knowledge input to produce meaningful metrics

to assess compliance with the FAIR4RS principles.

Table 1 – Whether domain knowledge may be required to assess the FAIR4RS principles

FAIR4RS principle Domain
agnostic

Requires
domain

knowledge

Notes

F1: Software is assigned a
globally unique and persistent
identifier.

✔ Some domains
may create
domain-specific
PIDs.

F1.1: Components of the
software representing levels of
granularity are assigned distinct
identifiers.

✔

F1.2: Different versions of the
software are assigned distinct
identifiers.

✔

F2: Software is described with
rich metadata.

✔ ✔ Metadata could
have
domain-specific
parts.

9 | Page

F3: Metadata clearly and
explicitly include the identifier of
the software they describe.

✔ There might be
domain-specific
identifiers.

F4: Metadata are FAIR,
searchable and indexable.

✔

A1: Software and its associated
metadata are accessible by their
identifier using a standardized
communications protocol.

✔

A1.1: The protocol is open, free,
and universally implementable.

✔

A1.2: The protocol allows for an
authentication and authorization
procedure, where necessary.

✔

A2: Metadata are accessible,
even when the software is no
longer available.

✔ One may have to
search
domain-specific
registries.

I1: Software reads, writes and
exchanges data in a way that
meets domain-relevant
community standards.

✔

I2: Software includes qualified
references to other objects.6

✔ There may be
domain-specific
identifiers.

R1: Software is described with a
plurality of accurate and relevant
attributes.7

✔ ✔ Attributes may
be
domain-specific.

R1.1: Software is given a clear
and accessible license.

✔

R1.2: Software is associated with
detailed provenance.

✔

R2: Software includes qualified ✔

7 Testing for the accuracy of the metadata is harder than testing for the existence of it.

6 In the FAIR4RS principles, I2 is derived from but slightly different from FAIR principle I3 - the number change
may be confusing.

10 | Page

references to other software.

R3: Software meets
domain-relevant community
standards.

✔

At the time the work reported in Section 4 was carried out (2023), tools and metrics used to

assess the FAIR4RS principles were at a very early stage of development. Of the four tools

examined, three were developed to provide FAIR data assessments while the remaining tool

examined the FAIRness of software but did not use the FAIR4RS principles, relying instead on

five generic principles that can be mapped to the FAIR4RS principles. The focus of this

evaluation was to determine whether the existing tools and/or metrics could be used out of

the box to test compliance with the FAIR4RS principles and whether they might be extended

to specifically include the FAIR4RS principles in a domain-specific context as specified in

(Chue Hong et al, 2023). The next section describes the four tools examined in more detail.

11 | Page

4 The tools examined

The four FAIR assessment tools examined are listed in Table 2. Three of these tools were

originally developed to test compliance with the FAIR data principles, FAIR-Enough (Emonet

and Dumontier), F-UJI (Devaraju and Huber, 2021) and FAIR-Checker8 (Gaignard et al, 2023).

The fourth tool, howfairis (Spaaks et al, 2022), targets software but does not explicitly use

the FAIR4RS principles in its assessment; instead, it relies on five recommendations for FAIR

software developed by the Netherlands eScience Center9 and the Data Archiving and

Networked Services10 (DANS), a Dutch centre that advises on the sustainable storage and

sharing of data. The source code for all of these tools are available on GitHub.

Table 2 – FAIR assessment tools evaluated

Tool
Version Licence Implementation Targets Date of release11

FAIR-Enough12 API 0.1.0 MIT Python/
Typescript13

data No releases14

F-UJI15 2.0.2 MIT Python data 07/10/22

FAIR-Checker16 1.2.3 MIT Python data 01/06/23

howfairis17 0.14.2 Apache 2.0 Python software 01/09/22

where:

● Tool: the name of the tool.

● Version: the version of the tool examined.

● Licence: the distribution licence for the tool.

● Implementation: the implementation language used.

● Targets: whether the tool assesses data or software.

● Date of release: the release date of the version examined.

17 Howfairis https://github.com/fair-software/howfairis last accessed 17/08/23.

16 FAIR-Checker https://github.com/IFB-ElixirFr/FAIR-checker last accessed 17/08/23.

15 F-UJI https://github.com/pangaea-data-publisher/fuji last accessed 17/08/23.

14 FAIR-Enough haven’t used the “Releases” feature of Github to release a numbered version of their tool.
Although the API, which is published on a third-party site, does have a version associated with it (0.1.0) it is
unclear whether this uses the current version of the code committed to GitHub

13 Python is used for the back-ehttps://github.com/vemonet/fair-enough-metricsnd functionality and
Typescript for the web interface for the tool.

12 FAIR-Enough https://github.com/vemonet/fair-enough-metrics last accessed 17/08/23.

11 Using the date format: dd/mm/yy.

10 https://dans.knaw.nl last accessed on 30/11/23.

9 https://www.esciencecenter.nl last accessed on 30/11/23.

8 FAIR-Checker is funded by the French Institute for Bioinformatics (IFB) through the PIA2 11-INBS-0013 grant.

12 | Page

https://github.com/fair-software/howfairis
https://github.com/IFB-ElixirFr/FAIR-checker
https://github.com/pangaea-data-publisher/fuji
https://github.com/vemonet/fair-enough-metrics
https://github.com/vemonet/fair-enough-metrics
https://dans.knaw.nl
https://www.esciencecenter.nl
https://anr.fr/ProjetIA-11-INBS-0013

The evaluations were carried out between April and July 2023.

