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INTRODUCTION

Wavelet transforms are recent mathematical techniques, based on group
theory and square integrable representations, which allows one to unfold
a signal, or a field, into both space and scale, and possibly directions. They
use analyzing functions, called wavelets, which are tocalized in space. The
scale decomposition is obtained by dilating or contracting the chosen
analyzing wavelei before convolving it with the signal. The limited spatial
support of wavelets i3 important because then the behavior of the signal
at infinity does not play any role. Therefore the wavelet analysis or syn-
thesis can be performed locally on the signal, as opposed to the Fourier
transform which is inherently nonlocal due to the space-filling nature of
the trigonometric functions. Wavelet transforms have been applied mostly
to signal processing, image coding, and numerical analysis, and they are
still evolving.

So far there are only two complete presentations of this topic, both
written in French, one for engineers (Gasquet & Witomski 1990) and the
other for mathematicians (Meyver 1990a), and two conference proceedings,
the first in English {Combes gt al 1989), the second in French (Lemarié
1950a). In preparation are a textbook (Holschneider 1991), a course (Dau-
bechies 1991), three conference procecdings (Mceyer & Paul 1991, Beylkin
et al 1991b, Farge et al 1991), and a special issue of IEEE Transactions
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on Information Theory {Daubechies et al 1991), which are all written in
English.

Therefore, T assume that the reader is not yet familiar with this topic
and give a general presentation of both the continuous wavelet transform
and the discrete wavelet transform, in a manner as complete and detailed
as possible, to provide the reader with the basic infoermation with which
to start using these transforms. In this spirit I will discuss the choice of the
wavelet, which varics according to its application, and point out pitfalls
to be avoided in the interpretation of wavelet transform results,

Since most of the cxisting work has so far been of an cxploratory
character and thus cannot be held as representative of the possible impact
of wavelets on fluid mechanics, only brief reference will be madc to papers
dealing with applications. 1 shall also present several new diagnostics, ail
based on wavelet coefficients, which may be useful to analyze, model, or
compute turbulent flows,

1. THE NEED FOR A SPACE-SCALE
DECOMPOSITION OF TURBULENT FLOWS

In the field of turbulence, one may feel uneasy about the fact that we have
two different pictures of turbulence, depending on the side of the Fourier
transform from which we perceive 1t. On the one hand, if we look at the
Fourier spectral space, we have a theory that assumes the exisience of an
energy cascade between the different excited wavenumbers of the flow. Tt
predicts the universality of the Fourier energy spectrum in the inertial
range, namely for wavenumbers larger than those corresponding to the
integral scales at which the flow is excited and smaller than those cor-
responding to the dissipative scales where all instabilities are damped. In
this Fourier space approach the direct numerical simulation of a turbulent
flow requires a number of resolved Fourier wavenumbers which scales as
Re for two-dimensional flows and as Re® for three-dimensional flows (Re
being the Reynolds number characteristic of the flow turbulence). On the
other hand, if we look at the physical space, we must admit a lack of
general theory. Still, we have a large amount of evidence, both experi-
mental (Townsend 1956, Kline et al 1967, Laufer 1975) and numerical
(Basdevant et al 1981, McWilliams 1984, Kim et al 1987), for the presence
of coherent structures in turbulent flows. They correspond to the con-
densation of the vorticity ficld into organized patterns, which contain most
of the energy—or enstrophy in dimension two—of the flow and where
nonlinearity is reduced, or even cancelled when the coherent structures are
axisymmetric. These coherent structures seem to play an important, but
not yet well understood, dynamical role. We can ask the following ques-
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tions. Are there some elementary cohercnt structures? Do their mutual
interactions have a universal character? Is it possible to compute the flow
¢volution with a reduced number of degrees of freedom relative to the very
large number of Fourier components otherwise necessary? This reduction
could correspond to a projection of Navier-Stokes equations on those
coherent structures or on some related functional bases well localized in
physical space.

Being very uncomfortable with these two separate descriptions of tur-
bulence, I was immediately enthusiastic when, in 1984, A, Grossmann told
me about the wavelet transform theory he was developing from Morlet’s
original ideas. His theory had the promise of a unified approach which
could reconcile these two descriptions and allow us to analyze a turbulent
flow in terms of both space and scale at once, up to the limits of the
uncertainty principle. Another reason, rather naive, for the immediate
appeal of wavelets was the fact that the Morlet wavelet evoked to me the
shape of Tennekes and Lumley’s eddy (Tennckes & Lumley 1972) pro-
posed to model turbulence, and of some coherent structures whose exis-
tence had been conjectured by Ruelle (D. Ruelle, persenal communication,
1983) and then obscrved by Basdevant in his numerical simulations of
two-dimensional flows (Basdevant & Couder 1986). Indeed, it scems much
better to decompose a turbulent field into such localized oscillations of
finite energy as wavelets, rather than into space-filling trgonometric func-
tions which do not belong to the ZR") functional space and therefore are
not of finite energy.

In the context of turbulence, the wavelet transform may vield some
clegant decompositions of turbulent fiows (Section 5.1). The continuocus
wavelet transform offers a continuous and redundant unfolding in terms
of both space and scale, which may enable us to track the dynamics of
coherent structures and measure their contributions to the energy spectrum
(Section 5.2). The discrete wavelet transform allows an orthonormal pro-
jection on a minimal number of independent modes which might be used
to compute or medel the turbulent flow dynamics in a better way than
with Fourier modes (Section 5.3).

2. WAVELET TRANSFORM PRINCIPLES
2.1  History

The wavelet transform originated in 1980 with Morlet, a French research
scientist working on seismic data analysis (Morlet 1981, 1983; Goupillaud
etal 1984), who then collaborated with Grossmann, a theoretical physicist
from the CNRS in Marseille-Luminy. They developed the geometrical
formalism of the continuous wavelet transform (Grossmann et al 1985,
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1986, 1987, 1989; Grossmann 1988; Grossmann & Morlet 1984, 1985;
Grossmann & Paul 1984; Gressmann & Kronland-Martinet 1988) based
on invariance under the affine group—namely translation and dilation—
which allows the decomposition of a signal into contributions of both space
and scale (Section 3.1). In particular the continuous wavelet transform is
well suited for analyzing the local differentiability of a function, and for
detecting and characterizing its possible singularities (Holschneider 1988b;
Jaffard 1989a; Arnéodo et al 1988; Holschneider & Tchamitchian 1989;
Mallat & Hwang 1990; Jaffard 1991a,b). Itis also useful for signal process-
ing, in particular with the “skeleton” technique (Escudié & Torrésani 1989,
Tchamitchian & Torrésani 1991, Delprat et al 1991) which allows the
extraction of the modulation law of a complex signal, assuming some
stationary phase hypothesis. The continuous wavelet transform has been
extended to » dimensions by Meyer (1985) and then by Murenzi using
rotation, in addition to dilation and translation (Murenzi 1989, 1990;
Antoine et al 1990, 1991). Murenzi is presently extending it to # dimensions
plus time (Duval-Destin & Murenzi 1991). The wavelet transform then
works as a “microscope,” discriminating different scales in an »-dimen-
sional field, and as a “"polarizer,” separating the different angular con-
tributions of the signal.

When, in 1983, Meyer read Morlet and Grossmann’s work, he recog-
nized Calderon’s identity (Calderon 1964) behind the admissibility con-
dition and the reconstruction formula of the continuous wavelet theory
(Section 3.1). He then collaborated with Grossmann and Daubechies
(Danbechies et al 1986) to select a discrete subset of the continuous wavelet
space, chosen in such a way that it constitutes a quasi-orthogonal compleie
set of L*(R"), called a wavelet frame (Section 4.1). Complementary to this,
Morlet and Grossmann had previously defined an interpolation formula—
based on the reproducing kernel property of the continuous wavelet trans-
form (Section 3.2)—which recovers the whole space of continuous wavelet
coefficients from the coefficients of a discrele subset, such as a wavelet
frame (Grossman & Morlet 1985). Meyer then tried to prove that, even
if wavelet decomposition behaves in some sense as an orthogonal basis of
LXR"), there could not be any true orthogonal basis constructed with
regular wavelets. The Haar orthogonal basis (Haar 1909) was well-known,
but the lack of regularity of the functions it uses creates problems for
decomposing smocth functions, whose Haar coefficients would only decay
very slowly at infinity. Meyer was therefore surprised to discover an
orthogonal basis {(Section 4.2) built from a regular wavelet (Meyer 1986,
1987a,b, 1988). He later extended it to the n-dimensional case in col-
laboration with his student Lemarié (Lemari¢ & Meyer 1986). In 1987,
Mevyer (1988, 1989a,b.¢, 1990a,b,c) and Mallat (1988) introduced the con-
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cept of multiresolution analysis, which is very similar to the Quadratic Mirror
Filters technique (Esteban & Galand 1977) defined in digital processing
and computer vision. This approach gives a general meihod for building
orthogonal wavelet bases and leads to the implementation of fast wavelet
algorithms (Mallat 1989a,b). Since then many cother orthogonal wavelet
bases have been found, among them: the Battle-Lemaric wavelet (Battle
1987, 1988; Lemarié 1988). which uses exponentially decreasing spline
functions, the discrete orthogonal bases of Rioul (1987, 1991), and the
compactly supported and regular wavelets of Daubechies {1988, 1989),
built by iterating some discrete filters.

From today’s point of view we can recognize, a posteriori, that several
aspects of wavelet theory were already present, more or less explicitly, in
many fields, such as image processing (Granlund 1978}, because this kind
of decomposition is indeed very natural. This is particularly clear for the
Strémberg orthogonal basis (Stromberg 1981) used in functional analysis
and for the hicrarchical basis of Zimin proposed to model turbulence
(Zimin 1981). Today wavelet theory is a new and rapidly evolving math-
ematical technique, which has established similarities betwcen varions
methods that were independently developed in different fields, from func-
tional analysis to signal proccssing, and gives them a common theoretical
framework.

2.2 Definition

What are the necessary ingredients of the wavelet transform?

ApmissiBiLiTy  To be called a “wavelet,” the analyzing function should
be admissible (Section 3.1), which, for an integrable function, means that
its average should be zero. This requirement excludes, for instance, func-
tions uwsed in Karhunen-Lodve—also called Proper Orthonormal
Decompositions (Lumley 1981, Aubry et al 1988)—which are not of zero
mean value.

SIMILARITY The scale decomposition should be obtained by the trans-
lation and dilation of only one “mother” function, All analyzing wavelets
should therefore be mutually similar, namely scale covariant with one
another, in particular they should have a constant number of oscillations
(Section 3.1). Thus this dilation procedure allows an optimal compromise
in view of the uncertainty principle: The wavelet transform gives very good
spatial resolution in the small scales and very good scale resolution in the
large scales (Figure 1). This similarity condition excludes the windowed
Fouri¢r transform of Gabor (1946), whose scale decomposition. is based
on a family of trigonometric functions exhibiting increasingly many oscil-
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Figure | Phase space associated with different transforms. The uncertainty principle
imposes phase-space “atoms” such that Ax-Ak = 2n. 1. Apalyzing lunclion in physical
space, 2. analyzing fonction in Foutier space, and 3. information cell Ax— Ak in phase space.
() Shannon sampiing, (&) Fourier transform, (¢) Gabor transform, () Wavelet transfortn.

lations in & window of constant size. In this case the spatial resolution in
the small scales and the range in the large scales are limited by the size of
the window (Figure 1),

INVERTIBILITY There should be at least one reconstruction formula for
recovering the signal exactly from its wavelet cocfficients and for allowing
the computation of energy or other invariants directly from them (Sections
3.1 and 4.2). This precludes passband filtering techniques, renamed today
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“Fourierlets,” which do not give an exact reconstruction formula for
synthesizing the signal from its spectral coefficients.

REGULARITY In practice the wavelet should also be well tocalized on both
sides of the Fourier transform, namely it should be concentrated on some
finite spatial domain and be sufficiently regular. Indeed, there also exist
regular wavelets that vanish outside a domain of compact support (Section
4.2). This additional regularity requirement excludes all discontinuous
functions such as those used in the Haar orthogonal decomposition (Haar 1909).

CANCELLATIONS For some applications, in particular turbulent signal
analysis, the wavelet should not only be of zero mean value (admissibility
condition), but should also have some vanishing high-order moments
(Section 3.1). This requirement, which eliminates the most regular (poly-
nomial) part of the signal, allows the study of its high-order fluctuations
and possible singularities in some high-order derivatives. In this case, the
wavelet coefficients will be very small in the regions where the function is
as smooth as the order of cancellation and the wavelet transform will only
react to the higher order variations of the function,

2.3 Comparison with the Fourier Transform

Sinee Fourier’s work on heat theory, the most commoniy uwsed basis
functions in physics have been the trigonomeiric functions, because they
constitute an orthogonal basis of L*(0), 27), the functional space of square
integrable functions. Thus they allow the decomposition of any function
f(x)e LY0,2r) into a linear combination of Fourier vectors, defined by
their Fourier coefficients f(k) = ¢(¢**| f(x)>. Unfortunately the trigono-
metric Functions oscillate forever and thercfore the information content
of f(x) is completely delocalized among all the spectral coefficients f(k).
Indeed the Fourier transform does not lose information about f(x), but
instead “spreads” it away; it is then very difficult, or even impossible, as
soon as there is some computational noise, to study the properties of f(x)
from those of /(). T et us for instance take the case of a function that is
smooth everywhere except at 4 few singular points. The positions of the
singularities are related to the phase of all the Fourier coefficients. There-
fore there is no way to localize the singularities in Fourier space and the
only solution will be to reconstruct f(x) from f(%). Similarly, this function
Sf(x) will have a power-law spectrum so that the modulus of the Fourier
coeflicients will scale as & °. This indicates that f{x) is globally nonregular
with singularitics of at most exponent . Unfortunately, we have then lost
the essential information, namely the fact that f{x) is regular everywhere
except at a tew singular points. If, for instance, these singular points are
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due to experimental errors, we will not be able to filter them out because
they have affected all the Fourier ¢oefficients.

In contrast to the Fourier transform, the wavelet transform keeps the
locality present in the signal and allows the local reconstruction of a signal.
It is then possible to reconstruct only a portion of it or only its local
contributions to a given range of scales. In fact, there is a relationship
between the local behavior of a signal and the tocal behavior of its wavelet
coefficients. For instance, if a functien f(x) is locally smoocth, the cor-
responding wavelet coefficients will remain small, and if f{x) contains a
singularity, then in its vicinity the wavelet coefficients’ amplitude will
increase drastically (Section 3.2). Likewise the wavelet series of f{x) con-
verges locally to f(x), even if f(x) is a distribution (in this case the order
of the distribution should not exceed the regularity of the analyzing wave-
let). By “locally” we mean that, for reconstructing a portion of a signal,
it is only necessary to consider the wavelet coeflicients belonging to the
corresponding subdomain of the wavelet space, the so-called influence
cone (Section 3.2). Consequently, the wavelet transform is very robust for
reconstruction, Indeed, if the wavelet coefficients are occasionally subject
to errors, this will only affect the reconstructed signal locally near the
perturbed positions, while the Fourier transform would spread out the
errors everywhere in the reconstructed signal. The Fourier transform is
also particularly sensitive to phase errors, due to the alternating character
of the trigonometric series, This is not the case for wavelet transforms. It
is even possible to correct the errors present in the continuous wavelet
coefficients, thanks to the built-in redundancy of the continuous wavelet
transform due to its reproducing kernel property {Section 3.1).

In fact the wavelet transform is not intended to replace the Fourier
transform, which remains very appropriate, for instance, in the study of
harmonic signals or when there is no need for local information. Let vs
also mention that the Fourier transform plays a role in the admissibility
condition defining wavelets (Section 3.1) and in the construction of discrete
filters used in multiresolution analysis (Section 4.2}. In practice the Fourier
transform may be thought of as imbedded into the wavelet transform,
because it is, to first approximation, possible to compute the Fourier
spectrum of a signal by summing its wavelet coefficients over all positions
scale by scale (Section 5.2).

3. THE CONTINUOUS WAVELET TRANSFORM

3.1 Analysis and Synthesis

WAVELET DEFINITION The only constraint imposed on a function W (x),
real or complex valued, in order to be a wavelet is the admissibility
condition which requires:
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n being the number of spatial dimensions. Tf y(x) is integrable this actually
implies that it has zero mean:

Lw(x)d"x=0 or J(kl=0)=0, 2

In practice the wavelet shouid also be well-localized in both physical and
Fourier spaces. If one wants to study the behavior of the Mth derivative
of f(x), the wavelet should have cancellations up 1o order M, in order that
it does not react to the lower-order variations of f(x), namely we should
have:

J;"lp(x)x"’ d'x =10 (3)

for all m < M.

WAVELET ANALYSIS From this function ¢, the so-called mother wavelet,
we generate the family of continnously translated, dilated, and rotated

wavelets:
X—x’ 4
1 > ( )

with Je R as the scale dilation parameter corresponding to the width of
the wavelet and x"eR” as the translation parameter corresponding to
the position of the wavelet; / and ¥’ are dimensionless variables. In the
continuous wavelet literature the scale is denoted by a and the position by
b to recall that this transform is based on the affine group ax+5. We
prefer here to denote the scale /, because it corresponds to the length scale
at which we analyze f(x), and the position of the analyzing wavelet x’,
because it indeed corresponds to the actual position in physical space; we
must distinguish x” and x, which will be used as an integration variable in
(6). The rotation matrix £ belongs to the group SO(#) of rotations in
R”, and depends on the n{n—1);2 Euler angles 8. The factor I7"? is a
normalization which causes all the wavelets to have the same I? norm;

Yia(X) = 173 [Q_ ')
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therefore all wavelets will have the same energy and the wavelet coefficients
will correspond to energy densities.

The admissibility condition (1) implies that the Fourier transform of y
is rapidly decreasing near £ = 0. Therefore the Fourier transform of the
family ., constitutes a bank of passband filters with constant ratio of
width to center frequency:

Vocolk) = PG [0 (B)k] e~ Tow, ()

To summarize, the family of analyzing wavelets ¢, may be compared to
a mathematical microscope and polarizer, for which y characterizes the
optics, I~ is the resolution, x’ the position, and @ the polarization angle.

