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Abstract. We describe a means through which cells can be accurately
counted in 3-D microscopy image data, using only weakly annotated im-
ages as input training material. We update an existing 2-D density kernel
estimation approach into 3-D and we introduce novel 3-D features which
encapsulate the 3-D neighbourhood surrounding each voxel. The pro-
posed 3-D density kernel estimation (DKE-3-D) method, which utilises
an ensemble of random decision trees, is computationally efficient and
achieves state-of-the-art performance. DKE-3-D avoids the problem of
discrete object identification and segmentation, common to many ex-
isting 3-D counting techniques, and we show that it outperforms other
methods when quantification of densely packed and heterogeneous ob-
jects is desired. In this article we successfully apply the technique to
two simulated and to two experimentally derived datasets and show that
DKE-3-D has great potential in the biomedical sciences and any field
where volumetric datasets are used.

Keywords: Density Kernel Estimation, 3-D, Random Decision Trees,
Microscopy, Counting

1 Introduction

For over 30 years 3-D fluorescence light-microscopy has been used to visualise and
investigate many aspects of cell biology and physiology. In recent years however,
microscopy has seen unprecedented advances in resolution and speed allowing
unobtrusive visualisation of live specimens at very high speeds. These micro-
scopes which include highly sensitive confocal microscope, structured illumina-
tion, 3D-STED and light-sheet microscopes are capable of generating giga-bytes
of information from individual experiments [TI2I3/4U5]6]. These systems create
significant challenges in terms of image processing and analysis which remains
a bottleneck for the effective use of data generated by these systems [7]. As a
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consequence there is a real demand for combining intelligent analysis solutions
which are powerful and computationally efficient. For this study images were ac-
quired using a confocal microscope, but the technique could be equally applied
to images taken on other microscopes.

Within the field of 3-D microscopy the most common approach to quantifica-
tion of structures or objects within a specimen rely on segmentation of the global
intensity histogram and often require a number of processing and filtering steps
to isolate the cell-type or structure of interest [8l0]. These solutions require a
skilled image analyst who is familiar with image processing techniques to process
each image. From the medical imaging community discriminative and generative
machine learning approaches have also been applied to segment organs in 3-D
medical imaging of the body [IO/TIIT2]. These approaches are advanced, yet do
not tend to tackle the broad needs of the light microscopy imaging community
which require algorithms that can be tuned to a number of similar yet discrete
applications by relatively unskilled users.

The method proposed here is a discriminative approach utilising regression
random decision trees to learn the association between features generated us-
ing basic image filters and a structured representation of each object within
the training dataset. This approach follows on from the 2-D density approaches
which were first applied to density estimation in biological images and also for
estimating the number of individuals in a crowd [I3T4UT5IT6IT7ITRITY]. The core
strength of the density estimation approach is that it does not try to identify
objects in their entirety but instead learns to associate pixel features with a par-
ticular density value. This approach means that if objects differ in morphology
or appearance or are densely packed, the technique can still provide an accurate
prediction of the number of objects present. The density estimation approach is
perfect for application in microscopy due to the dense and heterogeneous nature
of the objects being counted. The current state of the art for density estima-
tion in 2-D is achieved through using Fully Convolutional Regression Networks
(FCRNs) which out-perform regression decision trees with sufficient training
[19]. In this study we decided to use regression random decision trees however,
due to there high speed and their top performance, especially with relatively
small amounts of training. Processing time when analysing 3-D data is a key
consideration and also, in biomedical applications, dataset sizes can be small
and so optimum performance with a small amount of training is key advantage.