Table 3 describes the metrics used by each tool to make the FAIRness assessment - see Mons

et al (2017) for a discussion about what FAIR compliance means. The tools provide some

guidance on how a user might improve their level of FAIRness.

Table 3 - metrics used by the assessment tools

Tool Metrics used

FAIR-Enough Can choose four types of metrics18 in their web interface for their tool
conforming to the specifications defined by the FAIRMetrics working group19:

● FAIR Enough metadata maturity indicators (fair-enough-metadata)
● FAIR Enough maturity indicators (fair-evaluator-maturity-indicators)
● FAIR Enough data maturity indicators (fair-enough-data)
● FAIR Enough maturity indicators for Rare Diseases

(rare-disease-maturity-indicators)

FAIR-Enough also encourages users to add their tests to the FAIR-Enough
testing framework.

F-UJI Uses the FAIRsFAIR Data Object Assessment Metrics (Devaraju et al 2022).

FAIR-Checker Uses the Go-FAIR metrics20.

howfairis Uses a set of criteria developed by the Netherlands eScience Center and
DANS for the following five recommendations:

1. Use a publicly accessible repository with version control
2. Include a License
3. Register your code in a community registry
4. Enable citation of the software
5. Use a software checklist

Table 4 lists the criteria21 used by the howfairis FAIR software recommendations and shows

how we mapped these to the FAIR4RS principles.

21 The criteria used to test the recommendations are given in Appendix 1.

20 Go FAIR metrics https://www.go-fair.org/fair-principles last accessed 04/09/23.

19 See https://github.com/FAIRMetrics/Metrics for a YAML description targeting a smartAPI interface
description of the metrics and https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/metrics for a
description of the metrics, links last accessed 06/09/23.

18 For a description of each of the collection of metrics sets, authors and dates for the metric sets below see
https://fair-enough.semanticscience.org/collections last accessed 26/03/68.

13 | Page

https://www.go-fair.org/fair-principles/
https://github.com/FAIRMetrics/Metrics
https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/metrics
https://fair-enough.semanticscience.org/collections

Table 4 - mapping the Netherlands eScience Center and DANS recommendations to the FAIR4RS

principles

Recommendation FAIR4RS principles

Use a publicly accessible repository with
version control

A1 (software and its associated metadata are
accessible by their identifier using a standardized
communications protocol)22,
A1.1 (the protocol is open, free, and universally
implementable)23,
A1.2 (the protocol allows for an authentication and
authorization procedure, where necessary)24,
R1.2 (software is given a clear and accessible license)25

Add a License R1.1 (software is given a clear and accessible license)

Register your code in a community
registry

R1.2 (software is given a clear and accessible license)26

Enable citation of the software R1.2 (software is given a clear and accessible license)

Use a software checklist (presence of the
OSSF badge27)

F1 (software is assigned a globally unique and
persistent identifier),
F1.2 (different versions of the software are assigned
distinct identifiers),
F2 (software is described with rich metadata),
F3 (metadata clearly and explicitly include the
identifier of the software they describe),
F4 (metadata are FAIR, searchable and indexable), and
R3 (software meets domain-relevant community
standards)

We have made some assumptions to compile Table 4, for instance, the scope and

interpretation of what finding a specific badge type in a “README.md” file means and how it

maps to one or more of the FAIR4RS principles.

From our interpretation of how the Netherlands eScience Center and DANS

recommendations map to the FAIR4RS principles we note that howfairis does not check for:

27 Criteria for getting the best practice badge: https://bestpractices.coreinfrastructure.org/en/criteria/0. Last
accessed 14/07/23.

26 Checks are made, though not exhaustive, that software has been contributed to software community
distribution points, e.g. CRAN for R packages, PyPI for Python, etc.

25 Implicitly - there will be a commit log if hosted in a git repository which howfair does not explicitly check.

24 This is limited to canonical GitHub and GitLab only. Both of these support https and private repositories - the
protocol and infrastructure support authentication and authorisation, API keys for both frameworks through
the environment variables, where a user and access token can be included. This would be an implicit check.

23 The tool only supports GitHub and GitLab repositories which by extension only supports https and ssl.

22 Limited to canonical GitHub and GitLab instances. It does not check whether any sourcecode is present

14 | Page

https://bestpractices.coreinfrastructure.org/en/criteria/0

● F1.1 (“components of the software representing levels of granularity are assigned

distinct identifiers”),

● F4 (“Metadata are FAIR, searchable and indexable”),

● I1 (“software reads, writes and exchanges data in a way that meets domain-relevant

community standards”) and

● I2 (“Software includes qualified references to other objects”).

In the next section, we discuss how the tools were evaluated.

15 | Page

5 Evaluation methodology

Each tool was initially downloaded, installed and run on a local machine. However, at the

time of writing all the FAIR data assessment tools also provided a public web service access

point, see Table 5, through which an evaluation of a repository could be performed by

providing a URL to the resource to be evaluated. Thus, instead of using local deployments,

the services provided by the tool developers were used instead. Only howfairis needed to be

run on a local machine to perform its evaluation.