The continuous wavelet transform of a function or a distribution f(x)
is the L’-inner product between fand the wavelet family ¥, which gives
the wavelet coefficients;

J.x',0) = Gl 1> = j SOWkAO &, ®

where ¥ is the complex conjugate of ¢, or likewise the inner product
between Fand the filter bank e, which gives:

fux.0)= f Jappto (k) d'%. Q)

Figure 2 shows the continuous wavelet transform of some “academic”
signals chosen as limiting cases of a hypothetical turbulent signal: a delta
function, a peried-doubling signal, and a Gaussian white noise signal.

WAVELET SYNTHESIS  The admissibility condition (1) implies the existence
of a reproducing kernel (which will be defined in Section 3.2). We can
therefore recover the signal f{x) from its wavelet coefficients:

+ a0 a?'dn s
S0 = C,;'L L " J X, 000 3) (@) ®

If | is complex-valued and f teal-valued we should only take the real part
of (8).

For one-dimensional or for isotropic wavelets we need not integrate
over angles. Otherwise we would have to carry out the following procedure.
In order to integrate over the n(n—1}/2 Euler angles #, we define the
integral:

2n T
J‘dﬂ(8)=L ---{n—-l]f'-J;--‘(n)‘-'d)u'(e)' (9}
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In this integral we use the invariant measure du(#) of the rotation group
S0(n) defined as:
r—1 &
dp(@) = A4, [] J]sin’ '6% db} {10}

k=1 j=1

. 1(5)

A= 11 5

k=1

with

and the Euler angles
0< 0 <2 for ke[l,n—1],
0<@<n  for j#landke[l,n—1].

By analogy with Fourier space, we shall call “wawvelet space™ the set of
functions fthat are wavelet transforms of f for a given wavelet 1.

The continuous wavelet transform isometrically transforms a function
of »# variables into, ¢ither an (n+ 1)-dimensional wavelet space if we use
an 1sotropic wavelet, or an {n[(n+ 1)/2]+ 1 }-dimensional wavelet space if
we consider a directional wavelet. Therefore the information contained in
the wavelet cocfficicnts is redundant, which is expressed by the reproducing
kernel property of the continuous wavelet transform (Section 3.2); conse-
quently there exist many different reconstruction formulas. For instance,
it is possible to reconstruct f(x) from its wavelet coefficicnts using another
function, the synthesizing wavelet, different [rom the analyzing wavelet,
which then must verify a modified admissibility condition (Holschneider
1988a, Holschneider & Tchamitchian 1989). We can even choose a dis-
tribution such as the delta function (#) to reconstruct the signal. In this
case we get the simple reconstruction formula, found empirically by J.
Morlet:

+od d!
fix)=C; ' J;+ Jf(f, X, 0 v ) (an

with

d"k
(KI™

q=am“jjm)

We mention incidentally that we can use a wavelet to synthasize a signal
from what are called its Radon transform coefficients, which may be
interesting for tomographic applications (Holschneider 1990).
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3.2 Elementary Properties

We will now list some of the main properties of the continuous wavelet
transform. For the sake of simplicity, from here on we will consider the
one-dimensional wavelet transform, the generalization to n dimensions
being straightforward, and discard the prime’in x". We will denote the
continuous wavelet transform of a function f(x) by the operator notation
W[ f1(x), and the resnlting wavelet coefficients by f(f, x).

LINEARITY The wavelet transform is lincar becausc it is an inner product
between the signal f and the wavelet . Likewise, the continuous wavelet
transform of a vector function is a vector whosc componcents arc the
continuous wavelet transform of the different components.

COVARIANCE BY TRANSLATION AND DILATION The contineous wavelet
transform is covariant under any translation x,:

W1 (x—xg) = Jlh x = x0), (12)

which in particular implies that differentiation commutes with continuous
wavelet iransform; namely we have

o o
Ee Wif)y= W(a),

Yiwin) = wvn,
V-[W(D] = W(V-). (13)

A consequence of the translation covariance is the fact that the frequency
of a monochromatic signal can be read off from the phase of the wavelet
coefficients (Escudié & Torrésani 1989, Guillemain 1991, Tchamitchian &
Torrésani 1991, Delprat et al 1991). The number of zeros of the phase on
lines with [ = constant gives the frequency of the signal (Figure 26). This
property is independent of the wavelet chosen,

The continuous wavelet transform is also covariant under any dilation
by Iy

WL ox) = 15 'Ftdel, 1), (14)

A consequence of the dilation covariance is the fact that the wavelct
transform of a power-law function is fully determined by its restriction to
any line / = constant. The lings of constant phase point out the possible
singularities of the function (Figure 2g). This property is also independent
of the wavelet choice.
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DIFFERENTIATION
am
W |- o[ oo Zwmnae o as)
EMNERGY CONSERVATION
e al dvc
f_ | f(x)]? dx = ij f LAl = {16)

The wavelet transform conserves energy not only globally but also locally
if one considers all coefficients inside the “influence cone™ which consists
of the spatial support of all dilated wavelets. The above relation cor-
responds to energy conservation, which is a generalization of the Plan-
cherel identity to the continuous wavelet transform, It implies that there
is no loss of information in transforming the signal into its wavelet
coetficients.
The total energy can also be split among the different scales

+ a0

B =C; f it o (17
SPACE-SCALE LOCALITY The space-scale locality of the analyzing wavelet
i leads to the conservation of locality in the wavelet coefficient space, in
contrast to the Fourier transform which loses the locality present in the
signal. For instance, if i is well-Tocalized in the space interval g, for{ = 1,
then the wavelet coefficients corresponding to the position x, will alf be
contained in the influence cone defined by xe{x,— (" ¢.)/2, xo+{/*6.)/2).
This cone corresponds to the spatial support of all dilated wavelets at the
point xg. Likewise, if J; is well-localized in the Fourier interval Ak around
ky, for i =1, then the wavelet coefficients corresponding to the Fourier
frequency k, in the signal will only be contained in the subband defined
by le [k, (ko +(AK/20) 7", kylho—(AK[21) 7).

LOCAL REGULARITY ANALYSIS One of the most interesting properties of
the continuous wavelet transform, implied by its dilation covariance, is
the possibility it offers to measure the local regularity of a function and
therefore to characterize the functional space to which it belongs (Hol-
schneider 1988a,b; Jaffard 1989a,b, 1991c; Holschneider & Tchamitchian
1989, 1990; Tchamitchian 1989c). For instance if feC™{(x,), i.c. if f is
continuously differentiable in x, up to order m, then

FlLxo) s ™' for 10, (18)

The factor /"2 comes from the Fact that, due o the scale invariance (14),
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if we want to study the scaling of a function we must take the wavelet
coellicients in the L' norm, instead of L2 The wavelet coefficients written
in the L' norm are related to the wavelet coefficients written in the L2
norm by the simple expression:

Jo=1""Fa, (19)

If f belongs to A*(x,), the Holder space of functions of exponent a, i.e. if
£ is continuous, not necessarily differentiable in x, but such that

| flx+ x)— x| = Clxgf* witha < 1 and constant € > 0, (20a)
then

P xo) ~ Ced =1V for {50, (20b)

where & is the phase of the wavelet coefficients.

The transformed function f is regular even if £ is not. The information
about any possible singularities present in the signal, their position xg,
their strength C, and their scaling exponent «, is given by the asymptotic
behavior of f(7, x,), written in norm L' (19), for { tending to 7ero. If the
L'-norm wavelet coefficients diverge in the smail scales at the point x,,
then f is singular at x, and the slope of log| ]'(!. Xo)| versus log [ will give
the exponent of the singularity (20). It is also very easy to localize the
possible singularities of f by looking at the phase of its wavelet coeflicients:
The lines of constant phase converge on the singularities (Figure 24). If,
on the contrary, the modutus of the wavelet coeflicient becomes zero in
the very small scales sround x,, then the function £ is regular at x,. This
result is in fact the converse of (18), but its mathematical justification
requires more global assumptions on the analyzed function, namely some
decay of its wavelel coefficients in the vicinity of x, (Jaffard 1989a). There-
fore, in practice, to locally analyze a singularity at x, we should first verify
thal at small scales the wavelet coefficients around x, are not larger than
those at x,. Then we should consider not only the coefficients f{/, x,), but
al feast all coefficients belonging to the influence cone pointing towards
xo. These properties are independent of the choice of the wavelet and
they are particularly useful for characterizing fractals and multifractals
(Holschneider 1988b; Arnéodo et al 1989; Ghez. & Vaienti 1989; Argout
et al 1988, 1990, Falconcr 1991; Freysz et al 1990).

REPRODUCING KERNEL  Using the wavelet i, we can decompose any func-
tion or distribution f into its wavelet coefficicnts. Tn the case of the
conlinuous wavelet transform these coefficients form an over-complete
basis. This implies a correlation between the wavelet coefficients which, in
turn, corrgsponds Lo the existence of a reproducing kernel K, associated
to the wavelet  defined by
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+0
KI&(Iblls x,ls x’l) = Cl; lj o 'J’J’.r',w?;x’, dx. (21)

K, characterizes the correlation of the continuous wavelet transform
between two different points of the continuous half-plane (4, x). Its strue-
ture depends on the choice of the wavelet; indeed the reproducing kernel
measures the space and scale selectivity of each wavelei ;. and will there-
fore be very useful in helping to choose the wavelet most appropriate to a
given problem.

Reciprocally, an arbitrary function 7 of the half-plane (/, x)e(R* x R} is
not in general the wavelet transform of some function of R with respect
to a given wavelet . This will hold only if  is square integrable and satisfies
the reproducing kernel equation (Grossmann et al 1989, Grossmann &
Kronland-Martinet 1988):

dfzdx;_ @

f(llx’) = f .[ Kylly, 13,30, x5) [z, %72}
This condition should be checked if we want to partially resynthesize a
signal from a filtered subset of its wavelet space. An important consequence
of the reproducing kernel property (22} is the fact that the continuous
wavelet transform of a random signal (Figure 2¢) shows some correlations
that are abviously not in the signal, but in the waveletl transform itself.
The size of the correlated regions is given by the reproducing kernel and
decreases with the scale. This is one of the most common pitfalls of the
continuous wavelet transform and one should be particularly aware of it
when studying turbulent signals. In the case of discrete orthogonal wavelet
transform (Section 4.2) this problem no longer exists, since by definition
of orthogonality all wavelet coefficients are uncorrelated.

3.3 Implementation

WAVELET CHOICE AsS we have seen, the wavelet transform is an inner
product between an analyzing wavelet at a given scale f and the signal to
be analyzed; therefore the wavelet coefficients combine information about
both the signal and the wavelet. The choice of the transform, orthogonal
or not, and of the appropriate wavelet is thus an important issue which
depends on the kind of information we want to extract from the signal.
For analyzing purposes the continuous wavelet transform is better suited
becanse its redundancy allows good legihility of the signal’s information
content. For compression or modeling purposes, the orthogonal wavelet
transform (Section 4.2) or the newly developed wavelet packet technique
(Section 4.3) are preferable because they decompose the signal into a


http://www.annualreviews.org/aronline

N

Annua Reviews )
www.annualreviews.org/aronline

WAVELET TRANSFORMS 411

minimal number of independent coefficients. Then for choosing the appro-
priate wavelet, we must look at its reproducing kernel (21), which charac-
terizes its space, scale, and angular selectivity.

EXAMPLES OF COMFLEX-VALUED WAVELETS Let us consider the analysis of
a real-valued signal such as those encountered in fluid mechanics. In this
case, we usually choose a continuous wavelet transform with a progressive
complex-valued wavelet, because the quadrature =/2 phase shift between its
real and its imaginary parts allows us to eliminate the wavelet’s oscillations
when visualizing the wavelet coefficient modulus {Figure 2). From the
resulting complex-valued wavelet coefficients we can thus separate the L*-
modulus, which gives the energy density, and the phase, which detects
singularities and measures instantaneous frequencies (Escudié & Torrésani
1989, Tchamiichian & Torrésani 1991, Guillemain 1991, Delprai et al
1991). As already stated, the lines of constant phase converge on singu-
larities and the pumber of zero-crossings on lines { = constant, if the latter
are parallel, is related to the signal frequency. The phase behavior is
independent of the choice of wavelet.

The most commonly used complex-valued wavelet is the Morlet wavelet
(Figure 3a).

l.b(x) — e.\/—_lk*'xe—ﬂ«ﬂz."z}, (23)

which is a plane wave of wavevector k,, modulated by a Gaussian envelope
of unit width. Incidentally, the Morlet wavelet is only marginally admis-
sible, because it is of zero average only if some very small correction terms
are added. In practice, if we take |k} = 6, the correction terms becoms
unnecessary because they are of the same order as typical computer round-
off errors. Another way to ensure admissibility is to impose ¥(0) = 0. In
Fourier space, the Morlet wavelet is given by:

Bk) = (2r)" e ERTT fork >0,
{ (24)

itk =0 fork <0.

A very interesting property of the Morlet wavelet in its generalization to
# dimensions is its angular selectivity, which gets better and better as |k,|
increases, but with a concomitant reduction in its spatial selectivity. In
order to have both, angular and spatial selectivity Antoine and coworkers
have proposed to elongate the Morlet wavelet, while keeping |k, | small
enough 1o ensure a good space localization (Antoine et al 1990, Antoine
et al 1991).

Another complex-valued wavelet, mostly used in quantum mechanics
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(Paul 1984, 19835a,b, 1986, 1989), is the Paul wavelet which is analytic
(Figure 35):

W = r(m+1)(l_(4:/ﬁ:_g;m, (25)
or
k) =kme " fork >0,
{.p,,,(k) =0 fork < 0.

The higher the order m, the better the cancellations (vanishing moments) of
the wavelet, The complex-valued wavelets are called progressive wavelets if
their Fourier coefficients are zero for negative wavenumbers. They are well
adapted to analyze causal signals, i.e. signals for which there is some action
of causality. This is because progressive wavelets preserve the direction of
time and do nol create parasitic interference between the past and future.
Progressive wavelets are used in particular to analyze musical sounds
(Kronland-Martinet et al 1987, Kronland-Martinet 1988}

EXAMPLES OF REAL-VALUED WAVELETS Some commonly used real-valued
wavelets are the mth derivatives of the Gaussian (Figures 3¢ and 34):

Un) = (I S (e 29
or

l;';m(k) = m(\/——l ky=e -~z

The higher order derivatives imply more cancellations (vanishing
morments) of the wavelet. Among these derivatives of the Gaussian, the
most widely used is the Marr wavelet, also called the “Mexican hat”
(Figure 3d), which is the Laplacian of a Gaussian (i = 2). The Marr
wavelet in its generalization to » dimensions is isotropic and therefore
cannot discriminate different directions in the signal. Jaffard (1991b) has
praposed to use, instead of a Laplacian of 2 Gaussian, a Gaussian differ-
entiated in only one direction, which will then be nonisotropic with a good

Figure 3 Examples of wavelets  commonly used for the comtinuous wavelet transform
{continuous line for the rcal part and broken line for the imaginary part). We visvalize ¢(x)
{left) and k) (vight). () Morlet wavelet for k, = 6, (5) Paul’s wavelet for m = 4, {¢) First
derivative of a Gaussian, () Marr wavelet (second derivative of a Gaussian), (¢} DOG
{Differcnce of twe Gaussians).


http://www.annualreviews.org/aronline

N

Annua Reviews )
www.annualreviews.org/aronline

414 FARGE

angular sclectivity. Antoine and co-workers have proposed to elongate it
to recover some angular selectivity (Antoine et al 1990, Antoine et al 1991).

Another possible real-valued wavelet is the D.O.G., Difference of Gaus-
sians (Figure 3¢), which is a discrete approximation to the Laplacian of a
Gaussian:

W(x) = e~MI2— fg= T8, Q@n

or
G(k) = 2r)~ e Y2 — g B,

Dallard and Spedding have proposed an isotropic version of the two-
dimensional Morlet wavelet, called the Halo wavelet (Dallard & Spedding
1990), which is then real-valued but does not have (as the Morlet wavelet)
zero-mean value unless one enforces it:

G(k) = o~ (KI-ID72
¥(0) = 0. "

From a real-valued wavelet, which is self-conjugated, i.e. such that
wik) = !,&*{-—k), we can always construct a progressive complex-valued
wavelet. For this cancels its Fourier coefficients with negative wave-
numbers. The procedure is straightforward in one dimension, but it
becomes less obvious in the #-dimensional case, where the definition of
negative wavenurnbers is purely conventional. This problem has been
recently addressed by Dallard and Spedding, who proposed, using such a
method, the construction of a complex-valued isotropic Morlet wavelet
in two dimensions, named the Arc wavelet (Dallard & Spedding 1990).
Unfortunately the Arc wavelet presents several problems: Its imaginary
part is neither isotropic nor well-localized in physical space. In fact it is
probably impossible to construct an isotropic complex-valued wavelet. In
practice, if one wants to combine both isotropy and complex-value, Farge
and coworkers have proposed te compule a Morlel wavelet transform for n
angles, n large enough relative to the angular selectivity of the reproducing
kernel. They then integrate the modulus of the wavelet coefficients, but
not the coefficients themselves, over all # angles (Farge et al 1990},

WAVELET COEFFICIENT REPRESENTATIONS After choosing the wavelet, we
also have to choose the most appropriate graphical representation of the
wavelet coefficients. The most commeonly nsed representation is to compute
the wavelet coefficients in the L>-norm and visualize them, with a linear
scale for x and a logarithmic scalc for /, using the full color range—for
instance between 0 and 255 color levels when data are coded on | byte
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at each scale. This normalization of the wavelet coefficients, performed
scale by scale, enhances the small-scale coefficients, but we cannot then -
compare the coefficient amplitudes between different scales. Therefore we
should not renormalize if we want to compare the energy density at
different scales.