In previous density kernel estimation approaches, images features have been
calculated from pixels using dense SIFT or an array of basic image filters which
describe the pixel and its local environment in 2-D data [I3J14]. We found that
these filters could be applied to 3-D data by processing each slice of the im-
age volume independently and through ensuring that the input density kernel
used for the training was 3-D and not 2-D. We denote this adapted 2-D density
kernel estimation algorithm as DKE-2-D. A more powerful approach however,
that we developed during this study, was to use image filters that function in
3-D and aggregate information from the local 3-D environment into the feature
description of each voxel, a technique we call DKE-3-D. For this method we have
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developed an array of image filters which can process and aggregate the local
3-D voxel environment to provide a very rich description of each voxel within
the 3-D image volume. Through applying these filters with our density kernel
estimation method we have achieved a high level of accuracy. Our main contribu-
tions in this study are therefore, that we outline the theoretical basis of density
kernel estimation in 3-D, we develop specialised 3-D filters for feature descrip-
tion, which out-perform comparable 2-D filters, and we validate our technique
against competitive methods on four distinct 3-D volumetric datasets.

2 Method
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Fig. 1. Training scheme in 3-D. (A) Input image volume with dot annotation (red,
exaggerated) in xy dimension and also orthogonal max projections (zy, right)(xz, bot-
tom). (B) Ground-truth density function in xy dimension and also orthogonal max
projections (zy, right)(xz, bottom). Scale bar is 40 pixels. (C) Schematic for data in-
put and output with the ensemble of decision trees. Input features are calculated from
input image volumes and associated with ground-truth density volume. Sampled voxel
features and associated ground-truth voxels are then concatenated into a long vector
(number of voxels, number of features) and used to train the ensemble of decision trees.
Each decision tree receives a boot-strap sample of input voxels. At inference time, for
a given voxel, the output density is calculated using the average output of each tree
for that voxel to produce the predicted density image.

The training data is provided by the user in the form of N image volumes
(Liz1,Io, I, ..., Iy) with N corresponding annotations (A;—1, Aa, As, ..., An). 4;
is a sparse matrix (R?®) where the location of each cell in the corresponding
image is marked with a single point (dot), by the user (Fig. 1). Each point in the
annotation is stored in a vector of 3-D centroid positions Pi = { Py, Px, ..., Pcg) }
and C is the total cell count for a particular image. From each annotation volume
in the training set we produce a ground-truth density representation which for
each pixel (p) is defined as the sum of all the Gaussian kernels centred on the
dot annotations:
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Vpe i, F)(p)= Y N(pip,o”) (1)

HeP;

and 0® = diag(o},0,,02). The kernel is anisotropic as the acquisition sampling

resolution is often different in the axial z-dimension compared to the x-y lateral
dimension. Figure 1 shows an example input image with dot annotations su-
perimposed (Fig. 1A) and also the ground-truth density image calculated from
these annotations (Fig. 1B). For this application we chose the sigma to represent
approximately 1/3 the dimensions of the cells being counted which allows the
whole kernel to be contained within an average cell, due to the so-called three-
sigma rule of thumb [20]. For example if on average the cells being counted have
dimension which is 30 x 30 x 10 pixels it would have a kernel of sigma 10 x 10 x
3 applied to it. Typically, the ground-truth density map is produced by convolv-
ing A; with a 3-D Gaussian kernel of size o. The integral of the ground-truth
density map and the sum of the annotation volume can differ for a particular
image when one or more of the cells are overlapping the periphery of the scene.
It is a desirable consequence that the integral density be slightly reduced with
respect to the annotations in this case, as we only want to consider the parts
of cells within the scene. For each pixel in the input image, during training and
testing, a corresponding feature vector is calculated, 27 € R?! for DKE-2-D and
z? € R? for DKE-3-D. Each descriptor of the feature vector is created through
processing of the input image or volume with one of a bank of filters which in-
cluded: Gaussian, magnitude of Gaussian, Laplacian of Gaussian, eigenvalues of
curvature, as in [I4]. These filters are applied at multiple scales (sigma = 0.8,
1.6, 3.2 and 6.4) to aggregate data from the surrounding voxels into the feature
descriptor at that pixel or voxel. This scale range was sufficient for the cases used
in this study and were not changed. If the objects being counted are large with
respect to the pixel resolution and smooth in appearance one should consider
downsampling the images to improve the computational efficiency of the system.
For the DKE-2-D algorithm, 2-D features were calculated. For the DKE-3-D al-
gorithm, 3-D features were calculated, whereby the filters were calculated in 3-D
across each volume and responses encoded as a feature vector for each pixel.
The same filters were used as in the 2-D case but using 3-D implementations of
each. The sigma range used was also the same as in the 2-D case using isotropic
kernels throughout.

