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The Receiving  Antenna  as  a Linear Differential 
Operator: Application to Spherical Near-Field 

Scanning 

Abstract-The  general  receiving  antenna  is  represented  as  a  linear 
differential  operator  converting  the  incident field  and  its spatial  deriva- 
tives at a  single point in space to an  output  voltage. T h e  differential 
operator  is  specified  explicitly  in  terms of the multipole  coefficients  of the 
antenna’s  complex  receiving  pattern.  When  the  linear  operator  represen- 
tation is applied to the  special probes used in  spherical  near-field 
measurements,  a  probe-corrected  spherical  transmission  formula  is 
revealed  that  retains  the form, applicability,  and  simplicity of the 
nonprobe-corrected  equations.  The  new  spherical  transmission  formula  is 
shown  to  be consistent  with  the  previous  transmission  formula  derived 
from the  rotational  and  translational addition  theorems  for  spherical 
waves. 

T 
I. INTRODUCTION 

RADITIONALLY, the  output  voltage of a receiving 
antenna  is  expressed as an integral involving the 

electromagnetic field  incident  upon  the  antenna  and the fields 
or currents produced by the antenna when  it  is  radiating  into 
free space [1]-[SI. In this paper, however, we express the 
output of a general  receiving  antenna in terms of derivatives of 
the  incident  field at a single arbitrarily chosen point in space to 
which  the  complex  receiving pattern of  the  antenna  is 
referenced. The coefficients of  the derivatives are determined 
simply  from  the spherical mode  coefficients  of  the  receiving 
pattern  of  the antenna. The usefulness of  this  differential 
operator representation for an arbitrary receiving  antenna 
becomes apparent in deriving directly a simple probe-cor- 
rected  transmission  formula for spherical near-field scanning. 
In particular, the differential operator representation for the 
scanning probe allows  both a derivation and  formulation of 
spherical  near-field probe correction that  is free of  the 
rotational  and translational addition  theorems for spherical 
waves. 

The derivation of the linear differential operator representa- 
tion  of a general  receiving  antenna  begins in Section 11-A with 
the  Kerns  plane-wave  transmission integral [4],  [5]. This 
plane-wave  transmission  integral expresses the  output  of  the 
receiving  antenna as a Fourier transform of the  dot  product  of 
the  receiving  spectrum cf the  antenna  and  the  radiating 
spectrum of  the  incident field. Since  the  receiving  spectrum of 
the  antenna is a far-field function, it  is  expanded in Section II- 
B in a series of vector spherical harmonics  (multipole fields). 
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When  this spherical multipole expansion for the  receiving 
spectrum of the probe is  inserted into the plane-wave 
transmission integral, the  resulting  multipole operator can  be 
transferred outside the integral to  reveal in Section 11-C the 
desired linear differential operator representation for the 
receiving antenna. 

Physically, one can understand the differential operator 
representation by viewing the complex  receiving pattern of an 
arbitrary antenna as the  superposition of the  receiving patterns 
of elementary dipoles. Consider an  antenna  with  the  receiving 
pattern of  an electric dipole located at the  point 0’. Such an 
antenna  would measure the incident electric field at 0’ in the 
direction of  the  dipole [4, sec. 111-6.11. Similarly, an  antenna 
with  the  receiving  pattern  of an elementary  magnetic  dipole 
would  measure  the  incident  magnetic  field in the direction of 
the dipole. Now the complex  receiving  pattern  of an arbitrary 
antenna  can  be expressed as the  sum  not  only of electric and 
magnetic dipoles but also of higher order multipoles. More- 
over, these higher order multipoles  can  be  constructed  from 
elementary dipoles superimposed by a progressively higher 
order limiting procedure at the chosen reference point 0’ [6, 
sec. 3.121. For example, quadrupoles  would  respond to the 
incident  field  and its first spatial derivatives, octupoles to the 
field  and  its first and  second derivatives, and so on. In deriving 
the differential operator representation, Section 11 develops a 
systematic  approach for determining  the  coefficients of the 
incident fields and their spatial derivatives that excite an 
arbitrary receiving antenna, in terms of  the  spherical  multipole 
coefficients  of the antenna’s  complex  receiving pattern. 