If one 1s not interested in the energy density but rather in the scaling
properties of the wavelet coefficients, another solution is to compute them
with the L'-norm (19) instead of a L:-norm. Tt is then no longer necessary
to renormalize the coefficients at each scale because all coefficients, what-
ever the scale, will now have a similar range of valucs.

Some authors use a linear scale for /, but this is not recommended
because the small-scale behavior—which is in general the most interesting
to study—is then completely flattened. In any case, a logarithmic repre-
sentation of the scale is natural for wavelets, because it corresponds to the
multiplicative nature of the dilation parameter. For instance, in the case
of orthogenal wavelets (Section 4.2), we should take the base 2 logarithm,
since the dilation parameter is usually a multiple of 2, and we should
therefore represent the wavelet coeflicients octave by octave.

ALGORITHMS The root of the continucus wavelet analysis algorithm is a
set of convolution products between the signal f and all dilated and
rotated wavelets ¢, defined in Equation (4). Therefore the first step of the
algorithm will be to generate the family of all dilated and rotated wavelets
;o defined in Eguation (4). We then perform the convolution product,
either in physical space by integrating (6) over all discretized positions
X = i*Ax, or in Fourier space using a FFT (Fast Fourier Transform) and
multiplying ¥, defined in (5) and f before transforming the result back to
physical space to obtain f.,.

In all cases, we tmust check that the wavelet sampling remains suthicient
to compute the smallest scale /., in order to minimize numerical errors
and avoid aliasing. Incidentally one should notice that the computation
of the large-scale wavelet coefficients requires a wavelet sampling as good
as the signal sampling. We should also ensure that, when computing the
large scales, we still have encugh of the signal on the left and on the right
while translating vr,. If such is not the case, we should extend the signal
by keeping its left f(x,;,) and right f{x,...) values constant, or make it decay
smoothly to 7ero; in this case the wavelet coefficients inside both influence
cones {Section 3.2}, associated with X, and x,,,. respectively, wouid be
meaningless. To avoid such side effects, the best solution would be to make
the signal periodic, if it is not already so.

The best way to test the wavelet analysis algorithm, is to compute the
wavelet transform of a Dirac function, which should give the analyzing
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wavelet at each scale (Figure 24). To check if the spatial and angular
samplings are sufficiently dense, we should compute the reproducing kernel
(Section 3.2), i.e, the wavelet transform of the analyzing wavelets them-
selves, considering only the wavelet at scale /i, and angle 8;; then we
should plot, for any point x,, the wavelet coefficients in /, 9 polar coor-
dinates. If we do not see any spurious side cffects, the sampling is therefore
sufficient.

The simplest algorithm for continuous wavelet synthesis is to compute
the Morlet formula (11), which uses a Dirac function as a synthesizing
wavelet, because this formula minimizes the number of integrations. Due
to numerical errors in the wavelet analysis algorithm, the reconstruction
of the signal will not be exact. If we want to ensure an exact reconstruction,
we should have computed the wavelet analysis in physical space by inte-
grating (6) using an interpolation basis associated with the sampled signal
f. instcad of the sampled signal itself.

For a one-dimensional signal sampled over [ points which has a very
large number of scales J (in audicacoustics for instance the scales range
typically from 1 to 2!%), the computing time may soon become prohibitive,
because it would vary as J- 12, or J - I-log, 7 if we use the FFT. In this case
there exists a fast algorithm, called “algorithme & trous™ (Holschneider et
al 1988, 1989; Duiilleux 1989), which, at each scale, keeps constant the
number of sampled points for the wavelet and thus avoids the over-
sampling of the wavelet which was necessary to compute the large-scale
coeflicients; it computes only J/(1”) points for the signal, A4 being the ratio
between two successive scales 4 =/, /), The operation count is then
proportional to J- I+log; I, without requiring signal periodicity as docs
the FFT algorithm. The wavelet coeflicients are only computed on the
incomplete grid (“grille 4 trous”) of siz¢ J-log, ] and not on the complete
grid of size J- I, we must then use an appropriate interpolation {Section
4.1y if we want to compute all the cocfficients of the complete grid. For
A =2, namely if the scales vary oc¢tave by octave, the “algorithme a
trous™ is very similar to the Mallat algorithm (Section 4.2) developed for
orthogonal wavelets, but without requiring orthogonal wavelets.

4. THE DISCRETE WAVELET TRANSFORM

4.1 Wavelet Frames

DEFINITION In a sense, the analysis (6) and synthesis {8) formulas work
asif the functionsyr,, fe R* and xR, constituted an orthogonal complete
set of L2(R) The coefficients of the decomposition of f{x) in this bagis are
given by (6) and the reconstruction of f(x) from these coefficients is given
by (8). In fact, for the continuous case the sct of functions \,, is highly
redundant. Ts it possible to select a subset F, called a “wavelet frame,” such
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that the ¢ ,€ F would constitute a complete set that is almost orthogonal
for L2X(R)? The answer is yes, but only approximately (Daubechies et al
1986, Daubechies 1990). We proceed with the following discretization of
the half-plane I, x: 1 is logarithmically sampled at intervals of (Alog N,
jeZ, and x is hngarly sampled, with an increment that depends on the
scale, at intervals of i-Ax'(Alog#)y~, ieZ. Thus the measure df- dx/f’ in
Equation (8) becomes (Alogf)~%. The corresponding discrete analysis
formula is

Fi= <l > = _|._ wf(x)-,bﬁ-dx (29)
with

P(x) = (Alog/y/ ") [(Alog Y x — iAx],

for je Z, ie Z, and the discrete reconstruction formula is

‘o
f9=CF T Jr (30)
j=—m i=-x
where € is a constant and R is a residual which is zero only if the frame
is orthogonal. Alog/ can in general be made small enough so that & can
be neglected, and we then have a quasi-orthogonal frame.

QUASI-ORTHOGONALITY The reconstruction formula is only an approxi-
mation from which, by iteration, one can obtain an ¢xact reconstruction
of fixywhen C ~ 1 and R ~ 0 (Daubechies et al 1986, Dauhechies 1987).
This optimal frame is then quasi-orthogonal and complete (tight frame).
For instance let us consider the Marr wavelet, ¥(x) = (1~x9e "7 Tts
optimal frame, namely that which minimizes R in (30), corresponds to
Alogi=2"*and Ax = 1/2 (Daubechies 1989). With this frame the error
in the energy for the reconstruction of f(x) is less than 2 x 10~ °, which is
sufficient for most applications. The discretization Alog/=2and Ax =1
corresponds 1o the dyadic grid (Figure 44a), for which it is also possible to
construct some exactly orthogonal wavelet bases (Section 4.2). For the
Morlet wavelet (23) its optimal frame corresponds to the dvadic grid only
when |k, | = 3.

INTERPOLATION With the discrete wavelet transform we have lost the
covariance by dilation and translation of the continuous wavelet transform
and the redundancy of the wavelel coefficients, both properties which can
be very useful for signal analysis and signal processing. It is actually
possible, under some additional hypotheses, 1o recompute the whole sct
of the conlinuous wavelet coefficients from a discrete subset of the wavelet
coefficients by using an appropriate inierpolation (Grossmann & Morlet
1984, Grossmann et al 1989) based on the reproducing kernel property
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(Section 3.2) of the continuous wavelet transform. With the frames and
the interpolation formula, we now have a complete methodology for
extracting the quasi-orthogonal discrete wavelet coefficients from the con-
tinuous wavelet coefficients using the wavelet frames and vice-versa to
recover the continuous wavelet coefficients by interpolating from the dis-
crete wavelet coefficients, This two-way approach allows us to combine
the redundancy and the geometrical properties of the continuous wavelet
transform with the economy of the discrete orthogonal wavelet transform.
Therefore in practice the distinction between the continuous wavelet trans-
form and the orthogonal wavelet transform is often not so important.

4.2  QOrthogonal Wavelets

DEFINITION  As we have seen, the frames F are quasi-orthogonal complete
sets of L*(R). But there also exist some special wavelets { such that

Y0 = (i), with jeZ, ieZ, G3n

constitutes a genuine orthogonal basis of L*(R); namely the functions y(x)
are orthogonal {o their translates by discrete steps x =277+ and their
dilation by / = 27/, which corresponds to the dyadic grid (Figure 4a), and
the family (31) is complete in L=

Using an orthogonal wavelet basis {;}, we can decompose any function
or distribution f{x), decaying sufficiently fast at infinity, such that

Jx)= Z Z Fid) (32)

J=—w0 i=—w

with
jj’i = <'.b;e|f> = _[ f(_x)‘b(x-—Z“Jj)dx‘

Orthogonality implies that the total energy is conserved:

+@ + e
j I Pdx = ¥ E | fil®. (33)
- J= o i= o

Contrary to the continuous wavelet transform (Section 3.2) the orthogonal
wavelet transform is not covariant by translation and dilation, except by
discrete translations 27/f and discrete dilations 2=/, To recover in practice
the translational covariance Mallat and Zhong considered the zero-cross-
ings, or the local extrema, of the orthogonal wavelet coefficients, instead
of the coefficients themselves (Mallat & Zhong 1990, 1991). They have
also shown that it is possible to have a unique and complete reconstruction
of the signal from the local extrema alone, due to the reproducing kernel
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property (Section 3.2} of the wavelet transform; however this assertion is
not true for all functions as Meyer (personal commurication) has recently
proved.

MULTIRESOLUTION ANALYSIS If we want to generalize the wavelet trans-
form to decompose any function or distribution f(x) whatever its decay
at infinity, we must use, in addilion to the analyzing wavelet ¥, another
function ¢, called the “wavelets’s father” or “sealing function,” such that

j P{xydx =1, 34
where
$5=2"2¢{(2'x—1i) is orthogonal to ¢, for /' > jand V7, i. (35)

It has been proven (Mallat 1989b) that ¢;, is orthogonal to all its discrete
translates.
Consequently the decomposition of f{x) becomes:

+oo 4an

)= GulDtu+ T T Wl 66)

Fm — o0

The first sum is a smooth approximation of f(x) at the largest scale
Lo = 2° = 1, while the second sum corresponds to the addition of details
of scale = 27/, je[0, + w]. The function ¢, is a bow-pass filter, while ;5;-
conslitutes a set of orthogonal higher and higher pass filters. This
approach, also called multiresolution analysis, is appropriate for analyzing
functions which are not in £*(R). Take for example f(x) = 1, which is
not square integrable (Meyer 1990a). We then have {¢,lf/> =1 and
il > =0, from which we recenstruct f{x) = 1; this reconstruction
would have been wrong if we had only used the wavelet  without the
smoothing function ¢, such as in Equation (32).

The elegance of the multiresolution analysis comes from the fact that
the scaling functions ¢;; generate a set of nested subspaces Vo< V, = ...
V,c ¥V, . . . while the associated wavelets y; constitute their ortho-
gonal complementary subspaces W, W, ... W, W,., ... such that
Vie1 = V;® W, (Figure 4b). The inclusion V; < ¥, corresponds to a
mesh refinement by a factor of 2:

Jix)eV;= f(Zx)e ¥;, . 37

This indicates that the approximation of f{x) at scale 27V 11 ig

f:(x)= z <¢(j+l].‘|f>¢j+l,.‘ (38)

fm


http://www.annualreviews.org/aronline

N

Annua Reviews )
www.annualreviews.org/aronline

WAVELET TRANSFORMS 421

and contains all the necessary information to compuie the same signal at
the larger scale 27/, When computing an approximation of f{x} at scale
27/ some information £ is lost, but as the scale decreases to 2-* = 0 the
approximated signal converges to f{x). Conversely, as the scale increases
to / = oo the approximated signal contains less and less information and
converges to zero,

V, is the set of all possible approximations at scale ! = 27 of functions
in L}R). Among all approximated functions at scale /=277, f(x) is
the function that is the closest in L2-norm to f{x). Therefore the wavelet
decomposition is an orthogonal projection on the vector space V.

All the smooth approximations f{x) at scale j of f(x) belong to ¥, while
all the additional details £}(x) necessary at scale j to exactly recover £, (x)
at scale j+ 1 belongs to W

Fie (%) = T+ 7). (39)

Recursively we obtain the reconstruction {ormula
+

flxy =fa+ ¥ Jix), (40)
J-

which corresponds to the decomposition
R =
LRy = Vo @ W, (41)

MATLAT ALGORITHM  An additional simplification introduced by Mallat
(Mallat 1989a—d) allows the computation of the scaling function ¢ from
a discrete filter Fy, similar to the Quadrature Mirror Filters used in signal
coding (Esteban & Galand 1977, Rioul 1991). This filier £, comes from
the space inclusion ¥,  V, which implies

. . (kY (K .
ok) = F‘f‘(i)(p(i) with  Fy(k)=27" QZF*&{D‘E‘/__I # (42)
and therefore recursively for all ¥, < ¥V, 4,
+
$k) = 1 F27k). (43)

The filter £, is 2n periodic and satisfes:

ﬁ;(ﬂ) = 1 to ensure L’-norm normalization,
Fu(i = o) = @(i" % in order for ¢ o decay at infinity,
(ol + 1 Fplke+m))? = 1

in order for £, to be a conjugate filter. (44)
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The smoothness of the scaling function ¢ and its asymptotic decay at
infinity can be estimated from the properties of F, (k).

For instance, we can characterize the Meyer orthogonal wavelets by
their associated discrete filters:

o~

n
1 i i
if0 < k| <3
" 0<El) <1 it T < k| < 2
plky=+<"""° 3 3 (45)
. in
0 LS
L IFy ) +IFy(1—R)P =1 Vk

with
a n
Fy(k) = cos [E n:x{k)]
and
T
k) =10 if0£|k|53
LT 2n
) (k) +a{n—k) =1 le < k| < 3

(k) = | if || z%”

| a(k) = a(—k) 73

Meyer wavelets are very regular (C*) but not very well localized in physical
space. Their decrease at infinity depends on the smoothness of function
alk); if @ is C®, the associated Meyer wavelet will have a fast decay. There
are other orthogonal wavelets, based on spline functions of order m, which
are better localized, with an exponential decay, but which are consequently
less regular, only C™~7; this is the case for instance with the Battle-Lemarié
wavelets (Figure 5q).

The Mallat algorithm implies the existence of another discrete filter F,
associated with the wavelet ¥ and in quadrature with F,, namely such that
the filter F, associated with the scaling funciion ¢ is a low-pass filter,
while the filter F, associated with the wavelet | is a band-pass filter (Figure
45).

We can then compute the scaling function ¢ and its associated wavelet
¥ from the discrete filter F, alone:
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P(x) = Y Fo(Hg(2x —i)
d{(x) = L FD(2x—1)

with
Fy) = (= 1) T'F,(1-1i). {46)

In practice, to compute the wavelet transform it is only necessary to know
the coefficients of the discrete fitter F () because, due to the quadrature
condition, F,(7) 1s deduced from F,(?) as in Equation (46).

The algorithm (explained in detail in Mallat 1989a, Daubechies 1989,
Meéneveau 1991a) then consists of a pyramidal succession of discrete con-
volutions of the signal f discretized into I = 27 samples (Figure 4¢), first
with F, to compute the coeflicients f, describing the large-scale behavior
of fup to the scale / = 277, and secondly with F,; to compute the wavelet
coefficients £, describing the behavior of faround the scale /, such as

= L FsE =20 ;1

_)7;':' = z Fgr(f’— ?-f)fjf— 14 (47)

This algorithm is pyramidal in the sense that, scale after scale and from
the small scales to the large scales, we undersample the signal by taking
one sample out of every two smaller scale samples; therefore the number
of wavelet coeflicients 15 divided by two at each scale, Finally, due to the
orthogonality of the wavelet transform, we obtain the same number f of
wavelet coefficients as the number of samples of the signal. From these
wavelet coefficients f,, 7, . . . f,, we can then reconstruct a discrete
approximation of the signal at a given scale 27, by the same succession of
convolutions with Fy, and F,, scale after scale but now going from the
large scales to the scale 27/, Traversing down the pyramid, we must now
oversample the wavelet coefficients by inserting a zero between successive
coefficients, scale after scale. To fnally obtain the discrete approximation
at scale 27/, we add, following Equation (36), both results, f,_, obtained
from F, and f}_, obtained from F,. For both analysis and reconstruction
the operation count of the Mallat algorithm varies as flog, 1.

As for the continuous wavelet transform algorithm (Section 3.3), we
should beware of boundary effects; these are discussed for instance in
Méneveau (1991a). We may also prefer to use periodic orthogonal
wavelets, for which a fast algorithm similar to Mallat’s has been developed
by Perrier (Perrier & Basdevant 1989), or to use the new orthogonal
wavelet bases propased by Jaffard & Meyer (1989) which vanish on the
boundaries, but for which there does not yet exist any fast algorithm.
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supported wavelet for N = 2, {¢} Daubcchies compactly supported wavelet for N = 7.
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COMPACTLY SUPPORTED WAVELETS Using Mallat’s procedure (43), Dau-
bechies has constructed several compactly supported and regular wavelet
bases (Daubechies 1988, 1989). She showed that y and ¢ are compactly
supported if

ol =2 (2N —1)! J”‘.

- W sin?¥ ! xdx. {48)

]

The size of the discrete wavelct support is given by 2N — 1 and depends on
the desired regularity m of the wavelet because N > m+1 (Figures 5b,¢).

The case ¥ = 1 is the Haar basis which is not regular, But for ¥ # 1
we obtain many orthogonal interpolation bascs ¢y and their associated
arthogonal wavelet bases iy which are continuous and differentiable until
order m > N{5. For example in the case N = 2 (Figure 5b), the discrete
filter which generates the corresponding Daubechies basis is

o= gyt

4./2 4.2

3-./3 1-./3
F¢(2)=4—‘[ F¢(3)=4—‘/— Fylie] -0, —1 w4, +o0[) = 0.

N NG
(49)

The numerical implementation of the orthogonal wavelet transform with
Daubechies’ wavelets is carried out using the Mallat algorithm. Using
compactly supported wavelets the operation count, for both analysis and
synthesis, then varies as I, which is therefore faster than the Fast Fourier
Transform.

