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Abstract

To investigate protein-protein interactions, a novel yeast two-hybrid next generation
screening (Y2H-NGIS) assay has been developed. Using next generation sequencing
it is possible to test thousands of interactions in batch. The assay enriches for inter-
acting preys compared to controls, and a bait control is employed to validate results.
Count data from this assay can be modeles usign Negative Binomial distribution. Here
I propose two approximations to the Negative Binomial modeling of Y2H-NGIS data,
using differential expression analysis and processing count tables from multiple biolog-
ical replicates. A frequentist and Bayesian approximations are compared and tested in
a dataset using barley and powdery mildew effector dataset. The goal is to compare
selection and control conditions to identify genuine interactions and minimize false
positives inherent in this biological system.

1 Introduction

Hordeum vulgare, commonly referred to as barley, is frequently infected by the fungi, Blume-
ria graminis (powdery mildew). Once the fungi is established, it produces a structure known
as a haustorium. This structure serves two functions. In addition to feeding, the haustorium
also produces effector proteins that regulate the host’s immune response. These effector
proteins have been identified using mass spectrometry and bioinformatic pipelines.
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These effectors are being screened for protein-protein interactions using a yeast 2-hybrid
assay. The objective of these experiments is to identify what barley proteins (preys) interact
at the molecular level with those effectors proteins (baits). This system after selection
will enrich the yeast populations that contain the interacting preys as compared with an
experiment with no selection. Additionally, a bait control is proposed where a random bait
is used in the screening.

The method described in (Pashkova et al, 2016), utilizes next generation sequencing
to screen the yeast 2 hybrid results for each bait selection and one control sample with no
selection, ranking the candidate protein interactions to identify the enriched preys in the
selected conditions, and from that obtain the candidate proteins that interact with a specific
bait.

In my approach to analyze the data from this experiment, I approximate this problem
to a differential expression analysis. After a bioinformatic processing pipeline, my input
data for this modelling is a count table for n genes under each condition, using 3 biological
replicates. My objective is then to compare the counting data from selection and control to
identify the enriched preys and discard false positives, which is known to be high because of
the characteristics of this biological system. I propose a frequentist and a Bayesian solution
to the problem and compare their residuals and running times.

2 Mathematical modeling

To start with the modeling, I propose a hierarchical Bayesian model which I will compare wit
a maximum likelihood estimation. I choose the negative binomial distribution model, which
accounts for a high variability by using the parameter of over-dispersion(¢) in addition to the

mean(). Under this model, the variance and the mean are related as follows: "—: =1+ opu.

Definition of variables:

y; = number of counts for a gene

r = dispersion :%

¢ = over dispersion

p = the probability of success in each event (true positive)
1 = expected number of counts for each gene



Negative binomial pdf: f(y)ng = f(y,r,p) = P(Y = y), with
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I will use a generalized linear model(GLM) to establish a relationship between the counts
data (y) and the covariates (x), which in the simplest model has a a value of zero in the
control and 1 for the selected condition.

Y|z, B,¢ ~ NB(u, ¢), n = exp(z], 8) (2)

Suppose the experimental design of this particular experiment involves three replicates of
controls and three experimental bait screens. The three control trials can be referred to as
Y.ir, with ¢ standing for control, i indicating the which control replicate and k representing
the gene. The three experimental bait trials are represented by Y3, with b representing b, i
indicating the bait replicate, and k indicating the gene.

I am interested in identifying the interactors of a bait when I compare the control and the
bait screen. To model this problem, I will compare a Bayesian to a frequentist approach.
As a first step I need to state an hypothesis test. The hypothesis testing can be stated as:

H, : For an specific gene k, there is no difference in the enrichment levels of the control
and bait screen samples

H,: For an specific gene, there are differences in the enrichment levels of the control and
bait screen samples

Mathematically, we can write these hypotheses as:

H,:Y; ~ NB(u,¢) with i € {1,...,6}
H, : Yoi ~ NB(jie, 6.) and Yi; ~ NB(u, ¢) with i € {1,2,3}

2.1 Frequentist solution

I will use a Likelihood Ratio Test LRT and select a statistic which is sensitive to the null
hypothesis, as follows:
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The likelihood ratio test statistic A = —2log A ~ x3 has an asymptotic chi-squared
distribution with two degrees of freedom as the difference in the number of parameters.