2.1 Decision tree framework

To solve the 3-D counting problem a machine learning density kernel estimation
(DKE) approach was employed using an ensemble of decision trees [14]. The
role of the DKE approach is to learn the non-linear mapping F : 1’;} — F;(p)
which maps the input pixel features to the annotation derived ground-truth
densities. Once optimised, this model would then allow us to predict the density
values associated with a given pixel and allow estimation of the cell count for an

entire image volume through summation of the individual densities. We chose
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an ensemble of regression decision trees as our non-linear model [2I]. Regression
trees are simple binary trees which are built according to a classical top-down
procedure[22]. In general, regression trees are fast to train, as split parameters
are chosen randomly, and also they can handle large amounts of data as their
complexity increases linearly with the number of data samples. Both of these
factors are important for 3-D datasets where a typical image volume can contain
more than 7 million pixels. From the top of the tree to the bottom, the data is
split recursively into more and more specialised subsets based on the features
and labels of the training data. Before generation of the first decision tree the
training data from each image volume is concatenated into a single 2-D array
(S) with dimension (num. of pixels x num. of features). The total volume of
data is then reduced through random sampling by (1/200), as this was found to
improve the speed of the fitting without deleterious affects on the accuracy of the
algorithm due to pixel redundancy in each image. The recursive function which
splits the data at each node, does so through selecting K candidate descriptors at
random and with replacement from the available feature list. For each candidate,
a threshold value is generated at random within the permissible min/max range
for that feature [al ., as,,.] producing a list of candidate splits s1, ..., Sx. Some
decision tree types will enforce that multiple thresholds be considered for each
feature selected, but in this case we kept the value as one, to keep the fitting
efficient. A cost function (Score(s;, S)) is calculated for each candidate split
based on the subset of data at the node. The score used in this application was
based on reducing the output variance in the labels associated with the left and
right side of the proposed split:

=Y (F(p)—Fr)— > (F(p) - Fr) (2)

PESR pESL

where Sy, represents all the pixels which had values less than the proposed split
point and S represents the complementary set within the superset S. FX and
F'E represent the mean value for all the pixel labels in the left and right side
of the split respectively. From the K candidates the highest scoring feature and
threshold which splits the accompanying density labels is chosen. The recursive
splitting is repeated on the left and right node subsets until one of the stop
conditions is fulfilled. Termination in this case was fulfilled when a decision tree
reached a depth of 20, or there were only 20 samples left in a split. Each terminal
node is then assigned the average density of the labels which descended into it.
During inference, unlabelled image pixel features descend the trees based on the
now fixed test functions at each split. The pixels will inherit the density value
associated with the node in which their descent terminates. The generation of
just one decision tree will tend to result in overfitting of data and so typically with
random decision tree methods an ensemble of trees is generated from bootstrap
samples of the input data. In this case 30 trees were generated during training.
The average density value for a pixel, from all the generated trees, is then used
to generate the output density label for that location.
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2.2 Alternative Methods

As a means of comparison for our adapted approach (DKE-2-D) proposed ap-
proach (DKE-3-D) we compare our techniques to two current methodologies for
3-D counting of cells in 3-D volumetric data as well as to a competitive state-
of-the-art technique known as FARSIGHT. The first comparative method is a
generic segmentation strategy based on analysis of the image volume intensity
histogram. For this, a Matlab script was developed which first thresholds the
images automatically using the Otsu algorithm and then applies a 3-D water-
shedding algorithm to the image to split any clumped cells. The number of cells
was then counted through Matlab’s in-built region-props functions [23] [24]. A
second approach, which is a simple regression analysis was also developed using
Matlab’s in-built poly function. Using 10 randomly selected training images, the
relationship between the independent variable (the cell number in each image)
and the dependent variable (the integral intensity) was learnt through linear
regression and then inference was performed by querying unseen image intensi-
ties using this learnt distribution. Our third method of comparison represents
the current state-of-the-art for counting cells in 3-D microscopy data which is
a technique employing a morphological multi-model approach to segmentation
and cell classification and has been shown to be highly accurate (FARSIGHT)
[2526]. The FARSIGHT algorithm required no additional parameters to perform
segmentation and required no training.