PERIODIC ORTHDGONAL WAVELETS The extension of the multiresolution
analysis to the case of periodic wavelets was proposed by Meyer {1986)
and performed by Perrier and Basdevant who applied it to build ortho-
gonal wavelet bases from periodic spline functions (Perrier & Basdevant
1989). The extension of the multiresolution analysis to manifolds such as
the sphere is difficult. For instance the sphere does not have the dilation
and rotation invariance of the plane. Recenily Jaffard has constructed
orthogonal wavelet bases adapted to spherical geometries (Jaffard 1990a,
Jaffard & Meyer 1989).

BIORTHOGONAL WAVELETS At first pglance Daubechies wavelets look
strange: They are not symmetric (Figures 3b,c) and for N <2 they
are left differentiable but not right differentiable (Figure 35). Recently
Vetterli and Herley have designed some biorthogonal systems of compactly
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supported symmetric wavelets built from linear phase filters (Vetterli &
Herley 1990a—c). The use of biorthogonal wavelets constitutes a new
approach initially proposed in the context of the continuous wavelet trans-
form by Tchamitchian (1986, 1987), and then in the context of the ortho-
gonal wavelet transform by Cohen, Daubechies, and Feauveau (Feauveau
1989, 1990; Cohen et al 1990; Cohen 1990). It replaces the wavelet v by a
pair of wavelets, one used for the analysis and the other used for the
reconstruction. Biorthogonal wavelets are very promising because they
offer much more flexibility in the choice of wavelet than orthogonal wave-
lets. We can, for instance, choose the properties of both wavelets to be
complementary, with high-order cancellations for the analyzing wavelet
and good regularity for the synthesizing wavelet.

N-DIMENSIONAL ORTHOGONAL WAVELETS In contrast to the continuous
wavelet transform we do not yet know how to compute an orthogonal
wavelet transform using an intrinsically #~-dimensional wavelet, but it is
certainly feasible. We are presently left with a partially satisfactory
solution, namely that of separating the orthogonal wavelet transform of
a n-dimensional field into » orthogonal wavelet transforms performed in
each spatial direction. This variable separation approach, which can also
be used for the continuous wavelet transform, is therefore intrinsically
anisctropic and requires 2" — 1 wavelets,

For instance, to obtain a two-dimensional multireselution analysis we
start from a one-dimensional multiresolution analysis, defined by the scal-
ing function ¢, from which we deduce its associated wavelet . Then by
tensor products we obtain the two-dimensional scaling function

P(x1,x5) = d(x))P(x2) (50)
and the associated wavelets

Y (g, %2} = dlx W (x,)

Yalxy, %2} = Y(x ) (x2)

WX X2) = Yy (x).

This is the approach used to extend the Mallat orthogonal wavelet algo-
rithm to two dimensions (Mallat 1988) and to three dimensions (Meneveau
1991a).

4.3 Wavelet Packets

Very recenily, motivaied by data compression problems, Coifman, Meyer,
and Wickerhauser have defined and catalogued an extensive “library” of
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functions they called “wavelet packets,” from which can be built a count-
able infinity of orthogonal bases of L*(R) {Coifman et al 1990a,b; Wicker-
hauser 1991). The infinitely many bases of wavelet packets unify Gabor
wave packets [used in the Windowed Fourier Transform (Gabor 1946)]
and wavelets into a set of localized osciilating functions of zero-mean
parameltrized by scale {, space x, and frequency &; { corresponds to the
width of their spatial support, x to the position of their center, and & to
the number of oscillations in their spatial support. A wavelet packet family
is thus generated by dilation, translation, and modulation of a “mother
wavelet.” The different transforms (Figure 1) can be seen as the con-
volution of a given signal to be analyzed with a bank of filters given by
the analyzing functions: filters of constant bandwidth A% for the Windowed
Fourier Transform or filters of constant ratio of width to center frequency
k for the Wavelet Transform (5). The Wavelet Packets Transform in fact
combines these two approaches and offers the possibility to adjust the
ratio Akfk of the analyzing functions to the signal to be anaiyzed.

In the discrete case Coifman and Meyer have derived analytic formulas
to generate the 2' wavelet packets associated with a signal sampled on [
points. Their wavelet packets are given as a set of T log, I vectors organized
into a binary tree, which drastically facilitates further computations. Then
for a given signal, or for each portion of it after performing an appropriate
segmentation, one can choose the most appropriate orthogonal basis to
decompose it. Wickerhauser proposes to select the basis that minimizes
the information entropy or the number of bits necessary to code the
information content of the signal (Wickerhauser 1991, Coifman et al 1990b).
In practice the best basis will be that which minimizes the number of
significant (that is above a certain threshold) coefficients. Therefore the
wavelet packet transform of a signal of length [ gives at most f coefficients
(in general many fewer) from which the signal can be resynthesized. The
analysis requires [ log, I operations and the synthesis f operations. The
wavelet packet decomposition gives orthogonal bases quite similar to those
obtained with the Karhunen-Loéve decomposition, or Proper Ortho-
normal decomposition (Lumley 1981, Aubry et al 1988), but its computing
cost is much less; indeed the Karhunen-Loéve decomposition requires
the computation of the eigenfunctions of the correlution matrix, which
contains I} coefficients.

Torrésani has proposed a generalization of the wavelet packet transform
to the continugus case in which the wavelet packets are indexed by a
continuous parameter (Torrésani 1991). The wavelst transform in [acl
adapts the tiling of the phase-space (Figure 1} to cach portion of the
signal. For instance, in regions dominated by harmonic behavior it will
choose the most appropriate Gabor wave packet basis (Figure Ic), while in
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regions with strong transients or shocks it will choose the most appropriate
wavelet basis (Figure 1d). Another construction which involves wavelet
packets with discrete scale parameters and continuous translation pa-
rameters has recently been proposed by Duval-Destin et al (1991).

5. WAVELET APPLICATIONS TO TURBULENCE

5.1 Energy Decomposition

A very common pitfall when using any kind of transform is to forget the
presence of the analyzing function in the transformed field, which may
lead to severe misinterpretations, the structure of the analyzing function
being interpreted as characteristic of the phenomena under study. To
reduce this risk we should choose the analyzing function in accordance
to the intrinsic structure of the field to be analyzed. Fer instance the
trigonometric functions used in the Fourier transforin would be the appro-
priate tool if and only if a turbulent flow field were a superposition of
waves; only in this case are wavenumbers well defined and the Fourier
energy spectrum meaningful for describing and modeling turbulence. If,
on the contrary, turbulence were a superposition of point vortices then the
Fourier spectrum in this case would be meaningless. The problem we still
face in turbulence theory is that we have not yet identified the typical
“objects” that compose a turbulent field. Before developing a turbulence
model we must identify these elementary “objects” and catalog their
elementary interactions. For instance the cascade models (Desnjanski &
Novikov 1974, Kraichnan 1974, Frisch & Sulem 1975, Bell & Nelkin 1978,
Gledzer et al 1981) assume that wavenumber octaves are the elementary
objects needed to describe homogeneous turbulence and that their inter-
actions consist of exchanging energy with the neighboring octaves,

The first step toward modeling turbulence is to find an appropriate
segmentation of the energy density in x —/ phase space (Figure 1) and to
define some kind of phase-space “atoins” among which energy, or any
other dynamically relevant quantity, is distributed and exchanged by the
turbulent flow dynamics. If a turbulent field is a superposition of waves,
the energy density should be distributed in phase space among horizontal
bands, each band corresponding to an excited wavenumber (Figures 2b,¢).
If a turbulent field is 2 set of localized structures—often called coherent
structures—the energy density should be distributed among cone-like
patterns, each cone pointing to an excited structure (Figure 2a). If a
turbulent field is a superposition of wavepackets, such as Tennekes and
Lumley’s eddies (Tennekes & Lumley 1972), the energy density should be
distributed among patches whose horizontal length will correspond to the
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spatial support and vertical length to the bandwidth characterizing each
excited wavepacket. If a turbulent field is mainly some kind of noise,
its energy density should be randomly distributed in both space and
scale without presenting any characteristic pattern in phase space (Figure
2¢). Actually a turbulent field may well be the superposition of dif-
ferent phase-space structures which can be separated mto characteristic
classes. In this case it will be more appropriate to decompose the flow field
into those classes and then perform separate ensemble or time averages,
class by class, in order to retain as much dynamically meaningful infor-
mation as possible on the flow. Another solution is to perform the aver-
aging directly in phase space, which presents the advantage of being able
to add together experimental data of different signal-to-noise ratios or
numecrical ficlds computed at different resolutions. It also may well be
that different types of turbulence (¢.g. boundary layer, mixing layer, grid
turbulence . . ) or different regimes {¢.g. transition, fully-developed tur-
bulence), will lead to different segmentations of phase space; this should
be checked and, if it 1s the cuase, we should probably abandon the quest
for a universal theory of turbulence.

Finally we should study how the turbulent dynamics transports these
space-scale “atoms,” distorts them, and exchanges their energy during the
flow evolution. Using a space-scale representation it would then be easy
to verify whether energy transfers are either mainly local in scale—as
assumed by the cascade models—corresponding to vertical translations in
phase-space, or whether energy transfers are instead local in space--— as
assumed by point vortex models- -corresponding to horizontal trans-
lations in phase-space. Energy transfers may in fact be local in both space
and scale, which is probably the right answer. Wavelets or wavelet packets
are certainly good candidates for performing this energy decomposition
in phase space and for finding possible phase-space atoms to characterize
the turbulent flow dynamics and hence to formulate new turbulence
models,

5.2 New Diagnostics for Turbulence

Before discussing the actual applications of wavelets to turbulence, let us
emphasize two points. First of all, wavelets are useful as a new diagnostic
tool for the study of turbulence if we want to retain some information
about the spatial structure of the flow. If we are only interested in its
frequency content, or if we want to filter it everywhere in space, wavelets
are not helpful, and the Fourier transform is a sufficient tool. Secondly,
we should always bear in mind the fact that wavelets see signal varations
but are blind to constant and other global polynomial behavior, according
to the number of cancellations (Section 3.2) of the analyzing wavelet. A
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common pitfall in interpreting wavelet coefficients is to link their strength
to the signal’s strength, whereas they actually correspond to variations in
the signal at a given scale and a given point. If the signal does not oscillate
at a certain scale and position, then the corresponding wavelet coefficients
are zero.

For the purposc of analysis we prefer to use the continuous wavelct
transform whose redundancy allows an unfelding of the flow information
on the space-scale complete grid, as opposed to the dyadic grid used for
orthogonal wavelets. As we have already said (Section 3.3), we strongly
advise using a progressive complex-valued wavelet, because, due to the
quadrature beiween the real and imaginary parts of the wavelet, we can
then eliminate spurious oscillations of the wavelet coefficients by visual-
izing their modulus, instead of their real part (Figure 2). If we analyze a
two-dimensional field using a two-dimensional wavelet we have at least a
three-dimensional coefficient space to visualize, If the coefficients are real
and therefore oscillate at all scales and locations, their graphical repre-
sentation 15 very complicated and difficult to interpret, whereas the modu-
lus only follows the signal encrgy density variations without presenting
spurious oscillations.

The squared wavelet coefficient | {7, x, 6)|> measures the energy level, or
excitation, of a given field f{x) in terms of space, scale, and direction. Let
us consider the case of three-dimensional turbulence and analyze three-
dimensional ficlds in terms of three space dimensions X = x, and thice
angles§ = 8., for n = 1to 3. By choosing an isotropic wavelet, or averaging
over directions, we can discard the angular selectivity of this analysis. This
is what we shall do from now on in order to simplify the notation. We will
now list several new diagnostics, for two (# = 2) or three (# = 3} dimen-
sional turbulence, all based on wavelet cocfficients,

LOCAL WAVELET ENERGY SPECTRUM First of all the notion of “local
spectrum” is antinomic and paradoxical when we consider the spectrum
as a decomposition in terms of wavenumbers for, as we have previously
said, they cannot be defined locally. Therefore a **local Fourier spectrum™
is nonsensical because, either it is non-Fourier, or it is nonlocal. There is
no paradox if instead we think in terms of scales rather than wavenumbers.
Using the wavelet transform, let us define the space-scale energy density:
LA %)?
mo

E(L,x) = (51)

As proposed by Moret-Bailly et al (1991) in the context of turbulence, the
scale decomposition in the vicinity of location %, is given by
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E(xp)=1" £ E(, x)x(x:"") d"x, (52)

% being a function of finite support [X,, X,], which takes into account all
coefficients inside the influence cone (Section 2.2) of xy, such that:

fx(x) d'x = |. (53)

If we choose the window y to be a Dirac function, then the local wavelet
energy spectrim becomes

L x0)|?
. xgy = T 9
By integrating (31) we obtain the local energy density:
+x dl
E(x)=Cy' I E(l, x)T. (55)
u+

GLOBAL WAVELET ENERGY SPECTRUM  The global wavelet spectrum is

E(N = j E(l, x) d"x. (56)

It can also be expressed in terms of the Fourier energy spectrum
E(k) = | /(k)|? using relation (7):

E(y = J- E(R)| (9 d'k. (57

This shows that the global wavelet energy spectrum corresponds to the
Fourier energy spectrum smoothed by the wavelet spectrum at each scale.
We can then recover the total energy of the field f(x):

+ o
E=C;' J E(:)i;'. (58)
n+

LOCAL INTERMITTENCY MEASURE To measure infermittency, namely the
fact that energy at a given scale may not be evenly distributed in space,
Farge et al (1990) have defined the intermittency measure:

| JU, 02
T, ©9)

I, x) = 1, ¥x and ¥/, means that there is no flow intermittency, i.e. that

I x) =
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each location has the same energy spectrum, which then corresponds to
the Fourier energy spectrum. f{/, x;) = 10 means that the point x; con-
tributes 10 times more than the average over x to the Fourier energy
spectrum at scale /.

Frick & Mikishev (1990) had previously defined a similar intermittency
measure using the Zimin hierarchical model {(Zimin 1981).

SPACE-SCALE REYNOLDS NUMBER AND GLOBAL INTERMITTENCY MEASURE
Farge et al (1990b) have introduced a space-scale Reynolds number

Re(/,x) = 5(3’:‘)1, (60)

where v is the kinematic viscosity of the fluid and # the characteristic rms
velocity at scale [ and location x such as:

] 142
Bl x) = [(3(:1,,)" ¥ 18 x)l’*] - (61)
=1
Atlarge scales I ~ L,
@
Re(l) = J Re (L, x)d"x

coincides with the usual large-scale Reynolds number Re = 'Ly, where
v is the rins tutbulent velocity and L the integral scale of the flow. At the
Kolmogorov scale / ~ 1, where digsipation effects equilibrate nonlinear
effects, Re(n, x) = 1. In plotting the iso-surface Re(/, x) = 1 we can then
check whether it is flat ot not. If it 18 flat, then [ = » everywhere, as
assumed by Kolmogorov's theory. If it is not flat, then the turbulent flow 15
intermittent and we can no longer define a unigue Kolmogorov scale #,
but only a range of scales from ), 10 e, The ratio {Re) = #../ Mic
for Re = 1, is a global measure of the flow intermittency in the dissipative
range. The ratio i(Re) = I, (Re)/l..(Re), for Re » 1, measures the global
flow intermittency in the inertial range,

For direct numerical simulations of turbulent flow, this iso-surface
Re(l,x) = 1 may be useful in detecting numerical errors and verifying if
the space resolution Ax is sufficient to resolve the dissipative scales every-
where in Lhe flow. We have to verify that q,;, > Ax everywhere in the flow,
otherwise for points where this inequality 18 not verified some numerical
instability may develop.

For numerical simulations we can define a better space-scale Reynolds
number. For this we must compute the nonlinear term ¥ = ||v+Vy| and
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the dissipative term D = |v- V| and expand them into their wavelet
coefficients to obtain

Re(l, x) = N(, x}/ B, x). (62)

SPACE-SCALE CONTRAST If we want to detect any variation in the signal,
even for regions where the signal becomes very weak, Duval-Destin and
Torrésani (Duval-Destin & Menu 198%; Antoine ¢t al 1990, 1991; Duvai-
Destin et al 1991, Antoine & Duval-Destin 1991) have proposed the
contrast measure

LG

C(l,x) = s 63
¥ =7 or (3)
with
r=f
filxy=cC, 'y f.x)dr.
=0+
For orthogonal wavelets the contrast has the very elegant form
|l 12
C-,— =T o T3 64
NIRRT ©

¥, being the orthogonal wavelets, at scale j and location {, and ¢, the
associated scaling functions.

While wavelet coefficients locally measure the signal derivative, the
space-scale contrast measures its logarithmic derivative. This diagnostic
may be useful in fluid mechanics for detecting some very weak coherent
structures, or some coherent structures embedded in larger ones—two
cases that cannot be detected by the classical threshold method. In any
case wavelets are better adapted to filtering or segmenting flow fields than
traditional image processing techniques; most image processing techniques
are based on contour detection developed for pattern recognition, whereas
coherent structures encountered in fuid Aows do not have sharp contours
but instead are characterized by their local scaling. A similar problem is
encountered in analyzing astronomical images, in particular in detecting
galaxies, for which wavelets are now extensively used (Bijaoni 1991).

SPACE-SCALE ANISOTROPY MEASURE The measure of the space-scale depar-
ture from isotropy is given by
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jmlﬂf, x, O)) d"

<rmtfu,x,o)lzd"x>

For this diagnostic we obviously must use a directional wavelet such as
the Morlet wavelet (Saction 3.3).

If A(1.8) = 1, ¥l and ¥8, the flow is isotropic at all scales.

If A(fin, 8) < Al 8), V8, with I, a small scale and [, a large scale,
there is a return to isotropy in the smatl scales.

A(l,8;) = 10 means that direction 8, contributes 10 times more than the
average over B to the Fourier energy spectrum at scale /.