Table 5 - web endpoints to do FAIR data assessments for the tools used

Tool Service

FAIR-Enough https://fair-enough.semanticscience.org/

F-UJI https://www.f-uji.net/

FAIR Checker https://fair-checker.france-bioinformatique.fr/check

The tools were run against several end-points:

● A public software repository28 was set up and deployed on GitHub, GitLab and in a

local institutional deployment of GitLab. The aim was to use the tool feedback to

improve the FAIRness of the repository but this objective was quickly discarded after

it proved to be difficult to translate the feedback into actionable steps. Instead, the

output from each tool was examined, as well as the metrics that the tool used and

whether these could be extended to meet the FAIR4RS principles.

● Each tool was run against the repositories that hosted it.

● F-UJI was run against a sample dataset29 as well as against this dataset’s metadata

and assessed results.

In practice, the output produced by each tool was used for the evaluation discussed in the

next section.

29 Sample dataset https://doi.org/10.5285/16f52064-a19d-4cf5-a388-aff04a592179 last accessed 30/11/23.

28 The test repository is deployed at https://github.com/marioa/fair-test, https://gitlab.com/marioa/fair-test
and https://git.ecdf.ed.ac.uk/mario/fair-test last accessed on 27/10/23.

16 | Page

https://doi.org/10.5285/16f52064-a19d-4cf5-a388-aff04a592179
https://github.com/marioa/fair-test
https://gitlab.com/marioa/fair-test
https://git.ecdf.ed.ac.uk/mario/fair-test

6 Result of the comparison of the tools

Table 6 outlines what the metrics used by each tool test for and whether they might also be

deemed to satisfy the corresponding FAIR4RS principle. Most FAIR4RS principles more or less

match the corresponding FAIR data principle numbering except that the I3 FAIR data

principle maps to the I2 FAIR4RS principle.

Table 6 - the result of the comparison for each FAIR4RS and how the metrics applied by the tooling

might be interpreted in a FAIR4RS assessment

Principle Tools Evaluation method summary

F1: Software is
assigned a globally
unique and
persistent identifier.

All four tools check for this principle.
● FAIR-Checker checks that it has a reachable URL and will

check if the URL is persistent (WebID30, PURL31 or a DOI32).
● FAIR-Enough will do the same but also uses identifiers.org

which checks for compact identifiers used in the life
sciences.

● F-UJI checks for URL or IRI formats and if these are not
resolvable it will check for UUID or hash type syntax.

● howfairis does not explicitly check for the principle but it
expects a valid URL to be provided to a software repository
hosted in GitHub or GitLab so the identifier check is implicit.
It does not check for persistent identifiers.

F1.1: Components
of the software
representing levels
of granularity are
assigned distinct
identifiers.

None of the examined tools tests this principle as the FAIR4RS
guidelines do not have a direct equivalent in the FAIR for data so
we would not expect the FAIR for data tools to test this. We did not
think any of the criteria used by howfairis mapped to this principle.

F1.2: Different
versions of the
software are
assigned distinct
identifiers.

None of the FAIR data tools tests this FAIR4RS principle.
Compliance for howfairis is assumed through the presence of the
OSFF badge in the software’s README.md file (although the
absence of the OSFF badge does not mean that F1.2 for the
FAIR4RS has not been met). This applies to all the tests performed
by howfairis, while the presence of a badge might indicate that the
principle is met the inverse is not true, that is, if the badge is not
there then the principle has not been met is not true.

F2: Software is We implicitly infer compliance with this FAIR4RS principle for

32 See https://doi.org/10.1000/182 last accessed 28/03/24.

31 See https://en.wikipedia.org/wiki/Persistent_uniform_resource_locator last accessed 28/03/24.

30 See https://www.w3.org/2005/Incubator/webid/spec last accessed on 28/03/24.

17 | Page

https://doi.org/10.1000/182
https://en.wikipedia.org/wiki/Persistent_uniform_resource_locator
https://www.w3.org/2005/Incubator/webid/spec

described with rich
metadata.

howfairis through the presence of the OSSF badge which acts as a
proxy for a number of the FAIR4RS principles.

The other three tools examined focus on the FAIR principles for
data but could be modified to take into account the requirements
for FAIR4RS.

● FAIR-Checker checks for the existence in the metadata of at
least one of Dublin Core33 (dct) or Data Catalogue34 (dcat)
properties from the list of dct:title, dct:description,
dct:accessURL, dct:downloadURL, dcat:endpointURL or
dcat:endpointDescription. It also checks that at least one
(weak) or all (strong) of the ontology classes or properties
used are known in major ontology registries.

● F-UJI checks that the metadata can be obtained via
common web methods, that core data citation metadata is
available and/or that core descriptive metadata is available
but it does not check for the FAIRness of the metadata or
whether the metadata uses controlled vocabularies.

● FAIR-Enough tries to find 'grounded' metadata, i.e. that the
metadata terms are in a resolvable namespace, where the
resolution leads to a definition of the meaning of the term
and it also tries to find structured metadata which could, for
example, be RDFa, embedded json, json-ld, or
content-negotiated structured metadata such as RDF Turtle.