3 Results

3.1 The Datasets

To establish the efficacy of the proposed technique we created/acquired four
datasets and assessed the performance of the algorithm on each. The datasets
and source code for this project are available through the website:
http://github.com/dwaithe/Density Kernel Estimation_3D.

The first dataset (dataset 1) comprised of simulated 3-D image volumes which
contain relatively few cells, with between 1 and 33 cells in each image. The
simulation closely resembles cultures of HL60 cells with their nuclei stained with
DAPI, which is a fluorescent DNA binding agent commonly applied in the life
sciences for cell counting [27]. The assumption is that each cell only contains one
nucleus, which is usually the case, and so can be used to directly estimate the
number of cells present. The dataset contains 30 image volumes in total with
dimension 404x283x65 and also included corresponding dot annotations. The
texture and shape of the nuclei staining varies across each example and varies
from cell-to-cell. The dimension of the input kernel applied at each dot in the
image was set to o, = oy = 12,0, = 13.

The second dataset (dataset 2) has been designed to closely simulate colon
tissue sampled from human patients suffering from adenocarcinoma, a type of
cancer [27]. This dataset comprises 30 images volumes of dimension 325x258x65
and includes ground-truth data which exactly represents cell numbers present
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in each scene. This dataset is challenging due to the density of cells within the
scene and their close packing. Images were reduced in scale before processing as
this was found to improve the computational speed without reducing the qual-
ity of the prediction. No other preprocessing was performed. The input kernel
dimension applied at each dot in the image was set to o, = 0y = 6,0, = 10.

The third test dataset (dataset 3) is experimentally derived and consists of
3-D confocal micrographs acquired from Drosophila melanogaster fly brains cul-
tured for several days, fixed and then stained with DAPI nuclear dye, which
stained the nuclei of the cells within the brain. 26 images were acquired on a
Olympus Fluoview FV1000 microscope for this application with dimension vary-
ing between 512x512x15 and 512x512x33. The ground-truth for this data was
created through manual identification of cell centres using commercially avail-
able Imaris software, due to its excellent 3-D visualisation capabilities, although
any other software could have been used. The dimension of the kernel used to
generate the ground-truth density image from the annotation image was set to
Oy =0y =15,0, =4.

The fourth dataset (dataset 4) represents deep 3-D volume imaging of the
heart organ from intact Zebrafish embryos. In this study, a transgenic zebrafish
line Tg(myl7:EGFP; myl7:dsRednuc) was used which expresses red fluorescent
protein (dsRed) in nuclei and enhanced green fluorescent protein (EGFP) in
the cytoplasm of cardiomyocytes. The zebrafish embryos were stained for im-
munofluorescence so that the ventricular cardiomyocytes could be specifically
counted. The red (dataset 4a) and green (dataset 4b) channels were imaged us-
ing a Zeiss confocal microscope and reconstructed independently to form two
discrete image volumes varying in z-depth between specimen from 256x256x73
to 256x256x212. The red fluorescence staining is relatively punctate, represent-
ing the nuclei of the cells, whereas the cytoplasmic signal is much more diffuse
and is continuous across the entire organ. For counting cells in the red nuclear
fluorescence channel a sigma kernel of dimension o, = 0, = 0, = 1.8 was used.
The ground-truth for this data was created through manual identification of cell
centres using commercially available Imaris software. Cells could not be recog-
nised from the green channel alone, due to the diffuse nature of the cytoplasmic
staining, so for the basis of training on this dataset, the same cell positions and
kernel sigma values from the red channel annotation were used.