In appendix A I present all the details of the derivations to solve the system of equations
and get MLE for ¢, u. In summary I will implement these equations

n
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Derivative of the log-likelihood equation with respect to pu:
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Derivative of the log-likelihood with respect to ¢:
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To finish solving this equation I can use a numerical method as for example
Newton-Rhapson method, With both MLE equations, I can estimate each parameter per
each gene, calculate the likelihoods and the LTR can be performed to get the p-values of
each gene.

Now I have defined the elements we require to solve this problem and I can proceed to
generate an algorithm which can be applied to a toy dataset. With all the elements to
solve this problem, I define the following algorithm:

1. Calculate the likelihood

a) Determine the log likelihood

b) Compute the Maximum Likelihood of the data w.r.t parameters ¢, u

2. For each gene,

a) Using the calculated MLEs, plug in the MLEs into the likelihood for different datasets
b) Perform the likelihood ratio test

3. Get predicted values, p-values and carry out multiple testing correction
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2.2 Bayesian solution

To solve the problem using Bayesian statistics I propose a hierarchical model using log
links. I will use the model proposed by (Fu, 2016). We start with the data model that was
already stated in equations (1) and (2) where the counts can be modelled using negative
binomial distribution and the mean has a log link to a regression model with a desired
number of covariates. For this model there is only one covariate that codifies selection
(x=1) and control (x=0).

Y:i|$iaﬁ7¢ ~ NB(/IH ¢>7

log(i) = Bo + x16 (6)

For the next level we have the process model for ¢, 5;. According to Fu, 2016 the natural
prior for §; is a multinormal distribution, and a Gamma for ¢ as follows:

Bjlmy, X5 ~ N(my, %)
Pla,b ~ G(a,b)

Now we have the parameter level choosing conjugate hyperprior. For the means of the
multinormal distribution for 8; we have another multinormal distribution with a smaller
variance which is controlled by the hyperparameter «, the variance vector is distributed
with an Inverse-Wishart distribution that is equivalent to a conjugate prior for the variance
of a multivariate normal. Finally we have the parameters that define the gamma
distribution for ¢. These are also conjugate priors

m;|p, Xj, a0~ N(mj, E;/a
X v~ IW(Q,v
a; < s* /T (a'

bjlp,q ~ G(p,

)
)
) (8)
q)

Selection of hyperpriors: we assumed that no expert knowledge was available so I set a
non-informative prior distribution as in Fu 2016:
w=10,0,0a =1e—6,% = Diag[l],2 = (a+ 1)E, v =4,s=0.001,l=p=q¢g=1,a =2

Now we have defined the elements we require to solve this problem and we can proceed to
generate an algorithm which can be applied to a toy dataset. I will use the Gibbs sampler



from JAGS (Plummer, 2003) and then estimate predictors and p-values for the hypothesis
test:

1. Determine priors and normalization method

a) Use non-informative priors

b) Use a library-size normalization and filter out results

2. Use Gibbs sampling to calculate posterior distributions,

a) Calculate posterior distribution for the parameters using JAGS

b) Optimize the model to avoid autocorrelation

3. Get predicted values, p-values and carry out multiple testing correction

3 Implementation

I tested this methodology with the sequencing data obtained from (Velasquez-Zapata et al
2021). The data comes from a bait identified as Mla 1-161. After filtering, normalizing and
running the analysis I got a total of 26 genes identified in the library. These include protein
kinases, receptors, chloropastic proteins, among others.