F3: Metadata
clearly and explicitly
include the
identifier of the
software they
describe.

● FAIR-Enough checks whether the metadata contains a
unique identifier to the metadata itself and whether the
metadata document contains a globally unique and
persistent identifier for the digital resource. It parses the
metadata to search for a given digital resource, GUID, and if
found, retrieves information about this resource (title,
description, date created, etc). It should not be too difficult
to extend this to deal with an identifier to the software
being described.

● F-UJI checks that the metadata is given in a way that major
search engines can ingest it into their catalogues (JSON-LD,
Dublin Core, RDFa) and metadata is registered in major
research data registries (e.g. DataCite, etc). Again,
software-specific extensions should be possible.

F4: Metadata are
FAIR, searchable

● FAIR-Enough extracts the title from RDF metadata, or from
the DataCite API (in the case it is a DOI), then searches for

34 See https://www.w3.org/TR/vocab-dcat-3 last accessed 28/03/24.

33 See https://www.dublincore.org/specifications/dublin-core last accessed 28/03/24.

18 | Page

https://www.w3.org/TR/vocab-dcat-3
https://www.dublincore.org/specifications/dublin-core

and indexable. the resource URL in popular search engines using the
extracted title: - DuckDuckGo search engine (no limitations,
but it misses some scientific data repositories) - Google
custom search API (results are not as good as the regular
Google search though, limited to 100 queries per day) - Bing
search engine (qualitative results, but limited to 1000
queries per months, used as last recourse).

● F-UJI checks that the metadata is presented in a way that it
can be ingested by search engines and that it can also be
found by a major search engine.

Neither tool appears to explicitly test that the metadata is FAIR.

A1: Software and
its associated
metadata are
accessible by their
identifier using a
standardized
communications
protocol.

● Howfairis only checks if a repository is there, i.e. not a 404,
using an HTTPS connection - it does not explicitly check for
the associated software metadata.

● F-UJI checks that the landing page link is based on standard
web communication protocols (e.g. HTTP(S), sftp, ssh, etc.),
information about access restrictions or rights can be
identified in metadata, the data access information is
machine-readable and the information is indicated by (not
machine-readable) standard terms.

A1.1: The protocol
is open, free, and
universally
implementable.

All tools check for this. howfairis does an implicit check, whereas
all the other tools check that HTTP(S) or that a URL is being used.

A1.2: The protocol
allows for an
authentication and
authorization
procedure, where
necessary.

This check could be done by checking that HTTP(S) is used - which
FAIR-Enough and FAIR-Checker do.

● FAIR-Enough also checks for the Dublin Core (dc)
dc:accessRights metadata property, which may point to a
document describing the data access process.

● FAIR-Checker checks if the protocol supports authentication
and authorisation as well as checking the metadata to see if
access rights are specified in metadata through terms
odrl:hasPolicy (open digital rights language35), dc:rights,
dc:accessRights, or dc:license.

● Howfairis only checks GitHub or GitLab URLs which only
use https. howfairis can also check private repositories by
putting access credentials (an access token and the
corresponding username) in an environment variable.

● F-UJI does not check this principle.

35 See https://www.w3.org/TR/odrl-vocab last accessed 28/03/24.

19 | Page

https://www.w3.org/TR/odrl-vocab

A2: Metadata are
accessible, even
when the software
is no longer
available.

This appears to be a hard principle to check. Only FAIR-Enough
tries and even then indirectly by testing if the metadata contains a
persistence policy, explicitly identified by a persistencePolicy key (in
hashed data) or a
http://www.w3.org/2000/10/swap/pim/doc#persistencePolicy
predicate in Linked Data.

● F-UJI checks that the persistent identifier system guarantees
the preservation of associated metadata. Currently, only
DOIs fulfil that requirement.

I1: Software reads,
writes and
exchanges data in a
way that meets
domain-relevant
community
standards.

No tool checks for this principle for research software.

I2: Software
includes qualified
references to other
objects.

No tool explicitly checks this principle for research software but I3,
“(Meta)data include qualified references to other (meta)data”, for
the FAIR data principles could be thought of as a slightly
generalised version of I2 in FAIR4RS if the (Meta)data is restricted
to research software. Currently, the tooling checks that:

● FAIR-Enough: the metadata contains outward references36.
It uses a maturity indicator to test if the metadata links
outward to third-party resources. It only tests metadata
that can be represented as Linked Data. It will succeed if
there is at least 1 object in the metadata that uses a
different host other than the subject URI being evaluated.

● FAIR-Checker: verifies that at least 3 different URL
authorities are used in the URIs of RDF metadata.

● F-UJI: checks that
○ Metadata includes links between the data and its

related entities
○ Related resources are explicitly mentioned in

metadata
○ Related resources are indicated by

machine-readable links or identifiers

These criteria would be specialised to deal with research software.

R1: Software is
described with a

● For howfairis this may be inferred by the presence of the
OSSF badge and also by the inclusion of a registry badge,

36 See https://w3id.org/fair-enough/metrics/tests/i3-metadata-contains-outward-links (Version: 0.1.0) - last
accessed 10/01/24.