To judge the performance of each of the algorithms, for datasets 1-3, a thor-
ough cross-validation strategy was employed. For each comparison the algorithm
was trained on 10 image volumes and then used to estimate the counts in 15
hold-out images, with the exception of the segmentation and FARSIGHT ap-
proaches which required no training. For the fourth dataset, which is a smaller
dataset, training was performed on 8 image volumes and then the evaluation was
performed on 2 hold-out images. Results for each assessment are described in
terms of a percentage accuracy metric: Acc.(%) = (1 — ((GT — PC)/GT)) = 100
, GT is the integral of the ground-truth density image and PC is the integral
of the predicted density image. For each algorithm and dataset comparison, the
training and test images were shuffled and the procedure repeated ten times
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Fig. 2. DKE-3-D evaluation data. Example images (A) from dataset 1 with (B) density
estimation, (C and D) dataset 2 and (E and F) dataset 3. Scale bar is 40 pixels in A
and B and 6 pm in C. The depth of each stack is 65 pixels in A and B and 13.75 um
(25 pixels) in C. Orthogonal views show middle point of xy image in zy and xz plane.
(D) The line plot shows the accuracy of the DKE-3-D algorithm when between 1 and
10 images are used in training. Error bars represent standard deviation of data.

with the average accuracy and its standard deviation being recorded for all the
comparisons.

Table 1. Performance of algorithms. Performance is shown as percentage accuracy +
standard deviation.

method dataset 1 dataset 2 dataset 3 dataset 4a| dataset 4b
DKE-2-D 93.9 £+ 1.3%(93.1 &£ 1.3%|95.4 + 0.8%| 73.3 &+ 24.9%| 88.5 + 8.1%
DKE-3-D 96.5 + 0.8%/96.4 + 0.5%|95.2 + 0.9%|85.6 £+ 10.8%(84.0 £+ 16.1%
FARSIGHT |96.1 &+ 2.0%|81.2 + 3.0% < 0%| 82.8 + 3.5% NA
Otsu Water.|92.5 + 1.1%| 46.2 & 0.7 < 0%| 65.0 & 3.4% NA
Lin. Reg. 94.3 + 1.1%| 92.3 4+ 1.2(88.3 + 2.4%| 38.5 &+ 72.5%|76.7 + 15.8%

The DKE-3-D approach proved to be a highly effective means of predicting
the number of cells in each sample and out-performed the adapted DKE-2-D
approach, the standard approaches (linear regression, Otsu watershed) and the
FARSIGHT algorithm especially in dense scenes (dataset 2 and 3). Table 1
shows that the accuracy of the proposed algorithm (DKE-3-D) was better than
the other approaches for dataset 1, although all the techniques performed well
on this data. Dataset 1 represents a relatively sparse dataset with relatively few
cells in each image and represents typical data for which a basic segmentation
approach would normally be sufficient. Each technique achieved accuracy of over
92.5% with the DKE-3-D approach being slightly more accurate with an aver-
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Fig. 3. Indirect density estimation. Example image from dataset 4 (A) in green channel
(cytoplasmic stain) (B) in red channel (nuclear stain) (C) merged image of red and
green channel. (D) Indirect predicted density output from model when using cytoplas-
mic stain for input features and ground-truth cell positions from red nuclear stain.
Scale bar is 30 pm, image volume is 117 pm (77 pixels) deep. Orthogonal views show
middle point of xy image in zy and xz plane.