There were challenges to this implementation as for example zero counts so I decided to
filter out genes with zero counts across replicates. The second challenge in the
implementation of the Bayesian approach was autocorrelation, I found I had to
reparameterize the problem with the mean and the dispersion parameter instead of p and
dispersion. Increasing thinning also helped to decrease the problem, as it can be observed
in figure 1. A third problem I found was related to adaptation of the model, for which I
had to increase the adaptation number of iterations.
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Figure 1. Autocorrelation plots for the mean parameter before and after
reparameterization and thinning.



4 Results and Discussion

After getting all the estimators from maximum likelihood and the Bayesian analysis I
predicted values from each model using the MLEs and the mean of the posterior
distributions for pu, ¢. Figure 2 shows these results. We can observe that the predicted
values are withing the range of the observed values and visually both models look very
similar at that level.
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Figure 2. Observed data and predicted values for genes 1-26. Green is experimental data,
orange is Bayesian predicted and purple MLE predicted. Control(0), Selected (1)

When the results are faceted by type of selection it is possible to observe that the selected
sample is the one with more variation in the observations and then more variation in the
predictors too. After this, residuals were calculated as log(value)-log(predicted) and
plotted to compare the methods. Figure 3 shows the results and we can see that both
methods behave very similarly. Both have a majority of residuals around zero with a flat
slope, however there is a group of residuals which are very skewed from this behavior.
These must coincide with genes with a high variation their replicates from the selected
sample, confirming what we observed in the predicted plot.
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Figure 3. Residuals plots from the Bayesian and Frequentist models.

Fu (2016) analyzed both methods for a counting example of regional crash counts. He
found that as the number of covariates increases the Bayesian models has better
performance by decreasing the error. For the model that was implemented here I only had
one covariate so I could not see that effect. Additionally, using more informative priors can
help to improve the Bayesian model.

As I commented, I filtered out several cases that certainly the Bayesian model could have
handled better than the frequentist approach. Those cases include very low counts and
zero counts across selected replicates. Both models fail to replicate counts when there is no
consistency across biological replicates, as we can see in the residuals plots.

That variation in the counts in the selected samples and the different replicates comes from
the experimental conditions. These are inherent to the yeast test and the bioinformatic
pipeline implemented to analyze the raw data, so improvements in these areas will
certainly make more reproducible count matrices. There is one factor that we cannot
control and it is related with random mutations in yeast that would allow a cell to
reproduce even when it does not carry the interacting prey. That randomness is associated
with the test, so identifying those outliers is important to decide is take them out of the
analysis or flag them as we compare the p-values.

On the other side, the Bayesian analysis is more computationally expensive than the
frequentist so both implementations have advantages and disadvantages. On the Bayesian
side the optimization of the running parameters can be challenging as I experienced when I
tried to run it, and on the frequentist side there are limitations on the number of cases that
it can handle. In order to make a reproducible analysis it is necessary to take into account
those factors and decide according to the specifics of the dataset.



5 Conclusions

The negative binomial regression is an useful way of analyzing count data. As a
generalization of the Poisson regression it allows for accounting for variance from
environmental factors represented by the dispersion parameter. Many systems in biology
and bioinformatics are modelled using this distribution and improvements in their
implementation and accuracy is required to predict better the biology in the background.

As a future direction I am interested in testing this methodology to compare different
baits, which requires a different hypothesis test and regression model that allows for several
bait-control screenings. This will provide more information about non-specific preys which
are interacting with a large number of baits, and this can be used to identify other false
positives in the system.
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7 Appendix A

Derivation for maximum likelihood estimation: the first step would be to find the
likelihood of this problem, using the negative binomial distribution and assuming that all

samples are iid.

T T(yi+97) (op)”
L(g, p1, ..., Yy H T(¢ 1)y, ((1+M5)yi+¢_l) 9)

=1

Now, we calculate the log-likelihood.
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The following step is to use the log-likelihood equation to calculate the MLE estimators for
the parameters. Now, we maximize it with respect to the parameters p and ¢.
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Derivative of the log-likelihood equation with respect to p:
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Derivative of the log-likelihood with respect to ¢:
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