20 | Page

https://w3id.org/fair-enough/metrics/tests/i3-metadata-contains-outward-links

plurality of accurate
and relevant
attributes.

i.e. the code has been submitted to a code registry (e.g.
PyPI for Python, Cran for R, npm for JavaScript, etc.), from
which we infer associated metadata will be included as well
as pointers to other software but this is not explicitly tested
for.

● F-UJI does some pertinent checks in the metadata but none
of these are software-related.

R1.1: Software is
given a clear and
accessible license.

Every tool checks for the existence of a LICENSE file.

FAIR-Checker, F-UJI and FAIR-Enough also check for information
about the license in the metadata and F-UJI also checks that it is
registered at SPDX37.

R1.2: Software is
associated with
detailed
provenance.

● FAIR-Checker verifies that at least one provenance property
from PROV, DCTerms, or PAV ontologies is found in the
metadata.

● Similarly, F-UJI checks that metadata contains elements
which hold provenance information and can be mapped to
PROV and that metadata contains provenance information
using formal provenance ontologies (PROV-O).

R2: Software
includes qualified
references to other
software.

This is an explicit FAIR4RS requirement and as such none of the
tools that test for FAIR data check this principle.

Howfairis implicitly does this by checking if the code has been
submitted to a software registry such as PyPi, CRAN, etc. If so,
dependencies are usually noted. For instance, the DESCRIPTION file
in CRAN, Pypi may use a requirements.txt file or a setup.py and
similarly for the other package registry. These may/may not satisfy
R2. There is no explicit check for the qualified references to other
software in howfairis.

R3: Software meets
domain-relevant
community
standards.

We infer compliance for howfairis through the presence of the
OSSF badge.

For the other tools, the FAIR data principle - R1.3 (Meta)data meet
domain-relevant community standards, which could be repurposed
to comply with R3.

● FAIR-Checker verifies that at least one used ontology class
or property (weak version) or that all ontologies and
properties (strong version) are known in major ontology

37 Software Package Data eXchange (SPDX) lincense list https://spdx.org/licenses last accessed 24/07/23.

21 | Page

https://spdx.org/licenses

registries (OLS38, BioPortal39, LOV40).
● F-UJI checks that a community-specific metadata standard is

detected using namespaces or schemas found in provided
metadata or metadata services outputs, community-specific
metadata standard is listed in the re3data41 record of the
responsible repository, multidisciplinary but
community-endorsed metadata (RDA Metadata Standards
Catalog42) standard is listed in the re3data record or
detected by namespace and that the format of a data file
given in the metadata is listed in the long term file formats,
open file formats or scientific file formats controlled list.

So, although R1.3 is not a FAIR4RS principle, it can be repurposed
to meet R3 - F-UJI does this and FAIR-Checker partially meets the
requirement as its checks are more restrictive.

● FAIR-Enough does not explicitly check for R1.3 other than
in using the very specific rare-disease-maturity-indicators
which apply to rare diseases specifically.

As we can see from the table the similarities between the FAIR for data principles and the

FAIR4RS principles mean that the tooling and/or the metrics could be extended to enable an

assessment of research software, see (Moraw et al, 2024) for a particular example.

In the next section, we summarise the results to describe whether we think the existing

metrics used by the tools already comply with the FAIR4RS, whether they partially comply

with the principle with some additional work or whether they do not comply at all as things

stand and more work is required in the metrics and/or the tools to be able to assess the

corresponding FAIR4RS metric.

42 See https://rdamsc.bath.ac.uk last accessed 28/03/24.

41 REgistry of REsearch data REpositories, https://www.re3data.org last accessed 28/03/24.

40 Linked Open Vocabularies, https://lov.linkeddata.es/dataset/lov last accessed 28/03/24.

39 See https://bioportal.bioontology.org last accessed 28/03/24.

38 Ontology look up service, https://www.ebi.ac.uk/ols4 last accessed 28/03/24.

22 | Page

https://rdamsc.bath.ac.uk
https://www.re3data.org
https://lov.linkeddata.es/dataset/lov
https://bioportal.bioontology.org
https://www.ebi.ac.uk/ols4

7 Analysis

From the results presented in the previous Section, Table 8 summarises whether the metric

tests used by each of the four tools considered could be used to test the FAIR4RS principles

or whether additional work is required.

Table 8 – summary of whether the metrics used by each tool could be used to assess the

corresponding FAIR4RS principle. The results indicate that the metrics used by the tool: Y - Yes; N -

No, and P - Partially but more work is required to assess the FAIR4RS principle

FAIR4RS principle howfairis FAIR-Enough FAIR-Checker F-UJI

F1: Software is assigned a globally
unique and persistent identifier.

Y Y Y Y

F1.1: Components of the software
representing levels of granularity are
assigned distinct identifiers.

N N N N

F1.2: Different versions of the software
are assigned distinct identifiers.

Y N N N

F2: Software is described with rich
metadata.

P Y Y P43

F3: Metadata clearly and explicitly
include the identifier of the software
they describe.

N P N Y

F4: Metadata are FAIR, searchable and
indexable.

N P N P

A1: Software and its associated
metadata are accessible by their
identifier using a standardized
communications protocol.

P N N Y

A1.1: The protocol is open, free, and
universally implementable.