A8 = (65)

LOCAL SCALING AND SINGULARITY SPRCTRUM  As we have said in Section
3.2, the continuous wavelet transform with L'-norm (19) is used to study
the local scaling of a function and to detect its possible singularities. But
to see singularities, we must subtract the Taylor series of the signal, which
corresponds 1o its polynomial, and therefore differentiable, terms. This
subtraction is automatic if we choose a wavelet with sufficiently many
cancellations (Section 2.2 and 3,1) to be blind to these polynomial con-
tributions. Here again a complex-valued wavelet is preferable. To justify
this choice, let us take as a counterexample the analysis of a singularity
|x—x%ql% 0 < o<1, [ocated at X, using a real-valued wavelet. If the
singularity is odd and the wavelet even, or vice-versa, then the smatl-scale
wavelet coefficients will be zero at x,; and we will not see the singularity,
for it has been cancelled by the signal’s, or wavelet’s, zero-crossings. If we
choose a progressive complex-valued wavelet, whether odd or even, the
L'-modulus of the wavelet coefficients will drastically increase in the smati
scales around the location x, and the rate of increase will give the exponent
of the singularity. The local scaling of f(x) at x, is given by the scaling of
the wavelet coefficients’ L'-modulus in x, in the limit of asymptotically
small scales, 7 — 0. This property has been used by Tchamitchian & Hol-
schneider (1989, 1990) to study the local regularity of the Riemann func-
tion: they have demonstrated that the Riemann function is differentiable
on a dense set of points and is singular everywhere else.

To compute the singularity spectrum, we should proceed as follows.
First, we plot the phase of the wavelet coefficients to locate singularities—
for the iso-phase lines will point towards singular points. Second, we
should verify that the singular point detected at X, is isolated, namely that

FU = 0,%x0) < ftI> 0,x,+8), with |2} very small. (66)
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Then the exponent a(x,} of the singularity is given by the slope of the local
scaling of log |f'(z', X}l for /=0, f" being written in L'-norm (19). The
singularity spectrum has been used to characterize fracial and multi-fractal
measures {(Arnéodo et al 1988, 1989; Arnéodo ¢t al 1990; Arnéodo et al
1991), and i1s gencralization to fractal and multi-fractal functions has been
recently made by Muzy et al (1991). Using a real-valued wavelet, Bacry et
dl (1991) first extract the wavelet coefficients “‘skeleton,” i.e. the location
of the local maxima of the wavelet coefficients. before computing the local
scaling. Benzi & Vergassola (1991) proposed a proccdure, called “the
optimal wavelet transform,” to reduce possible oscillations of | /{7, x)|
versus log / while using a real-valued wavelet. This procedure is com-
putationally intensive and has been recently improved by using a pro-
gressive complex-valued wavelet {(Morlet) instead of a real-valued one
(Benzi & Vergassola 1991).

5.3  Some Preliminary Results Using Wavelets

FOR TURBULENCE ANALYSIS Wavelet analysis of turbulent flows is at
preseitt developing rapidly in many different directions. As a consequence,
I cannot detail and discuss all published papers on this subject, thus will
only list those I know of, so thal the reader may have access to them.
As noted in the introduction, most of these papers have an exploratory
character and their conclusions may not yet be definitive. They do have
the merit of clarifying the concepts inherited from the Fourier spectral
approach, of asking new questions, and of introducing new points of view
concerning our understanding of turbulence.

To my knowledge, the wavelet transform was first used in fluid mech-
anics by Saracco and Tchamitchian in a study of the propagation of
transient acoustic signals in inhomogeneous media (Saracco & Tcha-
mitchian 1988, Saracco et al 1989). Tn the context of turbulence, wavelets
were first used by Farge and Rabreau to analyze two-dimensional homo-
geneous turbulent flows obtained from numericat simulations, using first
a one~dimensional Morlet wavelet (Farge & Rabreau 1988a,b; Farge &
Sadourny 1989) and then a two-dimensional Morlet wavelet (Farge &
Holschneider 1989, Farge et al 1990a, Farge 1990). They showed thai
during the fiow evolution, starting from a random distribution of vorticity
with a k~* energy spectrum, the small scales of the vorticity field become
increasingly localized in physical space (Figure 6). This suggested an inter-
mittency of the two-dimensional turbulence dynamics, which may be
related to a condensation of the vorticity field into vortex-like coherent
structures. In particular they found that the smallest scales of the vorticity
field are concentrated inside some vortex cores (Figures 7, 8) and are
generated when and where two same-sign coherent structures are merging
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(Faige et al§990a). From this observation, Farge and Holschneider pro-
posed a ne®, purely geometrical, interpretation of the £~ * energy spectrum
observed for numerically computed two-dimengional turbulent flows,
based on the existence of cusp-like axisymmetric coherent structures with
a scaling exponent of —1/2 (Farge & Holschneider 1991). Such quasi-
singular coherent structures are scaling distributions of vorticity which
exhibit, instead of a characteristic radius, a range of radii corresponding
to all scales of the inertial range, until the dissipative scales where the
vortex cores are smoothed. These cusp-like coherent structures are also
characterized by a nonlinear pointwise relation between vorticity and
streamfunction, similar to coherent structures experimentally observed in
a two-dimensional turbulent mercury flow (Nguyen Duc & Sommeria
1988). Farge and Holschneider have conjectured that those quasi-singular
vortices are creaied by the condensation of the vorticity field around quasi-
singularities already present in the initial conditions (Farge & Holschneider
1991). They have also shown that coherent structures with a scaling
exponent of —1/2 are stable under the two-dimensional Navier-Stokes
dynamics, even when perturbed by strong noise, and these structures
organize the random field in their vicinity by accreting the same-sign
noise onto them (Farge ¢t al 1991a). Recently Benzi and Vergassola, by
performing a wavelet analysis of a numerically computed two-dimensional
homogencous turbulent flow, have confirmed the existence of coherent
structures with negative exponents, between —0.4 and — 0.9, similar to
the —0.5 scaling exponent predicted by Farge and Holschneider (Benzi
& Vergassola 1991).

The first wavelet analysis of an experimental turbulent signal was carried
out by Argoul et al from the wind tunnel streamwise velocity measured at
high Reynolds by Gagne and Hopfinger, using one-dimensional real-
valued wavelets (Argoul et al 1989, Arnéodo et al 1990, Bacry ct al 1991,
Arnéodo et al 1991). At about the same time, Liandrat, Moret-Bailly, and
Tchamitchian, using a one-dimensional real-valued wavelet, studied the
interaction between a shock wave and free turbulence, and then analyzed
the streamwise velocity in a turbulent boundary layer near a heated wall

Figure 7 Two-dimensional continuous wavelet transform computed in the L'-nomm, using
the real-valued DOG (Difference of Gaussians) wavelet. The same two-dimensional turbulent
flow (vorticity field sampled at 512! points) as in Figure 6 for n = 10% has been nsed. We
visualize the wavelet coeflicients (/efr) at: scale I =8 Ax (tap), scale [ = 4 Ax (middle), scale
{=2 Ax (borrom), where Ax is the mesh size. We then visualize the partial reconstructions
of the vorticity field (righs) from the wavelet coefficients, taking all coefficients up until: scale
{ =18 Ax (top), scale f = 4 Ax (middle). scale I = 2 Ax (bottom).
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Figure § Two-dimensional continuons wavelet transform compnted i the L'-norm. using
the complex-valued Motlet wavelet with thy| = 5 and # = 0, of the same two-dimensional
tarbuleni flow (vorticity field sampled on 5127 points) as Figure 7. The black and white figue
iljustrates the vorticiiy fieid to be analyzed. The color plale shows the wavelet cocificient
maodulus (color coded in the increasing order: blwe, red, magenta, green, cvan, vellow, and
wihite) and phase {gray isofines) mapped onto the vorticity field {in perspective representatio ny
at: scale / = 32 Ax (rop) and scale F = 16 Ax (bosrom). (From Farge et al 1990a.)

in order to compare both wavelet and VITA (Variable Interval Time
Averaging) techniques {Liandrat & Moret-Bailly 1990). They also used the
wavelet transform to estimate the transition Reynolds number in a rotating
disk boundary layer (Moret-Bailly et al 1991). More recently Frisch and
Vergassola have proposed a new type of averaging for turbunience analysis,
namely a scale-averaging of the logarithin of the wavelet coefficients modu-
lus, which, like time-averaging of stationary processes, reduces statistical
fluctuations of self-simitar random processes, provided there is a sufficient
range of scales in the signal (Wergassola & Frisch 1990). In the study
of stochastic processes and multiscale statistical signal processing, many
developments are presently underway (Basseville & Benveniste 1989, 1990;
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Benveniste 1990; Benveniste ¢t al 1990; Flandrin 1988, 1990, 1991a,b;
Flandrin & Rioul 1990).

Although all the initial work [except Benzi & Vergassola (1991)] was
carried out in France, the wavelet transform has since gradually diffused
abroad. In Japan, Otaguro, Takagi, and Sato have nsed a one-dimensional
Marr wavelet (the Mexican hat) and other triangular functions (which are
not actually admissible wavelets) to search for patterns in a streamwise
velocity signal measured in a turbulent boundary layer (Otaguro et al
1989). Using a one-dimensional orthogonal wavelet, Yamada and Okhi-
tani analyzed data from atmospheric turbulence (Yamada & Ohkitam
1990a,b). In the United States, Everson and Sirovich, using different one-
dimensional real-valued wavelets, have computed the wavelet transform
of several types of Brownian motions and of several experimental measure-
ments: kinetic energy and Reynolds stress in the wake of a cylinder and in
a numerically computed mixing layer, and kinetic energy and kinetic
energy dissipation rate recorded in the atmospheric boundary layer (Ever-
son & Sirovich 1989). Using a two-dimensional Marr wavelet they have
also compared a k~? Brownian motion to the dye concentration data
measured by Sreenivasan in a turbulent jet at moderate Reynolds number
{Everson ¢t al 1990),

Using tensor products of Battle-Lemarié orthogonal wavelets, Mene-
veau has studied the energy intermittency in a walke behind a ¢ylinder and
in a boundary layer. He then computed the transfer of kinetic energy and
the flux of kinetic energy through a given position and a given scale for a
variety of turbulent flows: m a numerically computed homogeneous shear
flow, and in an isotropic homogeneous turbulence numerical simulation
{Meneveau 1991a—c). He found, first, that those quantities have non-
Gaussian statistics and, secondly, that the local flux of energy coming from
the small scales exhibits a large spatial intermittency, and even locally
presents some inverse cascades. Dallard and Spedding—using the two-
dimensional Halo and Arc wavelets they introduced (Section 3.3)—have
analyzed Rayleigh-Bénard convection rolls and plane mixing layers in
order to detect, in both space and scale, possible phase defects of those
flows (Dallard & Spedding 1990).

Using a two-dimensional Morlet wavelet, Farge, Guezennec, Ho, and
Meneveau (Farge et al 1990b) analyzed different fields, such as velocity
components, vorticity components, and temperature, obtained from the
NASA-Ames direct numerical simulations, considering in particular the
turbulent channel flow computed by Kim and Moin and the temporally
evolving mixing layer computed by Rogers and Moser. They maasured,
using the diagnostics defined in Section 5.2, a very strong space intet-
mittency in the small scales. They related it to the bursts ejected from the
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boundary layer of the channel flow and to the ribs (streamwise vortex
tubes} stretched and engulfed into the spanwise vortex cores in the case of
the mixing layer. Extrapolating the local scalings they found, and con-
sidering their strong variance from the Fourier spectrum, they conjectured
that the larger the Reynolds number the larger the degree of intermitiency.
They have also observed a return to isotropy in the small scales for the
mixing layer, but not for the plane channel flow whose smali scales remain
elongated in the streamwise direction. Finally, they found that the iso-
Reynolds manifold represented in space and scale (see Section 5.2) is not
flat, but presents peaks in the most unstable regions, particularly in the
spanwise vortex cores of the mixing laver.

Farge et al (Farge 1991c¢, Farge et al 1991¢) have shown that the wavelet
packet bases are much more efficient than the Fourier basis to compress
two-dimensional turbulent flows. They define the “best basis™ as the one
which condenses the L?-norm (energy or enstrophy) into a minimum
number of non-negligible waveiet packet coefficients. They have found
that the most significant coeflicients of the best basis correspond to the
coherent structures, while the weakest coefficients, which can then be
discarded, correspond to the vorticity filaments (Figure 9). They have
then performed several numerical integrations initiahzed, either with a
noncompressed vorticity field (reference history), either with a vorticity
field compressed using the Fourier basis, or with a vorticity field com-
pressed using the best basis. For a compression ratio 1/2, done in the best
basis, the time evolution during 6000 time steps of the vorticity field
remains similar to the reference history, while if the compression ratio is
done in the Fourier basis, the deterministic predictability is lost and only
the spectral behavior remains similar. Then for compression ratios up to
1/200, done in the best basis, the deterministic predictability is lost buf not
the statistical predictability, whereas the compression operated m Fourier
loses both. This confirms the fact, predicted among others by Farge (1999),
that the dynamically active enlities of a two-dimensional turbulent flow
are the coherent structures, while the vorticity filaments are only passively
advected by them. Using the wavelet packet best basis the flow separation
1nto active versus passive components, or “‘master” versus “slave” modes,
is performed without assuming any hypothetical scale separation, as is
necessary when using the Fourier basis. In conclusion, the wavelet packet
best basis seems to distinguish the low-dimensional dynamically active
part of the flow (the coherent structures) from the high-dimensional passive
components (the vorticity filaments), which can then be neglected or para-
metrized. This gives us some hope of drastically reducing the number of
degrees of freedom necessary to compute two-dimensional turbulent flows.

To conclude this section on turbulence analysis using wavelets, T would
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Figure 8 Two-dimensional real waveler packel transform computed in the L:norm of the
same two-dimensional turbulent flow (vorticity field sampled at 5127 points) as in Figures 7
and 8. We visualize: the vorticity ficld to be analyzed (1op fefs). We then visualize the partial
reconstyuctions of the vorticity field from the wavelet packet coefficients, taking only the
first: 10" most significant coefficicnts {+op righr), 10* most significant coefficients (bortom
left), 10U most significant coefficients (boston right). (From Farge et al [991¢.)

like to quote the wise remarks of Otaguro et at (1989) as a reemphasis of
what I have already said in Section 5.1:

It is important to notice that if we choose a particular wavelst, the resultant correlation
pattern will obediently reflect the characieristics of the wavelet. The fact may be termed
sensitivity to reference. Thus we have encountered an old issue in pattern search,
arbilrariness of reference. There are two points to be mentioned in this context. The
first one is that the sensitivity to reference should be utilized as much as possible sp that
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we can search any object in a chaotic field. The second one, which can be contradictory
to the first, however, is that we have chances to capture ghost patterns with no physical
significance, This danger has been repeatedly mentioned by many auvthors, The problem
is deeply rvetated to out a priori knowledge about the turbulent field under test.

FOR TURBULENCEMODELING The goal of turbulence modeling nsing wave-
lets is to directly compute the time evolution of a turbulent flow in terms
of wavelet coefficients, instead of space variables. If the turbulent dynamics
is governed by some nonlinear cascades, then we should study them in
both space and scale, without assuming, for instance, any scale locality
of the transfers as is done for the so-called cascade turbulence models
{Desnjanski & Novikov 1974, Kraichnan 1974, Frisch & Sulem 1975, Bell
& Nelkin 1978, Gledzer et al 1981, Qian 1988). After wnting Euler or
Navier-Stokes equations in wavelet space, the problem 1s then to define
the graph of possible interactions, to estimate their propagation speed in
phase space, and to ascertain if transfers are mainly local in space—
corresponding to horizontal shifts in phase space, local in scale—cor-
responding to vertical shifts, or loeal in both—if shifts operate along
diagonals. In studying the symmetries of the Euler or Navier-Stokes equa-
tions, and perhaps some variational principles, we might then learn which
kind of interactions dominate and which are forbidden. With this approach
to the modeling of turbulence, no statistical hypotheses are needed because
we directly study a set of algebraic equations obtained by projecting
Navier-Stokes or Euler equations onto an appropriate orthogonal basis.
[n this case the whole endeavor will consist of truncating as much as
possible the number of algebraic eguations retained in the turbulence

"model. As a first step in this direction, Meneveau (1991c) derived the three-

dimensional Navier-Stokés equation in wavelet space. His paper actually
focuses on turbulence analysis (see previous paragraphy), but he mentions
that further developments of this formulation should concentrate on pos-
sible approximations to the interaction kernel, similar to the work of
Nakano (1988) who used a wave packet formulation.

In the same spirit (but before the wavelet theory of Morlet-Grossmann-
Mevyer) extremely impressive work was carried out by Zimin starting in
1981 in Perm, Soviet Union (Zimin 1981). In his first paper, he projected
the three-dimensional Navier-Stokes equation onto a quasi-orthogonal
basis using functions that were localized in both space and scale. To
construct his basis he considered a hierarchy of eddies and assumed that
the small eddies were advected by the targer ones. This led him to segment
the phase space into cells of constant size corresponding to eddies whose
spatial support decreased with the scale, each eddy having a space-scale
resolution in accordance 1o the uncertainty principle. In fact the phase-
space segmentation of Zimin’s hierarchical basis is the same as for wavelets


http://www.annualreviews.org/aronline

N

Annua Reviews )
www.annualreviews.org/aronline

WAVELET TRANSFORMS 445

(Figure 1d). After constructing hierarchical bases for three-, two-, and
one-dimensional flows (Zimin 1981, Frick 1983, Zimin et al 1986, Zimin
& Trick 1688, Frick & Zimin 1991), Zimin is presently generalizing them
to three dimensions plus time (Zimin 1990a,b) in order to be able to
compute the Navier-Stokes equation in a purely algebraic fashion. Since
1981 Zimin’s approach has been extensively used in more than 40 papers—
unfortunately most of them have not yet been translated from Russian.
Here 1 only briefly list some of those, translated into English, which use
the hierarchical basis for modeling or computing different types of tur-
bulent flows: two-dimensiona! flows (Frick 1983, Aristov ¢t al 1989, Miki-
shev & Frick 1990), two-dimenstonal MHD flows (Frick 1984, Mikishev
& Frick 1989, Aristov & Frick 1990}, rotating shallow-water flows (Aristov
& Frick 1988a, Aristov et al 1989), and different convective flows (Frick
1986a.b; Frick 1987, Aristov & Frick 1988b, 1989).