age accuracy of 96.5%. This shows that in relatively simple datasets, with few
cells, it is probably sufficient to use a conventional approach like segmentation
or linear regression, as top accuracy can be achieved. In datasets 2 the pro-
posed DKE-3-D algorithm proved to be the most effective, out-performing all
the other approaches including the DKE-2-D approach and achieved accuracy
of 96.4% compared to 93.1% and 92.3% for the DKE-2-D and linear regres-
sion approaches respectively. The performance of the proposed algorithm is also
evident in Dataset 3 where it out-performed the linear regression approach by
over 7% and the segmentation approaches failed almost completely. Interestingly
the DKE-2-D and DKE-3-D approaches performed equally well on this dataset
probably because the data volumes were relatively shallow in this data (sigma
z=4) and so aggregation of 3-D data was less impactful. The FARSIGHT algo-
rithm performed well on the relatively sparse dataset 1 (96.1%) and respectably
well on the denser dataset 2 (81.2%) but failed completely on dataset 3, show-
ing that even cutting-edge segmentation strategies fail on data where cells are
densely packed. Although slower, than both the linear regression and segmen-
tation strategies the DKE-3-D is fast, training with 10 input images takes 5 s
(dataset 1, 2.3 GHz Intel Core i7, 16 GB of RAM) and evaluation of a single
image volume takes 10 s. The largest bottleneck for DKE-3-D is calculating the
pixel features as this took around 40 s per image volume twice as long as it took
for DKE-2-D (20 s), this could however be sped up considerably through paral-
lelization. For the accuracy comparisons ten training images were used to train
the DKE-3-D algorithm, but it is possible to train the algorithm with far fewer
images and still achieve highly accurate results at test time. Figure 2D shows
the average performance of the DKE-3-D algorithm when trained with between
1 and 10 images and evaluated on 15 holdout images as before. The DKE-3-D
algorithm will after being trained with 2 images achieve an average 94.4% accu-
racy (Datasets 1-3) which is less than 2% less than the accuracy achieved with
10 training images 96.0%.
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Dataset 4 represents challenging data for any of the tested counting systems
(Figure 3). DKE-3-D performed best on this dataset however it is clear that
the heterogeneity in the intensity of cells proved challenging for all the tested
algorithms. Although DKE-3-D is able to handle a large diversity of object ap-
pearances, the accuracy will drop when their is too much diversity. This data
was useful for showing the limits of the present approaches but also offered a
unique opportunity, due to its two colour channels, to showcase a unique advan-
tage of the DKE algorithm. Dataset 4a represents the red nuclear stain (Fig.
3A) which can be accurately annotated by a human, to label every cell in the
heart tissue. When trained on this data the DKE-3-D algorithm achieved an
accuracy of 85.6% which was better than any of the other tested techniques.
Dataset 4b represents the cytoplasmic channel from the same image volumes
as the red channel(Fig. 3B), a ground-truth cannot be made directly using the
green channel due to the diffuse and overlapping nature of the stain. If however
we use the ground-truth positions from Dataset 4a with the features calculated
in Dataset 4b we can achieve a respectable 88.5 and 84.0% accuracy for DKE-
2-D and DKE-3-D respectively (example output Fig. 4D). It is likely that the
reason the DKE-2-D algorithm outperformed the DKE-3-D algorithm on this
data because the diffuse nature of the cytoplasmic data means the 3-D features
present in the DKE-3-D algorithm did not contribute much information. This
indirect learning has great potential, whereby we can indirectly approximate cell
counts based on stains which are not easily quantifiable by a human annotator.
This means acquisition times and sample preparation times could be be reduced
as it would only be necessary to fully label and image samples for the training
and then the technique could be applied to different potentially cheaper or more
coarsely imaged representation. The only other technique, which can do this,
is the simple linear regression approach but this technique achieved only 76.7%
accuracy, due to most likely insufficient feature description, when compared to
the DKE-3-D technique.

4 Conclusion and Limitations

The DKE method is a highly accurate and computationally efficient means
through which 3-D objects with complex intensity distributions can be easily
counted using only a dot annotation as training. This work shows that den-
sity kernel estimation is a invaluable approach for solving complex counting
tasks in 3-D microscopy data. We make a significant step towards perfecting the
technique through incorporating novel 3-D filters into the work-flow. The con-
ventional DKE-2-D approach, adapted to 3-D, works relatively well on all data,
but the proposed DKE-3-D algorithm with 3-D filters outperforms all other
techniques, especially in dense environments where the boundaries of cells are
not easily identified. This technique is suitable for counting any object which is
roughly spheroidal or spherical in shape, but is limited, like other techniques, if
the integral intensity between cells is wildly different. In summary, the DKE-3-D
algorithm is a vital approach for tackling counting in 3-D volumes and due to
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its unique density approach can out-perform conventional methodologies on a
range of data.
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