Y Y Y Y

A1.2: The protocol allows for an
authentication and authorization

Y44 Y Y N

44 Not tested directly but given the protocols that these repositories support authentication and authorisation
and they provide mechanisms to allow for the credentials to be added it does provide an implicit test for A1.2.

43 It does not check for the FAIRness of the metadata or whether the metadata uses controlled vocabularies;
we recognise that although FsF-I2-02M checks for “semantic resources are present in the metadata of an
object”, this does not appear to be the intended target of Principle I2 (“Software includes qualified references
to other objects.”), and should be instead tested as part of F2.

23 | Page

procedure, where necessary.

A2: Metadata are accessible, even when
the software is no longer available.

P Y45 N Y

I1: Software reads, writes and exchanges
data in a way that meets
domain-relevant community standards.

N N N N

I2: Software includes qualified
references to other objects.46

N P P P

R1: Software is described with a plurality
of accurate and relevant attributes.47

P N N P

R1.1: Software is given a clear and
accessible license.

Y Y Y Y

R1.2: Software is associated with
detailed provenance.

N N Y Y

R2: Software includes qualified
references to other software.

P N N N

R3: Software meets domain-relevant
community standards.

Y48 N P Y

From this table, we can see that none of the tools examined can currently be applied directly

to assess a repository’s compliance with the full set of FAIR4RS principles. Because of the

similarity between the FAIR principles and FAIR4RS principles, the assessment of the more

generic principles can follow similar methods and there is not a great difference between

these methods. However, Table 1 showed that some principles require domain-specific

information to be properly assessed and require extensions to the corresponding metrics,

their implementation as tests and the tooling that would run these. Tool developers cannot

be expected to be domain experts, so the tooling must be extensible to support the

inclusion of additional community-specified metrics and tests to perform checks by the

FAIR4RS principles that require domain-specific input. An issue may arise where tests to

assess the principles cannot be defined where there is no community consensus or

agreed-upon standard. Where there is a lot of community fragmentation, this might lead to

many tool flavours to support each sub-community.

48 It meets the criteria of the OSSF badge and it also if it has been submitted to a relevant software distribution
registry site through the presence of the relevant badge, e.g. CRAN, Pypi, npm, etc.

47 Testing for the accuracy of the metadata is harder than testing for the existence of it.

46 In the FAIR4RS principles, I2 is derived from but slightly different from FAIR principle I3 - the number change
may be confusing.

45 It looks for a persistence policy (persistencePolicy) in the metadata.

24 | Page

Tool development and sustainability is also bounded by funding, developer interest, the

number of developers involved and other factors. At the time of writing, measuring activity

by the number of commits, of the four tools examined two had not had a git commit within

the last 18 months while the remaining two had had some activity within the previous

six-month period as derived from Figure 3. Tool development continuity is an important

factor to consider.

Another important factor is to consider how straightforward it might be to take an existing

tool and use it as the basis to assess the FAIR4RS principles. In addition, an extensible

framework is required which allows existing metric test implementations to accommodate

new test implementations, and new or additional metrics and/or tests to be added to the

existing framework and to be able to expose these through these same frameworks. Looking

at how each of the tools examined might be extended:

● howfairs - although this is the only tool that at the time of the activity assessed the

FAIRness of software, it does not do it based on the FAIR4RS principles. It is likely to

require a lot of effort to accommodate the FAIR4RS framework.

● FAIR-Checker - It is not immediately obvious how one might extend the existing

framework other than by going through the code. There is no explicit documentation

as to how this process may be undertaken.

● F-UJI - documentation is provided as to how new metrics can be added and

incorporated into the F-UJI framework49.

● FAIR-Enough - additional Metrics Tests API URLs can be registered within an existing

deployment by following the standard described by the FAIRMetrics Working group50.

The developers recommend using the fair-test Python library51. This provides a

mechanism for adding or customising FAIR metrics tests. We therefore consider that

FAIR-Enough offers the ability to add new metrics and tests to the existing tool.

51 See https://maastrichtu-ids.github.io/fair-test/ last accessed 28/05/24.

50 See https://github.com/FAIRMetrics/Metrics last accessed 28/05/24.

49 https://github.com/pangaea-data-publisher/fuji

25 | Page

https://maastrichtu-ids.github.io/fair-test/
https://github.com/FAIRMetrics/Metrics
https://github.com/pangaea-data-publisher/fuji

Figure 3: Level of activity for each tool measured by the number of git commits against time.

A set of FAIR4RS metrics tailored to a social sciences domain was proposed in Chue Hong et

al (2023). Some of these metrics were then incorporated into F-UJI, see Moraw et al (2024).

F-UJI was chosen for this purpose for two reasons: of all the tools investigated F-UJI was the

tool that was being most actively developed; and the developers were also involved in the

FAIR-IMPACT project so collaboration with the developers was straightforward.