We should also mention a recent model of furbulence intermittency
(Farge & Holschneider 1991, Farge 1991b), differing from previous models
(Kolmogorov 1961, Mandelbrot 1974, Frisch ¢1 al 1978, Benzi ct al 1934,
Parisi & Frisch 1985), which all refer to hypothetical stochastic processes
and often involve, for instance, eddy breaking. This new model proposcs
a purely geomeirical interpretation of intermitiency: spatial infermittency,
for both two-dimensional and three-dimensional turbulent flows, may be
related to the quasi-singular shape of a few highly excited axisymmetric
coherent structures, which are produced by the flow dynamics. Due to
their cusp-like shape, these coherent structures do not have a characteristic
scale but instcad present a range of scales. Morcover, their spatial support
decrcases with scale and follows a power-law behavior before reaching the
dissipative scales where their cores are locally regularized by dissipation,
The spatial intermittency may then be explained by the gcometry of those
cusp-like coherent structures, In addition Farge (1991b) supposes that
cach coherent structure may have a different scaling law and may begin
to be dissipated at a different scale than the others, which would therefore
correspond to the different peaks observed on the dissipative manifold
Re(l, x) = 1 (see Farge et al 1990b). This conjecture seems consistent with
Castaing’s theory of turbulence (Castaing 1989, Castaing er al 1990),
which, contrary to Kolmegorov’s theory, assumes a possible weak dis-
sipation in the inertial range. It is also consistant with Frisch and Ver-
gassola’s multifractal model of a possible intermediate dissipative range
(Frisch & Vergassola 1990). 1t may be that this geometrical interpretation
of space intermittency, deduced from the wavelet analysis of two- and
three-dimensional turbulent flows (Farge & Rabreau 1988b, Farge et al
1990a,b) is wrong, resulting again from confusion between the scaling
properties of the wavelet family and those of the turbulent field. As 1 have
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previously said (Section 5.1), this is the most common pitfall encountered
with waveleis and we are not yet immunized against it.

FOR TURBULENCE COMPUTING The objective is to be able to reduce the
number of degrees of freedom necessary to compute the flow evolution,
in order to simulate high Reynolds number flows. As we said in Section
1, for Fouricr spectral methods (Galerkin or pseudo-speciral) the number
of degrees of freedom varies as Re in dimension two and Re™* in dimen-
sion three; the direct numerical simulations, i.e. without any ad hoc subgrid
scale parametrization, are in this case limited to low Reynolds number
flows, even with the fastest supercomputers available today. Fourier spec-
tral methods are very precise if the flow remains regular. However, they
are no longer appropriate when the flow develops shocks or steep gradients
because solutions will then present some spurious oscillations everywhere
in the domain (Gibbs’ phenomenon). In this case we prefer 1o use finite
element methods, or finite differences which may be thought as a particular
case of finite element methods. In fact, wavelet bases are intermediate
between finite element bases {due to their space localization) and Fourier
bases (due to their scale localization). Now the point will be to use wavelets
to develop new numerical techniques which will combine the advantages
of both methods, while avoiding their inconveniences. Numerical methods
using wavelets are presently in a nascent state, but seem very promising in
the long term. For instance, in the case of partial differential equations,
only Burger’s equation in one dimension has been solved using wavelets
in two different ways, a wavelet Galerkin method and also a wavelet
particle technique.

To illustrate the principie of the wavelet Galerkin method, let us consider
the one-dimensional evolution equation

ou
a‘ +A(H) =0 (67)

u(x, 1 = 0) = uy(x),

with A as a differential operator. We can project {70} onto an appropriate
multiresolution space V" yielding

¢> =0, (68)

with ¢ either the scaling function (Latto & Tencbaum 1990, Glowinski et
al 1990) or the wavelet associated to the chosen multiresolution (Liandrat
ct al 1989, 1991; Liandrat & Tchamitchian 1990; Maday et al 1990; Perrier
1989, 1991a). For a multiresolution based on the discrete filter E,(k)
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(Section 4.2), the differentiation becomes very easy if we introduce a second
filter F,(k) which is the derivative of the first one, as proposed by Lemarié
(Perrier 1991b). The only problems arise from the nonlinear operators,
which presently must be computed in physical space at each time step, as
is done for pseudo-speciral methods. In the case of v+ Vv—the nonlinear
operator so important for turbulence—we can almost compute it directly
in wavelet space (Beylkin 1991). The advantage of a wavelet Galerkin
method, compared to Fourier, is that it uses the lacunarity of the wavelct
serics and discards the wavelet coefficients below a certain threshold.
Depending on the problem, we can then drastically reduce the number of
degrees of freedom to compute. For instance, in the case of the one-
dimensional Burger's equation with a weak dissipation, Perrier has shown
that 164 wavelet coefficients are sufficient to achieve the same precision of
the solution, e = 10~%, as with 1024 Fourier modes (Maday et al 1991;
Perrier 1991a,b). In addition, she observes no Gibbs’ phenomenon in the
velocity ficld away from the shock, as is the case with the Fourier Galerkin
method.

As we said in Section 5.1, turbulent flows may be thought of as a
superposition of point vortices, This is the basic assumption of vortex
numerical methods which is used for computing turbulent flows (Leonard
1985}, In this case the solution is approximated as a finite sum of regu-
larized Dirac masses, which evolve in amplitude and position. The same
idea is behind the wavelet particle method, but in addition it allows the
elementary vortices, substituted for the Dirac masscs, 1¢ be deformed and
therefore also to evolve in scale. The principle of the wavelet particle
method (Basdevant et al 1990) is to look for an approximate solution of
Equation (67), considered as a sum of a given number N of wavelet particles
¥, or wavelet atoms, which evolve in phase space according to:

x x—x,(1) ul
u(x, I) = ZI H"(f)\d‘ ; ([) = 21 .'Pn(xs I) (69)

‘Pn = {U,,, Im xn}

with {, > 0 and u,, x,eR.

The double localization of wavelets in both space and scale ensures the
independence, in the L sense, of two wavelet particles ‘¥, and ¥, distant
encugh in phasc-space, namely for

|xmin|

»0 and > 1, {70

"

!
1
L,

Therefore the time evolution of the solution of Equation (67) will cor-
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respond to the trajectories of the wavelet particles in phase space. In
regions where the solution 1s smooth there will be very few wavelet
particles, whereas they will concentrate dynamically in regions where the
solution may become singular. The wavelet particle method (also called
“ondelettes mobiles™) consists, for each time step, of finding the set of
$ityn . ottyy Do oy Xx10.. -, X,) that minimizes the local residual from
Equation (67), where

+ a0
r=|

We must therefore solve a linear system of 3N equations for du,/dr, 81,/6t,
and dx,/8¢, which is well conditioned only if the different wavelet particles
remain sufficiently separated. How to handle wavclet-particle collisions is
stilt an open problem; some tentative solutions are discussed in Perrer
(1991a).

It is well-known that the importance of Fourier bases stcms from the
fact that they diagonalize differential operators. Although such operators
lose this very simple form in a wavelet basis, due to the different frequencies
involved in the wavelet and required by its space localization, they have a
matrix realization that is almost diagonal (Meyer 1990a, Jaffard 1991d}.
Bevlkin, Coifman, and Rokhlin have developed a very efficient algorithm,
based on wavetets, which allows one to multiply a matrix by a vector very
efficiently. Thus this algorithm is useful for diagonalizing or inverting
certain classes of dense matrices, and is particularly appropriate to the
case of integral operators (Beyikin et al 1921a). It uses the fact that wavelet
coefficients decay rapidly in regions where the function is reguiar; after
projecting &/ onto an orthogonal wavelet basis and reordering the terms,
the BCR algorithm transforms o/ into a band matrix. For instance to
solve Y = &X, to aceuracy ¢, requires only C(c)+ N operations, with C
being a constant depending on the precision desired. This algorithm has
been used to invert dense matrices of more than 2'% elements, which
would have been impossible in practice with any other method. Other
new algorithms, also based on wavelets, are presently being studied for
inverting elliptic operators {Tchamitchian 198%a,b; Jaffard 1990b).

All these numerical methods based on wavelets are in a very preliminary
phase and not yet ready to compute the Navier-Stokes or Euler equations.
But, as a first step, we can still numerically solve these equations with
other, more classical, algorithms and use wavelets only to locally filter the
solutions or detect the strong gradient regions {such as shocks) n order
to remesh the domain when and where it is necessary, Wavelets may also
be used to define some new ways of forcing the flow field, for instance to

2

4 . an

—+ 4
ar+u
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excite only a given coherent structure and not the whole domain as with
Fourier mode forcing. Finally, we can foresee using wavelets to develop
new variants of the Large Eddy Simulation techniques, where the scale
separation will no longer be defined in terms of Fourier wavenumbers, but
will be based on a separation between coherent structures (i.e. very excited
regions of wavelet phase space) which will be explicitly computed, while
the background flow (i.e. regions of weak wavelet coeflicients) will only be
globally parameterized using some ad hoc model.

CONCLUSION

The present position of the founders of the wavelet theory—Morlet,
Grossmann and Meyer—is to control the enthusiasm of the newcomers,
who may overestimate the actual possibilities of the wavelet transform and
then create some backlash effect resuiting from their disappointment. My
own view is that the wavelet transform is a very young technique which is
evolving at a very fast pace, and we therefore must first become accustomed
with it by performing extensive tests on well-known “academic signals™ in
order to develop a feeling for it before defining applications for which it
will be useful.

We should also define some appropriate representations of the wavelet
space, which is then critical for the two- and three-dimensional wavelet
transform. We should develop a feel for the interpretation of wavelet
coefficients, in particular for better understanding of the meanings of the
modulus and phase in the case of complex-valued wavelets. In addition,
we should test many different wavelets to try to optimize the choice of
wavelet for a given problem. We should aiso find faster continuous wavelet
transform algorithms. In the context of turbulence, the wavelet transform
certainly opens some new possibilities, but we should not rely on it to solve
the problem by chance, lest we run the risk—as has already heen the
case in this field—of misinterpreting the results by mistaking the scaling
behavior of the wavelet transform for the signal scaling. The wavelet
transform is a sophisticated tool and its use might be very fruitful for
the understanding of turbulence, if one is wise enough to first become
accustomed with it.

To conclude I quote Yves Meyer (Meyer 1990c):

Wavelets are [ashionable and therefore excite curiosity and irritation. It is amazing that
wavelets have appeared, almost simultangously in the beginning of the 3(0°s, as an
alternative to traditional Fourier analysis, in domains as diverse as speech analysis
and synthesis, signal coding for telecommunications, (low-level) information extraction
process performed by the retinian system, fully-developed wrbulence analysis, renor-
malization in quantum field theory, functional spaces interpolation theory. . . . But this
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pretention for pluridisciplinarity can only be irritating, as are all “great syntheses™ which
allow cne to understand and explain everything, Will wavelets soon join “catastrophe
theory™ or “fractals” in the bazaar ofalb-purpose systems? It seems to me that “wavelets”
have a slightly different position, since they do not constitute a theory but rather a new
scientific tool. Indeed, they have never been used to explain anything. When M. Farge
uses them to analyze turbulence simulation results, they play nearly the same role as the
pait of glasses 1 use to read the “Apologie de Raimond Sebond.” These glasses, now
required by my age, should not be condemned if I do not understand Montaigne’s
thoughts, or glorified if I admire them. Likewise with wavelets whose modest, but
esgential, role is to help us ta batter study, at diflerent scaleg, complex phenomena.

ACKNOWLEDGMENTS

The wavelet transform examples which illustrate this paper have been
computed on the Cray-2 of the Centre de Calcul Vectoriel pour la
Recherche, Palaisean, and on other systems, in collaboration with Jean-
Frangois Colonna, Marc Duval-Destin, Eric Goirand, Philippe Guille-
main, Matthias Holschneider, Gabriel Rabreau, and Victor Wicker-
hauser. I gratefully thank them for their help. I also thank very much all the
members of the “wavelet community,” who kindly agreed to read this
paper and provide me with their comments. T am also very prateful to
Laurette Tuckerman, Eric Gimon, and David Couzens for polishing my

English.

Literarure Cited

Antoine, J. P, Murenzi, R., Piette, B.,
Duval-Destin, M. 1990, lmage analysis
with 2D continuous wavelet transform:
delestion of posilion, orientation and
visual contrast of simple objets. See Meyer
& Paul 1991

Antoing, J. P., Camrette, P., Murenzi, R.,
Piatte, B. 1991. Image anaiysis with 2D
continuous wavelet transform. In Wavelet
Transforms and Multiresolution Signal
Andalysis, ed. | Daubechies, S. Mallat, A.
Willsky, IEEE Trans, Inf. Theory. In press

Antoine, J. P., Duval-Destin, M. 1991. Local
analysis of visual conirast with two dimen-
sional wavelets. Inst. Phys. Théotique,
Univ. Cathol. Louvain, Belgium. Preprint

Argoul, F., Améodo, A., Elezgaray, J..
Grassean, G., Murenzi, R. 1988, Wavelet
transform of fractal aggregatcs. Phys.
Lett. A 135: 327

Argoul, F., Améodo, A, Grassean, G,
Gagne, Y., Hopfinger, E., Frisch, U. 1983,
Wavelet analysis of turbulence reveals the
multifractal nature of the Richardson cas.
cade. Nature 338(6210); 51-53

Argoul, F., Arnéodo, A, Elezgaray, J.,
Grasseau, G., Murenzi, R. 1990. Wavelet
iransform analysis of the sclf-similarity of

Diffusion Limited Aggregate and electro-
deposition clusters. Phys. RKep. A 41: 3337

Aristov, 8. N, Frick, P. (. 1983a. Advective
flows in plane rotating layers of con-
ducting fluids. Magnetohydrodynamics
24{1): 13-20 (From Russian{

Aristov, 5. N., Frick, P. G. 1988b. Large-
scale turbulence in a thin layer of non-
isothermal rotating fluid. Fluid Dyn. 23(4):
522-28 (From Russian)

Aristov, 5. N, Frick, P. (5. 1989. Large-scale
turbulence in Rayleigh-Bénard convec-
ti‘cnli Fhuid Dyn. 24(5); 4348 (From Rus-
sian

Aristov, S. N, Frick, P. G., Mikishev, A. B.
1989, Intcgral and local characteristics of
large-scale turbulence in thin layers of
fnds. On Turbuience, Sth Europhys. Conf.,
Moscow, pp. 176-79

Aristov, 8. N, Frick, P. . 1990. Nonlinear
effects of interaction hetween the con-
vective vortices and magnetic field in thin
layer of conducting fluid. Magnero-
hydr)adynamics 25(1): 8288 (From Rus-
sian

Aristov, 5. N, Frick, P. G., Mikishev, A, B.
1090, Appearance of large-scale structures
in turbulent rotating layers of fluid. fne.


http://www.annualreviews.org/aronline

|A,| Annual Reviews
ﬁ www.annualreviews.org/aronline

Symp. Generation of Large-scale Structure
in Contirinous Media, Perm-Moscow, pp.
20-30

Arnéodo, A, Argoul, F. Elergaray, J..
Grasseau, G. 1938, Wavelet transform
analysis of fractals: applications to non-
equilibrium phasa transitions. In Proc.
Conf. Nonlinear Dynamics, Bologna, cd.
G. Turchetti, p. 130. Singapore; World
Scientific

Améodo, A., Grasseaw, (., Holschneider,
M. 1988. On the wavelet transform of
multifractals. Phys. Rev. Lert. 61(20):
228184

Améodo, A., Grasseau, G., Holschneider,
M. [989, Wavelet transform analysis of
invariant measures of some dynamical sys-
tems. See Combes et al 1989, pp. 18296

Arnéodo, A, Argoul, F., Grasseau, G. 1990.
Transformation en  ondelettes ot
renormalisation. See Lemarié 19904, pp.
125-91

Ameéodo, A., Argoul, F., Bacry, E., Elez-
garay, 1., Freysz, E., Grassean, GG, Muzy,
1. F., Pouligny, B. 1991. Wavelet trans-
form of fractals: 1. From the transition o
chacs to fully developed turbulence. 11.
Optical wavelet transform of fractal
gn;\;rth phenomena. See Meyer & Paul
19

Aubry, N, Holmes, P., Lumley, J. L., Stone,
E. 1988. The dynamics of coherent struc-
turcs in the wall region of a turbulent
boundary layer. J. Fluid Mech. 192: 115
73

Bacry, E., Arnéodo, A., Frisch, U., Gagne,
Y., Hopfinger, E. 1991. Wavelet analysis
of fully developed wmurbulence data and
measurement of scaling eXpomenis. In
Proc. Turbulence 80: Drganized Structures
and  Turbulence in Fluid Mechanics,
Grenoble, Sept. 1989, ed. M. Lesieur, O.
Meétais, pp. 203-15. Dordrecht: Kiuwer

Basdevant, C., Legras, B., Sadourny, R.,
Réland, M. 1981, A study of barotropic
model flows: intermittency, waves and
prediclability. J. Aimos. Sci. 38. 2305-26

Basdevant, C.. Couder. Y. 1986. Experi-
mental and numerical study of vortex
couples in two-dimensionai Rows, J. Fluid
Mech, 173; 225-51

Basdevant, C., Holschneider, M., Pervier, V.
1990, Méthode des ondelettes mobiles. €,
R. Acad. Sci. Paris, Sér. It 647-52

Bassevitie, M., Benveniste, A. 1939, Mult-
scale statistical signal processing. TEEE
int. Conference on Acoustics, Speech and
Signal Processing, Glasgow, May 1989 4:
206568

Basseville, M., Benveniste, A. 1930, Multi-
scale antoregressive processes. Preprimt
No. 525 IRISA, Univ. Beanlicu, Rennes,
France

WAVELET TRANSFORMS 451

Battle, G_ 1987. A block spin construction
of Ondeleties, Part I: Lemarié functions.
Commun. Math. Phys. 110: 607-15

Battle, G. 1988. A block spin construction of
Ondelettes, Part 11: The QFT Connection.
Comnum, Math. Phys, |14 93-102