The approaches taken by the various tools will also be a factor. An automated testing

framework will, by necessity, need to make assumptions in order to simplify the testing:

where will it find the expected metadata? Will all files be searched for metadata? Will only

the root directory tree be searched, will the whole directory tree be scanned, or will search

be limited to a codemeta.json file only? To make the process tractable, it is necessary for a

tool to make simplifying assumptions which, in turn, will drive behaviour. The FAIR principles

have no normative requirements but the desire to make autonomous assessment possible

may normalise behaviour from users to improve their assessment results. It is also important

for the tooling to be transparent about how it is making its assessment, for instance if a tool

26 | Page

does not recognise the addition of a metadata description file, e.g. codemeta.json, to a

repository this could be frustrating for a user if they believe that these files are used as part

of the assessment. Equally well, for an end user to be told what metrics or tests have failed

is less useful than being told on how they can improve the FAIRness of their repositories.

Finally, the tool developers need to ensure that their tools give consistent results for similar

repositories. What would be useful for both tool developers and end users is for the FAIR

community to provide exemplar repositories; tool developers could test their tooling against

these, while end users could use them to see best practices applied and emulate them to

become FAIRer citizens in publishing their data and/or research software.

27 | Page

8 Conclusions and next steps

This work examined some existing autonomous FAIR assessment tools and the metrics, tests,

and assumptions they use for their suitability to perform autonomous assessments of

software against the FAIR principles (as extended to software via the FAIR4RS principles).

The FAIR data principles have a 5-year lead time over the FAIR4RS principles but the latter

can build on the groundwork already done on the former. At the start of this work, there

were no FAIR4RS metrics or autonomous assessment tools. Since then, a number of FAIR4RS

metrics have been defined by the FAIR-IMPACT project, including versions applicable within

a social science domain, and some of these metrics have been implemented within the F-UJI

framework. It would be useful for tool developers and end-users for the FAIR4RS community

to set up exemplar software repositories, so that tool developers could use them to test

their FAIR4RS assessments and ensure consistency but more importantly for those wishing

to adopt the FAIR4RS principles to emulate.

28 | Page

References

Bahim, C., Casorrán-Amilburu, C., Dekkers, M., Herczog, E., Loozen, N., Repanas, K., Russell,

K., & Stall, S. (2020). The FAIR data maturity model: An approach to harmonise FAIR

assessments. Data Science Journal, 19. https://doi.org/10.5334/dsj-2020-041

Chue Hong, N., Katz, Barker, Lamprecht, Martinez, Psomopoulos, Harrow, Castro,

Gruenpeter, Martinez, Honeyman, Struck, Lee, Loewe, Werkhoven, van, Jones,

Garijo, Plomp, Genova,…Wg, R. F. (2022, May 24). FAIR principles for research

software (FAIR4RS principles). Zenodo.

https://zenodo.org/record/6623556#.YqCJTJNBwlw

Chue Hong, N., Breitmoser, E., Antonioletti, M., Davidson, J., Garijo, D., Gonzalez-Beltran, A.,

Gruenpeter, M., Huber, R., Jonquet, C., Priddy, M., Shepeherdson, J., Verburg, M., &

Wood, C. (2023, October 27). D5.2 - Metrics for automated FAIR software assessment

in a disciplinary context. Zenodo. https://zenodo.org/doi/10.5281/zenodo.10047401

Devaraju, A., & Huber, R. (2021). An automated solution for measuring the progress toward

FAIR research data. Patterns, 2(11), 100370.

https://doi.org/10.1016/j.patter.2021.100370

Devaraju, Huber, Mokrane, Herterich, Cepinskas, Vries, de, L’Hours, Davidson, & White, A.

(2022, April 14). FAIRsFAIR data object assessment metrics. Zenodo.

https://zenodo.org/record/6461229

Emonet, V. & Dumontier, M. (n.d.) FAIR enough.

https://github.com/MaastrichtU-IDS/fair-enough [accessed 2024-03-11]

Gaignard, A., Rosnet, T., De Lamotte, F., Lefort, V., & Devignes, M.-D. (2023). FAIR-Checker:

Supporting digital resource findability and reuse with Knowledge Graphs and

Semantic Web standards. Journal of Biomedical Semantics, 14(1).

https://doi.org/10.1186/s13326-023-00289-5

Mons, B., Neylon, C., Velterop, J., Dumontier, M., da Silva Santos, L. O. B., & Wilkinson, M. D.

(2017). Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the

European Open Science Cloud. Information Services & Use, 37(1), 49–56.

https://doi.org/10.3233/isu-170824

29 | Page

https://doi.org/10.5334/dsj-2020-041
https://zenodo.org/record/6623556#.YqCJTJNBwlw
https://zenodo.org/doi/10.5281/zenodo.10047401
https://doi.org/10.1016/j.patter.2021.100370
https://zenodo.org/record/6461229
https://github.com/MaastrichtU-IDS/fair-enough
https://doi.org/10.1186/s13326-023-00289-5
https://doi.org/10.3233/isu-170824

Moraw, K., Antonioletti, M., Breitmoser, M., Chue Hong, N., Priddy, M. (2024). M5.6 -

Practical tests for automated FAIR software assessment in a disciplinary context.

https://zenodo.org/doi/10.5281/zenodo.10890042

Plomp, E. (2020). Going digital: Persistent identifiers for research samples, resources and

instruments. Data Science Journal, 19(1). https://doi.org/10.5334/dsj-2020-046

Spaaks, J. H., Verhoeven, S., Tjong Kim Sang, E., Diblen, F., Martinez-Ortiz, C., Etuk, E., Kuzak,

M., Werkhoven, B., Soares Siqueira, A., Saladi, S., & Holding, A. (2022). howfairis

(0.14.2). Zenodo. https://doi.org/10.5281/zenodo.7041464

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A.,

Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes,

A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R.,…
Mons, B. (2016). The FAIR Guiding Principles for scientific data management and

stewardship. Scientific Data, 3(1). https://doi.org/10.1038/sdata.2016.18

Wilkinson, M. D., Sansone, S.-A., Marjan, G., Nordling, J., Dennis, R., & Hecker, D. (2022,

December 20). FAIR assessment tools: Towards an “apples to apples” comparisons.