Rell, T.. Nelkin, M. 1978. Time-dependent
scaling refations and a cascade model
gtl‘ turbulence. J. Fluid Mech. BS(2). 369

Benveniste, A. 1990, Multiscale signal pro-
cessing: from QMF to wavelets. Prepring
No. 550, IRISA, Univ. Beaulieu, Rennes,
France ]

Benveniste, A., Nikoukhah, R., Wiilsky, A.
1990. Multiscale system theory. Preprint
No., 518, IRISA, Univ. Beaulicu, Rennes,
France

Benzi, R., Paladin, G., Parisi, G., Vulpiani,
AL 1984, On the multifractal nature of fully
develaped turbulence and chaotic systems.
J. Phys. A 17: 3521--31

Benzi, R., Vergassola, M. 1991. Optimal
wavelet transform and its application to
two dimensional turbulence. Ffuid Dvn.
Res. 8 11726

Beylkin, G., Coifman, R., Rokhlin, V.
19%1a. Fast wavelet transform. Comm,
Pure Appl. Math, 44. 141-83

Beylkin, G., Coifman, R., Daubechies, 1.,
Mallat, 8., Meyer, Y., Ruskai, M. B., eds.
19216, Wavelets and Their Applications.
Boston: Jones & Bartlett

Beylkin, G. 1981. On the representation of
operators in buses of compactly supported
wavelets. Schlumberger-Doll Research.
Preprint

Bijaouw, A, 1991. Wavelets and astronomical
image analvsis. See Farge et al 1991b

Calderon, A. P. 1964, Intermediate spaces
and interpolation, the complex method.
Stud Math_ 24 [13-90

Castaing, B. 1989, Consequences d'un prin-
cipe d'extremum en turbulence. J. Phys-
ique 50 147-56

Castaing, B., Gagne, Y., Hopfinger, E. J.
1990. ¥elecity probability density [unc-
tions of high Reynolds number turbu-
lence. Physica D 46: 177-200

Cohen, A., Daubechies, 1., Feauveau, ). C.
1990. Biorthogonal bases of compactly
supported wavelets. Comm. Pure Appl,
Muth, Submitted

Cohen, A. 1990. Ondelettes, analyses multi-
resolutlons et traitement numérique du

. PhID thesis. Univ. Paris, France

Coi man, R. K., Meyer, Y., Quake, 5.,
Wickerhauwset, M. V. 1990a. Signal pro-
oessing and compression with wavelet
packets. Dept. Math., Yale Univ,, New
Haven, CT. Preprint

Coifman, R. R., Meyer, Y., Wickerhauser,
M. V. 1990b. Wavelet Packets. Dept.


http://www.annualreviews.org/aronline

|A,| Annual Reviews
ﬁ www.annualreviews.org/aronline

452 FARGE
Math., Yale Univ., New Haven, CT. Pre-
print

Combes, J. M., Grossmann, A., Tchamit-
chian, P., eds. 1989. Wavelets, Tinie-Fre-
quency Methods and Phase Space. st
;m Wa;ea‘engFgf Ma;a.en’le, D§c 1987,
nverse Pro goret i rin

Dallard, dding, G maﬁ g 80 geD
wavelet trans]l?enns. Aerosp. Dept Univ,
South, Calif., Los Angeles, CA. Preprint

Daubechies, L, Grossmann, A., Meyer, Y.
1986. Painless nonorthogonal expansions.
J. Math. Phys. 21 177183

Daubechies, 1., Paul, T. 1987. Wavelets and
apphcanons In Proceedmgs of the Sth
International Congress of Mathematical
DPhysics, ed. M. Mebkbout, R. Seneor. Sin-
gapore; World Scientific

Daubechies, 1., Paul, T. 1988, Time fre-
quency localization operators—a  geo-
metric phase-space approach: 11 The use
of dilutions. frverse Probi. 4: 661-81

Daubechies, [. 1988. Orthonormal bases of
compactly supported wavelats, Comm.
Pure Appl. Math, A1{(T); 909-96

Daubechies, 1. 1989, Orthonormal bases of
wavelets with tinite support—Connection
with discrete filters. See Combes et al 1989,

PE-

Daubechies, 1. 1990. The wavelet transform,
timefrequency localization and signal
analysis. IEEE Trans, Inf. Theory 36, 961

Daubechies, I. [991. Ten lectures om
wavelets. CBMS Lecture Notes Series.
S1IAM

Daubechies, I.. Mallat, 5., Willsky, A. 1991.
Wavelet transforms and multiresolution
signal analysis. IEEE Trans. inf. Theory.
In press

Delprat, N, Eseudié, B, Guillemain, P,
Kronland-Martinet, R., Tchamitchian,
P., Torrésani, B. 1991. Asymptouc wave-
let and Gabor analysis; extraction of
instantaneons frequenl:les See Daubech-
ies et al 1991

Desmjanski, V. N, Novikov, E. A. 1974,
Moeodel of cascade processes in turbulent
flows. Appl. Math, Mech. 38(3): 507-13
{In Russian)

Dutilleux, P. 1989. An implementation of the
algorithme 4 trows o compule the wavelst
transform. See Combes et al 1989, pp.
298304

Duval-Destin, M., Menu, J. P. 1983, Wavelet
transform: a new basic spatial operator for
visual psychophysics. Vision Res. Sub-
mitted

Duval-Destin, M., Murenzi, R. 1991, Spatio-
temporal wavelet transform. Preprint TR
Vifei49, CERFACS, Toulouse, France

Duval-Destin, M., Muschietti, M. A., Tor-
résani, B. 1991, From continuous wavelets
to wavelet packels. Prepringe CPT, Cenl.

Phys. Théerique, CNRS-Luminy, Mar-
seille, France

Escudié, B., Torrésani, B. 1989. Wavelet
analysis of asymptotic signals. Freprrint
CPT-39/P.2304, t. Phys. Théonque,
CNRS- Lum]n)r, Marseille, France

Esteban, [>., Galand, C. 1977. Application
of Quadrature Mirror Filters to split band
voice coding s¢hemes. Proc. 1977 IEEE
I, Conf. Acoustic, speech and signai pro-
cessing, Harsford, pp. 191-95

Everson, R. M., Sirovich, L. 1989, A Survey
of wavelet analysis applied to turbulence
data. Report §9-182, Cent. Fluid Mech.
Turbulence Comput., Brown Univ.,
Providence, RI

Everson, R., Sirovich, L., Srcenivasan, K. R.
1990, Wavelet analysis of the turbulent jet.
Phys. Lewt. A 145: 314

Falconer, K, J, 1921, Wavelets, fractals and
order-two densities. See Farge et al 1991b

Farge, M., Rabreau, G. 1988a. Wavelet
transform 10 analyze cohierent structures
in two-dimensional turbulent flows. Proc.
Scafing, Fractals and Nondinear Variability
in (Feophysics §, Paris, June 1988

Farge, M., Rahreau, G. 1988b. Transformee
en ondeleites pour détecter et analyser les
strectures coherentes dans les écoulements
turbulents bidimensionnels. C. R, Acad.
Sei. Pariz Ser, 11 307: 1479-36

Farge, M., Sadourny, R. 1989, Wave-vortex
dynamics in rotating shallow water, J.
Fluid Mech. 206: 433-62

Farge, M., Holschneider, M. 1989, Two-
dimensional wavelet analysis of two-
dimensional turbitlent fAows. Proe. Sca-
ling, Fractals and Nonlinear Variability in
Geophysics I, Barcelone, March 1989

Farge, M., Holschneider, M., Colonna, I F.
1990a. Wavelet analyﬂs of coherent struc-
tures in two-dimensional turbulent flows.
In Topological Fluid Mechanics, ed. H K.
Moffatt, pp. 765-76. Cambridge: Cam-
bridge Univ. Press

Farge, M. 1990, Transformée en ondelettes
continee et application 4 la turbulenge.
Jowrn. Annu. Soc. Math. France, May
1990: 1762

Farge, M., Holschnsider, M. 1991 Interpre-
tation of two- -dimensional  turbulence
energy spectrum in terms of quasi-singu-
larity insome vortcx cores. Europhys. Letr,
[3(7); 73743

Farge, M., Guezennee, Y., Ho, C. M., Mene-
veau, C. 1990b. Continuous wavelet
analysis of coherent struciures, Proc, Sum-
mer Prog. Cent. Turbulence Res., Stanford
Univ. NASA-Ames, Stanford, CA

Farge, M. [9%91a. Continuous wavelet irans-
form application to turbulence. See Beyl-
kin ¢t al 1991b

Farge, M. 1991b. L'évolution des théories de


http://www.annualreviews.org/aronline

'A Annua Reviews )
ﬁ www.annualreviews.org/aronline

la turbulence. To appear in Chaos et
Déterminisme, Collection Points-Sciences,
Le Scuil

Farge, M., Holschoeider, M., Philipoviich,
T. 1991a. Formation et stabilité des quasi-
singularités =7 en twbulence bidi-
mensionnelle. C. R. dcad. S¢. Paris, Sub-
mitted

Farge, M., Hunt, J., Vassilicos, C., eds.
1991b. Wavelers, Fractals and Fourter
Transform: New Developments md New
Appiications, Oxford: Oxford Univ. Press.
In press

Farge, M., Goirand, E., Wickerhauser, V.
19%1¢. Wavelet packets analysis, com-
pression and filtering of two-dimensional
turbulent Hows. LMDB, Ecole Normalé
Supérieure, Paris. Preprint

Feauveau, J. C. 1989. Filtres micoirs con-
Jugués: une théorie pour les filtres miroirs
en quadralure et 'analyse multicésohution
par ondeleties. C. K. Acad. Sci. Paris, Sér.
11 308: 1479-86

Feauveaw, JI. C. 1990, Analyse multi-
résolution par ondelettes. €. R. Acad,
Seci. Pariz, Sér. [ 300: 85354

Flandrin, P, (988, Time-frequency and time-
scale. IEEE Fourth Annu. ASSP Workshop
Spectrum  Estimation  and  Modeling,
Minneapolis, August 1938, pp. 77-80

Flandrin, P. 1990. Wavelets and related
time-scale transforms. SPIE Proc. Ad-
vanced Signal Processing Algorithms, Ar-
chitectures gnd Implemeniations, ed. F.
T. Luk, 134%8: 2-13

Flandrin, P,, Rioul, 0. 1990, Affine smooth-
ing of the Wigner-Ville distribution. JEEE
ICASSP Conference, dlbuguerque, April
1990, pp, 2455-58

Flandrin, P. 1991a, Wavelet analysis and
synthesis of fractional Brownian motion.
In  Waveler Trangforms and  Muili-
resolution Signaf Analysiz, ed. 1. Daubech-
ies, 5. Mallat, A. Willsky, IEEE Trans.
Inf. Theory, spovial issuc

Flandrin, P. 1991b. Fractional Brownian
motion and wavelets. See Fargeetal 1991{b

Creysz, C., Pouligny, B., Argoul, ., Ameé-
odo, A, 1990, Optical wavelet transform
gi ;'ractal aggregates. Phys. Reo. Letr. 64:

Frick, P. G. 1983. Hierarchical model of
two-ditnensional lurbulence. Magneto-
hydrodynamics 19(1): 48-53 {From Rus-

Sl
Frick, P. G. 1984 Two-dimensional MHD-
turbulence: Hieratchical madel, Magrezo-
apdrodynamics 2003) (From Russian)
Frick, P. 5. 1986a. A cascade model of two-
dimensional turbulent convecton. Fluid
Mech, Svv. Rey. 15(2). 80-92 (From Rus-

sian)
Frick, P.G. 1986b. Modeling of cascade pro-

WAVELET TRANSFORMS 453

cess in two-dimensicnal iurbulent con-
vection. J. Appl. Mech. Tech. Phys. 27(2):
221-28 (From Russian}

Frick, P, G. 1987. Modeling of the space-
time structure of developed two-dimen-
sional turbulcnt convection. Fheid Mech.
Sov. Res. [6(3): 49-54 (From Russian)}

Frick, P. G., Mikishev, A. V. 1990, Inves-
tigation of local and integral charac-
teristics of developed wo-dimensional
turbulence using the hierarchical model.
Second Werld Congr. Compur. Mech,
August 1990, Stutigart

Frick, P. G., Zimin, V. D. 1991, Hierarchical
models of turbulence. Sce Farge et al
19%1b

Frisch, U., Sulem, P. L. 1975, Remarque
sur la multiplication dans les cspages de
Sobolev et application aux eéquations
d’Euler d'un fuide illimité. C. R. Acad.
Sei, Paris, 5ér. A 280: 111720

Frisch, U., Sulem, P. L., Nelkin, M. 1978. A
simple dynamical model of intermittant
fully developed turbulence. J. Fluid Mech.
87: 719-36

Frisch, 1)., Vergassola, M. 1990, A pre-
diction of the multifractal model; the
intermediate dissipation range. Europhys.
Latr. Submitted

Gabor, D. 1946, Theory of communication.
J. Insi. Electr. Eng. 93(IID): 429-57

Gasquet, C., Witomski, P. 1990. Angfvse de
Fourier et Applications: Filtragre, Cal-
cid Nrumerique, Ondeleties. Paris: Masson

GChez, J. M., Vaienti, S. 1980 On the wavelet
analysis for multifractal seis. J. Srar. Fhys.
57{12): 41520

Gledzer, E. B, Dolzhansky, F. B., Obukhov,
A. M. 1981, Systems of hydrodynamical
tvpe and their applications. C. R, Aead.
Sei., Moscow (In Russian)

Glowinski, R., Lawton, W. M., Ravachol,
M., Tencnbaum, E. 1990. Wavelet solu-
tion of linear and nonlinear elliptic, para-
bolic and hyperbolic problems in one
space dimension, Pt fnt. Conf. Appl. Sci.
Eng., SIAM, Philadelphia

Goupillaud, P., Grossmaou, 4., Mocet, J.
1984, Cycle-octave and related transforms
in seismic signal analysis. Geoexploraiion
23; 85-105

Grossmann, A. 1988, Wavelel Lransforms
and edge detection. Stochastic Processes
in Physicy und Engineering, cd. P. Blan-
chard, L, Streit, M, Hazewinkel, Boston:
Reidei

Grossmann, A., Morlet, J. 1984, Decompo-
sition of Hardy functions into square inte-
grable wavelets of constant shape. STAM
J. Marh. Anal. 15(4): 723-36

Grossmann, A., Paul, T. 1984. Wave (unc-
tiens on subgroups of the group of affine
canonical transformations. Resomances,


http://www.annualreviews.org/aronline

Annua Reviews
www.annualreviews.org/aronline

454 FARGE

Models and Phenomena, Lecture Notes in
Physics, No. 211, Herlin: Springer-Vertag

Grossmann, A., Morlet, J. 1985, Decompo-
sition of functions into wavelets of con-
stant shape. and related transforms. In
Mathematics + Physics, Lectures on Re-
cent Resufts, ed. L. Streit, 1: 13565,
Singapore: World Scientific

Grossmann, A., Morlet, J., Paul, T. 1985,
Transforms associated to square inte-
grable group representations I: general
results. J. Math. Phys. 26: 2473-7¢

Grossmann, A., Morlet, J., Faul, T. 1986,
Transforms associated to square inte-
grable group representations 11: examptes.
Ann, Insi. Henri Poincaré, Phys. Théorigue
45: 293-309

Grossmann, A., Holschneider, M., Kron-
land-Martinet, B, Marlet, 1. 1987 Detec-
tion of abrupt changes in sound signals
with the help of wavelet transforms. In
Advances in Electronics and Eleceron Phys-
ics, Suppl. 19, Inverse Problems, pp. 289—
306. Acadenic

Grossmann, A., Kronland-Martinent, K.
1988, Time-and-scale representations
obtained through continwous wavelet
transforms. In Signal Processing IV: The-
ories and ApMlications, EURASIP 88, ed.
J. L. Lacoume, A. Chehikian, N. Martin,
J. Malbos, pp. 675-82. Amsterdam: Else-
vier

Grossmann, A., Kronland-Martinet, R,
Morlet, J. 1989, Reading and uader-
standing continuouz wavelet transforms.
See Combes ot al 1989, pp. 2 20

Guillemain, P. 1991. Application of wavelet
analysis in NMR spectroscopy. See Meyer
& Paul 1991

Haar, A. 1909. Zur Theorie der Ortho-
gonalen Funktionensysteme. Gottingen,
Juli 1909

Holschneider, M. 1988a. L’analyse d'objets
fractals et leur transformée en ondelettes.
PhD thesis. Univ. d’Aix-Masseille 1I,
Luminy, France

Holschrieider, M. 1988b. On the wawvelet
transformation of fractal object. J. Stat.
Phys. 50: 953-93

Holschncider, M., Kronland-Martinei, R.,
Morlet, J., Tchamitchian, P. 1988 The
“algorithme a trous.” JEEE Trans. ASSP.
Submitted

Hotschneider, M., Kronland-Martiney, R.,
Morlet, J., Tchamitchian, P. 1989. A real-
time algorithm for signal analysis with the
help of the wavelet transtorm. See Combes
et al 1989, pp. 28697

Holschneider, M., Tchamitchian, P, 1989.
Pointwise ana]yﬂs of Riemann’s non-
differentiable function. fnventiones Maih.
Submitted

Haolsehnaidar, M. 199 Inverse Radon

transtorm through inverse wavelet trans-
tarm. Imverse Probl. Submitted

Holschneider, M., Tchamitchian, P. 1950,
Régulanité bocule de la fonction “non-
différentizble” de Riemanm. See Lemarié
1990a, pp. 102-24

Holschneider, M. 1991, Havelet Anafysis.
Textbook submitted to Springer

Jaffard, 5. 1989a. Cxposants d¢ Holder en
des points donnés et coefficients d'on-
delettes. C. R. dcad. Sci. Parls, Ser. T 308:
79-31

Jafiard, S. 1989b. Construction of wavelets
of open sets. See Combes ¢t al 1989, pp.
2471-52

Jaflard, S., Meyer, Y. 1989, Bases d’on-
delettes dans des cuverts de R”. J. Maih.
Pures Appl. 68 95-108

Jaffard, 5. [#%0a. Construction ¢t propriétés
des bases d’ondeleites. Remargues sur la
controlabilite exacte. PhD ihesis. 'Ecole
Polytechniguc, Palaiseau. France

Jaffard, S. 1990b. Wavelet methods for fast
reselution of elliptic problems. Prepring
20/5, Lab. Math. Modgsanon Ecole Nat.
Ponts-et-Chaussees, La Court:ne Noisy-
le-Grand, France

Jaffard, S. 1991a. Detection and identi-
fication of singularities by the continuous
wavelet transform. Preprint, Lab, Math.
Modélisation, Ecole Nat. Ponts-et-Chaus-
sees, La Courtine, Noisy-le-Grand, France

Jaffard, 5. 1981b. Orthonormal and con-
tinuous wavelet transform: algorithms
and applications to the study of pointwise
properties of functions. See Farge ct al
1991b

Kim, J., Moin, P., Moser, R. 1987, Twus-
bulence statistics in fully developed chan-
nel flow at low Reynolds numbey. J. Fluid
Mech. 177 133-66

Kling, S. I., Reynelds, W. C., Schraub, F.
A, "Runstadlér, P, W. 1967. The structure
of tutbulent boundary layers. J. Fhuid
Mech. 30(4): 741-73

Kolmogorayv, A. M. 1961. A refinement of
previous hypotheses cancerning the local
structure of turbulence in viscous incom-
pressible fluid at high Reynolds number.
J. Fluid Mech. 177 [33-66

Kraichoan, R. H. 1974, On Kolmogorov's
inertial-range theories. J. Fluid Mech. 02:
305-30

Kronland-Martinet, R., Morlet, I,
Grossmann, A. 1987. Analysis of sound
patterns throngh wavelet transforms. fnf.
J. Pastern Anal, Areif. Inieil. 1(2): 273-
302

Kronland-Martinet, R. 1988. The use of the
wavelet transform for the analysis, syn-
thesis and processing of speech and music
iounds. Comput. Music J. MIT Press, 12:


http://www.annualreviews.org/aronline

'A Annua Reviews )
ﬁ www.annualreviews.org/aronline

Latto, A., Tenenbaum, E. 1990, Compactly
supported wavelets and the numerical
soﬁltion of Biirgers equation, C. R. Acad.
Sci. Paris, Sér. 1311: 9039

Laufer, J. 1975. New trends in experimental
turbulence research. Annu. Rev. Fiwid
Mech. 7: 307-26

Lemarnsé, P. G., Mever, Y. 1986. Ondelettes
c2:t basess hilbertiennes. Rev, Mat. IberoAm.

1 1-1

Lemanié, P. G. 1088 Ondelettes 4 local-
isation exponenticlle, J. Math, Pures Appl.
67. 227-36

Lemané, P. G, ed. 19904, Ley Ondelettes
en 1989 Lecture Noges in Mathemarics,
Berlin: Springer

Lemarié, P. G. {990b. Introduction a la théo-
rie des ondelettes. See Lemarié 1990a, pp.
I-13

Lemarié, P. G. 1990c. Analyse multi-échelles
et ondecletles 4 support compact. See
Lemnarié 1990a, pp. 26-3%

Leonard, A_ 1985. Computing three-dimen-
sional incompressible flows with vortex
glgments, Annu. Rey. Fluid Mech. 17: 523—

Liandrat, J., Perrier, V., Tchamitchian, P.
1989. Nunerical resolution of the regu-
larized Biirgers equation using the wavelet
transform. See Meyer & Paul 1991

Liandrat, 1., Tchamitchian, P. [990). Res-
olution of the 1D regularized Biirgers
equation using a spatia% wavelet approxi-
mation— Algorithmn and numerical te-
sults. JCASE Report, NASA Langley,
Harapton, Yirginia

Liandrat, J.,, Moret-Bailly, F. 1990, The
wavelet transform: some applications to
fluid dynamics and tuwibulence, Ewr. J.
Mech. BFluids 9(1: {~19

Lisndrat, I., Perrier, V., Tchamitchian, P.
1931. Numgcrical resolution of nenlinear
partial differential equations using the
wavelet transform. S¢e Beylkin et al
1991b

Lumiey, J. L. 1981, Coherent siroctores in
turbulence. Tn Transition and Turbulence,
ed. B. E. Meyer, pp. 21541, New York:
Acadernic

Maday, Y., Perrier, V., Ravel, J. C. 1990.
Adaptativité dynamique sur bases d’on-
deleties pour I"approximation d'équations
aux dérvées partieles. C. R Adced. Sci.
Paris. Submitted

Maliat, 5. 1988, Review of multifrequency
channal decompositions of images and
wavelet models, In Acousric, Speech and
Signal Processing, Muliidimensional Sig-
nal Processing, IHEEE (special issue)

Mallat, S. 1589%a. A theory for multi-
resolution  signal  decomposition: the
wavelel representation. JEEE, Trans. on
Patiern Anal. Machine Intell, 2.7

WAVELET TRANSFORMS 455

Mallat, 5. 19%9b. Multiresolution approxi-
mations and wavelet orthonormal bases
g; L(R). Trans. Am. Math, Soc. 315; 69—

Mallat, 5. 1989¢. Multiresclution approxi-
mation and wavelets. Report GRASP
Lab., Dept. Comput. Inf. Sci., Univ.
Penngylvania, Philadelphia, PA

Mallat, 5. 1989d. Multiresolution approach
to wavelels in computer vision. See Com-
bes ot al 1089, (Ind &d. 1990, p 31D

Mallat, 8., Hwang, 1. H. 1990. Singularity
detection and processing with wavelets.
Courant Inst. Tech. Rep. No. 549, New
York, NY

Mallat, 8., Zhong, S. 1990. Complete :{ifnal
tepresenitation  wath  multiscale  edpes.
Courant nst. Tech. Rep, No, 483, New
York, NY

Mallat, 8., Zhong, S. 1991. Wavelet trans-
form maxima and multiscale edges. See
Beylkin et al 19 b

Mandelbret, B. 1974, Iniermitfeni tur-
bulence in sell-similar cascades. diver-
gence o high moments and dimension of
carnier. J. Fluid Mech. £2: 331-58

McWilliams, J. 1984, The emergence of iso-
lated coherent vortices in turbulent flow.
J. Flutd Mech. 146; 21-433

Menevean, C. 1991a. Analysis of lurbulence
in the orthonarmal wavelet represen-
tation. J. Fluid Mech. In press

Meneveau, C. 1991b. Wavelet analysis of
turbulence: the mixed energy cascade. See
Farge et al 1991b

Meneveau, C. 1991, Dual spectra and mixed
energy cascade of turbulence in the wave-
let representation. Phys. Rev. Lenr. 66:
1450

Meyer, Y. 1985, Principe d'incerlitude, buses
hilbertiennes et algébres dopérateurs.
Séminaire Bourbaki, 19835-86, 662, Astér-
isgue, Socigré Mathématigue de France,
Paris, France

Meyer, Y. 1986, Ondeleties ¢t fonctions
splines. Sémingire Equations aux dérivées
partielles, Cent. Math. Ecole Pelytech.,
Palaiseau, France

Meyer, Y. 1987a. Ondclettes, fonctions
splines et analyse graduée. Rapport CER-
EMADE, No. 8703, Univ. Paris-
Dauphine, Pans, France

Meyer, Y. 1987h. Wavelets and operators.
Rappore CEREMADE, No. 5704, Univ.
Faris-Drauphine, Paris, France

Meyver, Y. 1988, Orthonormal wavelets.
Congr. Int. Phys. Math., Swansea, July

Meyer, Y. 1989a. Ondelettes, filtres miroirs
en quadrature traitement numérique de
Iimage. Gaz. Marh, 40: 31-42

Mcyer, Y. 19895, Orthonormat wavelets. Sce
Combes et al 1989, pp. 21-37

Meyer, Y. 1989c. Ondeletics, filtres miroirs


http://www.annualreviews.org/aronline

Annua Reviews
www.annualreviews.org/aronline

456 FARGE

en quadrature ei traitemett numérique de
I"mage. See Lamane 1990a, pp, 14-25

Meyer, Y. 1990a, Ondeleties et opérateurs,
tome 1. dctualités Mathématiques. Paris;
Hermann

Meyer, Y. 1990b. Le calcul scigntifique, les
ondelettes et Ies filtres mircirs en quad-
rature. Rapport CEREMADE, No. D7,
Univ. Panis-Dauphing, Paris, France

Mever, Y. 1990c. Ondelettes et applications.
J. Armnu. Soc. Math. France, May 1990,
Soc. Frangaise Math., Paris, France, pp.

Meyer, Y., Paul, T., ¢ds. 1991, Wevelers and
Applications. Proceedings of the Second
Internotional Wavelet Conference, Mar-
setffe, June 1989, Paris: Masson. In press

Mikishev, A. Y,, Frick, P. G. 1985, Inter-
mittence in ideal two-dimensional mag-
netohydrodynamic wurbulence. Muagreto-
hydradyngmics 25(1) 127-30 (From Rus-
slan)

Mikishev, A. V., Frick, P. G. 1990. On the
spectral laws in iwo-dimensional tur-
bulent low with linear [ltiction. Magneio-

hydrodynamics 26(1): 136-3% (From Rus-

sfdn)

Moret-Bailly, F., Chauve, M. P., Liandrat,
J.. Tchamitchian, P. 192[. Determinations
du nombre de Reynolds de transition dans
utie &tude de couche limife sur un disque
tournant, C. R. Acad. Sci. Paris. Sub-
mitted

Morlet, J. 1981. Sampling theory and wave
propagation. Proc. 5Xst Annmu. Meer. Soc.
Explor. Geophvs., Los Angeles

Morfet, J. 1983. Sampling theery and wave
propagation. NATO ASL, Vol. Ff, Issues
on Acoustic Signal{image Processing and
Recognition, ed. C. H. Chen. Berlin:
Springer

Murenzi, R. 1989, Wavelet transforms
associated to the N-dimensional Eucli-
dean group with dilatations: signal in
more than one dimension. See Cotnbes et
al 1989, pp. 23926

Murenzi, E. 1990, Ondelettes mulii-
dimensionnelles ¢t application a ["analyse
d’images. PhD thesis. Univ. Cathol. Lou-
vain, Louvain-la-Neuve, Belgium
uzy, 1. F., Bacry, E., Arnéodo, A, 1991.
Wavelets and multifractal formalism for
singular signals. Phps. Ren. Letr. Sub-
mitted

Nakane, T. [988. Direct interaction
approximation of turbulence in the wave
packet representation. Phys, Fluids 31
1420

Nguyen Due, 1., Sommeria, J. 1988. Experi-
mental characterization of steady two-
dimensional vortex couples. J. Fhuid Mech.
192: 175-92

Otagura, T., Takagl, 5., Sato, H, 1989, Pat-

tern search in a torbulent signal using
wavelet analysis, Proc. 215t Japan Symp.
on Turbulence. Tokyo, Japan

Parisi, G., Frisch, U, 1983, Fully developed
turbulence and intermittency. In Proc.
Iniernational Schoof on Turbidence and
Predictability in Geaphysical Fluid Dynan-
ics and Climate Dynamics, ed. M. Ghil, R.
Benzi, . Parisi, pp. 71-88. Amsterdam:
North-Holland

Paul, T. 1984, Functions analytic on the hali-
plane as quantum mechanical states, J.
Math. Fhys. 25: 11

Paul, T. 1985a. Affine coherent states and
the radial Schrédinger squalion. Aner, frst.
Henri FPoincaré. Submitted

Paul, T. 1985b. Ondeleties et mécanique
quantique. Phl} thesis. Univ., Aix-Mar-
seille 11, Luminy, Marseille, France

Paul, T. 1986. A’ characterization dilation
analytic operators. In Schrddinger oper-
ators, Aarhus, 1955, Lecture Notes in
Mathemerics, 1218, Berlin: Springer

Paul, T. 198%. Wavelets and path integrals,
See Combes et al 1989, pp. 2048

Perrier, V. 1989, Toward a method for sofv-
ing Parlial Differentiai Equations using
wavelet bases. See Combes et al 1989, pp.
269-82

Perrier, V., Basdevant, C. 1989, La
de.compnsntlon en ondelsttes périodiques,
un oulil pour I analyse de champs inhomo-
geénes. Théorie et algorithmes. La Rech-
erche Aérosp. 31 53-67

Perrier, V. 18%1a. Ondeleties et simulation
numérque. PhD thesis. Univ. Paris VI,
Paris, France

Perrier, V. 1991b. Apport des ondelettes i
la résolution numeng ¢ d'¢quations aux
derivées partielles. S, Soc. Math. Appl. Ind.
In press

Qian, 1. 1988, Cascade mndel of tarbuylence.
Phys. Fheds 31(10): [865-74

Rioul, O. 1987, Ondelettes et trailemint
du signal. Rapport doption de Mathé-
matigues, Ecole Polytech., Palaiseau,
France

Rigul, O, 1921. A unifying multiresclution
theory for the discrete wavelet wansform,
regular filter banks and pyramid (rans-
forms. IEEE Trans. Acousiics, Speech and
Signal Processing. Submitted

Saracen, (5., Tchamitehian, P 1988 A study
of acoustic transmission of transient sig-
nal in an inhomogengous medivm with the
help of the wavelet transform—Appli-
cation to an air-watcr planc interface. In
Electramaynetic and Acoustic Scatlering:
Detection and fnverse Problem, ed. C. Bur-
rely, P. Chiapetta, B. Torresani. Mar-
seille: World Scientific .

Saracco, G.. Grossmann, A., Tehamitchian,
P. 1989. Use of wavclet transforms in the


http://www.annualreviews.org/aronline

|A,| Annual Reviews
ﬁ www.annualreviews.org/aronline

study of propagator of transient acoustic
signals across a plane interface between
two homogenenus media. See Combes et
al 1989, pp. 13944

Stromberg, J. O, 1981, A modified Haar sys-
tem and higher order spline systems. Conf.
Harmonic Analysis in Honor of Antoni
Zygmund, I, ed. W. Becker et al, pp. 475
03, Wadworth math. series

Tehamitchian, P. 1986. Calcul symbolique
sur les opérateurs de Calderon-Zygmund
¢t bases inconditionnelles de L¥R). C. R
Acad. Sci. Paris, $ér. I303: 6

Tchamitchian, P. [987. Biorthogonalité et
théorie des  opérateurs. Rev. Math.
Iberoam. 3: 2

Tchamitchian, P. 1989a. Bases d’ondelettes
el intégrales singuliéres: analyse des
fonctions et calcul sur les operateurs,
Thése dhabilitation 4  diviger  des
recherches.  Univ.  Aix-Margeille I,
Luminy, Marseille, France

Tchamitchian, P. 198%b. About wavelets and
elliptic operators. See Combes et af 1989,
PP 263-68

Tchamitchian, P. 198%c. Ondelettes ct
intégrale de Cauchy sur les courbes
lipchitziennes. Ann. Math. 129 641

‘Tchamitchian, P., Torrésani, B. 1991. Ridge
and skeleton extraction from the wavelet
transform. Sec Beylkin 19%1b

Tennekes, H., Lumley, I. L. 1972 4 First
Course in Turbulence. Cambridge: MIT

Torrésani, B, 1991. Time-frequency repre-
sentations: wavelet packets and optimal
decomposition. Aan. Inst. H. Poincaré,
Phys. Théorigue. In press

Townsend, A. A 1956. The Structure of Tur-
bulent Shear Fiow. Chapter 6. Cambridge:
Cambridge Univ. Press

References added in proof

Farge, M. 1991c. Wavcelets and torbulence.,
INSU Summer School on Geophys. Fluid
Pyn., Joly 1091, Rosenff

WAVELET TRANSFORMS 457

Vergassola, M., Frisch, U, 1990. Scaling
exponents for global and local sell-similar
processes. Physica D. Submitted

Vetterli, M., Herley, C. 19902, Wavelets and
filter banks: theory and design. JEEE
Trans. Acoustics, Speech Signal FProcess-
ing, Submitted

Vetterli, M., Herley, C. 199%0b, Wavelets and
filter banks: relationship and new results.
IEEE Trans. Acoustics, Speech Signal Pro-
cessing. In press

Vetterli, M., Herley, C. 1990¢. Linear phase
wavelets. JEEE Trans. Acoustics, Speech
Signal Frocessing. In gr

Wickerhauser, M. V. 1991, INRIA lectures
on wavelet packet algorithms. Prepeint,
Deept. Math., Yale Univ., New Haven, CT

Yamada, M., Ohkitani, K. 1990a. Orthonor-
mal wavelet expansions and its application
to turbukence. Prog. Theor. Phys. 83. 819

Yamada, M., Ohkitani, K. 19%0b. Orthonor-
mal wavelet analysis of turbulence.
Preprind, Res. Inst. Math. Sci., Kyvoto
Univ., Kyoto, Japan

Zimin, V. D. 1981. Hierarchical model of
turbulcnee. fzo. Atmios. Ocean Phys. 17:
941-49 {From Russian)

Zimin, V. D., Frick, P. G., Shaidurova, T.
E. 1986. Hicrarchical bases for turbulent
ficlds describing. Preprint, Inst. Con-
tinuous Media Mech. Korolyov [, Perm,
Soviet Umon (In Russian)

Zimin, V. D, Frick, P. G. 1988, Turbulent
Corivection. Moscow: Nauka (In Russian)

Zimin, V. D. 1990a. Hierarchy model of tur-
bulence. 6th Beer-Sheva Int. Sem. MHD
Flows Turbulence, Jerusalem

Zimin, V. D, 1990b. Hierarchy model of tur-
bulence. fntr. Symip. Generation of lorge-
scale structure in continuous media, Perm-

Moscow, June, p. 263

Granlund, G. H. 1978. In scarch of a general
pictere processing operator.  Compul.
CGraphics Image Process. 8: 155-73


http://www.annualreviews.org/aronline

	logo: 