Zenodo. https://zenodo.org/record/7463421

Wilkinson, M. D., Sansone, S.-A., Schultes, E., Doorn, P., Bonino da Silva Santos, L. O., &

Dumontier, M. (2018). A design framework and exemplar metrics for FAIRness.

Scientific Data, 5(1). https://doi.org/10.1038/sdata.2018.118

30 | Page

https://zenodo.org/doi/10.5281/zenodo.10890042
https://doi.org/10.5334/dsj-2020-046
https://doi.org/10.5281/zenodo.7041464
https://doi.org/10.1038/sdata.2016.18
https://zenodo.org/record/7463421
https://doi.org/10.1038/sdata.2018.118

Appendix 1: howfairis tests

The following tests are used by howfairis to test each of the five Netherlands eScience

Center and DANS recommendations.

1. Use a publicly accessible repository with version control

● Only checks repositories hosted at https://github.com or https://gitlab.com. It does

not support self-hosted GitLab instances.

2. Include a License

● Checks for the availability of a LICENSE file at the project level page and parses the

repository project page for a license reference.

3. Register your code in a community registry

● Check whether the code has been submitted to a standard software distribution site

by looking for the inclusion of Shields.io badges in the README.md file. Specifically, it

checks any one of the following:

○ The Astrophysics Source Code Library52 (ascl) badge.

○ The bintray badge - a service run by JFrog discontinued on 01/05/21 that

used to facilitate the distribution of Java binaries53.

○ The Conda badge - conda provides a package, dependency and environment

management for several different computing languages and conda-forge54 can

be used to distribute software.

○ The CRAN badge - the Comprehensive R Archive Network (CRAN)55 is the

canonical way to distribute R packages.

○ The crates56 badge - a Rust package registry.

○ The Maven57 badge - Maven can manage a project's build, reporting and

documentation from a central piece of information.

○ The npm58 badge - JavaScript package management.

○ The pypi59 badge - Python package index.

○ The rsd60 badge - research software directory designed to show the impact

research software has on research and society.

60 Research software directory https://research-software-directory.org last accessed 21/09/23.

59 Pypi https://pypi.org last accessed 21/09/23.

58 Npm https://www.npmjs.com last accessed 21/09/23.

57 Maven https://maven.apache.org last accessed 21/09/23.

56 Crates https://crates.io accessed 21/09/23.

55 CRAN https://cran.r-project.org last accessed 18/09/23.

54 Conda-forge https://conda-forge.org last accessed on 19/09/23.

53 https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter/; accessed 25/01/24

52 The Astrophysics Source Code Library https://ascl.net last accessed on 11/09/23.

31 | Page

https://github.com
https://gitlab.com
https://research-software-directory.org
https://pypi.org
https://www.npmjs.com
https://maven.apache.org
https://crates.io
https://cran.r-project.org
https://conda-forge.org
https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter/
https://ascl.net

○ The GitHub marketplace61 badge - demonstrates that your code is available

through the GitHub marketplace. The marketplace allows developers to

improve and extend GitHub workflows

4. Enable citation of the software, by checking for any one of the following:

○ Check for a CITATION file in the repository.

○ Check for a CITATION.cff file in the repository.

○ Look for a codemeta.json file produced by the CodeMeta generator62 in the

repository.

○ Look for the presence of a Zenodo badge.

○ Look for a “.zenodo.json” file which allows developers to override the default

metadata obtained using the GitHub API63.

5. Use a software checklist

○ Checks for the core infrastructure best practice badge64.

Compliance with recommendations 3 and 5 are obtained through the parsing of a README

in markdown or restructure text format (these are case sensitive, and the file must be stored

in a standard location, as defined by the tool; e.g. the top-level directory of the repository);

the tool looks for any one of the Shields.io badges65 in the contents of the README files. At

the time of writing, howfairis only performs its tests against code hosted on either

https://github.com or https://gitlab.com; no other software repository deployments,

including local deployments of the GitLab infrastructure, are supported.

65 Badges https://shields.io last accessed 07/09/23.

64 Core infrastructure badge https://www.bestpractices.dev last accessed on 21/09/23.

63 See https://developers.zenodo.org/#other-questions-on-harvesting last accessed on 21/09/23.

62 CodeMeta generator https://codemeta.github.io/codemeta-generator last accessed on 21/09/23.

61 GitHub market place https://github.com/marketplace last accessed 21/09/23.

32 | Page

https://github.com
https://gitlab.com
https://shields.io
https://www.bestpractices.dev
https://developers.zenodo.org/#other-questions-on-harvesting
https://codemeta.github.io/codemeta-generator
https://github.com/marketplace