In  Section III we apply  the linear differential operator 
representation of the general receiving  antenna to the  special 
symmetric probes [SI-[lo] used for taking  near-field  antenna 
measurements  on a sphere surrounding a test  antenna. For 
these  special probes the general differential operator reduces 
immediately  to one involving  only  the electric and  magnetic 
fields of the  test antenna and the radial derivatives of these 
fields. Expanding  the electric and  magnetic fields of the  test 
antenna in a series of  vector spherical waves, and applying  the 
radial differential operator for the probe to the spherical 
expansion, results in a simple spherical transmission  formula 
that  can  be  solved directly for the spherical mode  coefficients 
of the  test antenna using  the  orthogonality  of  the  vector 
spherical  wave functions. In other words, the differential 
operator representation  reveals  that the special  probes  used in 
spherical  scanning may be  viewed as ideal  dipole  probes  which 
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X measure an effective incident field, and  which  allow the modal 

coefficients  of  the  test  antenna to be  computed  simply  from 
conventional  orthogonality relations. 

Finally, in Section IV the new probecorrected spherical 
transmission  formula is compared  with  the spherical transmis- 
sion formula derived by Jensen  and  Wacker  using  rotational 
and  translational  addition theorems [7]-[lo]. The Jensen- 
Wacker  transmission  equation  is first converted to the  simpli- 
fied form of the new transmission equation. Then  plane-wave 
coupling integrals for the spherical modes are evaluated to 
show  that the translated probe coefficients of the  Jensen- 
Wacker  formulation agree with those of the new formulation. 

Many  of  the results contained  in this paper were briefly 
described in the previous publications [ 111, [ 121. 

II. REPRESENTATION OF THE RECEIVING ANTENNA AS A LINEAR 
DIFFERENTIAL OPERATOR 

A .  The  Plane- Wave Transmission  Integral 

A linear, but otherwise arbitrary receiving  antenna in free 
space is illuminated by an  incident  electromagnetic  field 
produced by an arbitrary CW source located to the  left of the 
receiving antenna; see Fig. 1. The response of the  receiving 
antenna, which  we  will refer to simply as the probe, can be 
expressed as a two-dimensional Fourier transform of the  dot 
product of the  plane-wave  receiving  spectrum s(R) of  the 
probe and the radiating  spectrum 6(@ of the source [4],[5]. 
Specifically, with exp ( - i d )  time dependence understood, 

bp(F)=F la 1- @-) - 6(l?)ei.G.i dl?. ( 1 )  

Kerns  [4] refers appropriately to (1) as the plane-wave 
transmission integral. The output  response bp of the probe is 
the  coefficient  of  the  propagating  mode (at the  chosen 
reference surface SO) emerging from the  probe’s  feed trans- 
mission line or waveguide. ’ The output  of  the  probe  depends 
on the  separation P between  the  chosen origins 0 and 0 ‘ fixed 
in the radiating source and  the  receiving antenna, respectively. 
The plane-wave  transmission integral (1) assumes  that  the 
probe translates without  rotation  with  respect to the source, 
and  that  multiple reflections between  the source and probe are 
negligible (or at  least  unchanged)  when  the  probe translates. 
Equation (1) also assumes that  the probe remains on the 2 side 
(the right side in Fig. 1) of the source. In other words, the 
probe and source region do not encroach upon  each other with 
respect to the zdirection. 

-m - m  

The mismatch factor F is  given by 

F= ( I  - rorL) - * (2) 

where ro and rL are the  reflection  coefficients of  the probe and 
its  terminating load, respectively, at  the reference surface So in 
the probe feed (see Fig. 1). 

I We are  assuming  a  single mode of propagation in the antenna feed; 
multimode propagation can be treated  similarly by expressing the response of 
each mode as a  separate  plane-wave transmission integral. 

r 
Fig. 1. Arbitrary linear receiving antenna (probe) in a CW incident field 

produced by sources to the left ( -  2 side) of the probe. 

The  complete vectorial spectrum 6(& determines the 
electric and  magnetic fields, B(f) and A(P), radiated by the 
source to the  right of the source region in Fig. 1 

The constant Zo is the impedance  of free space  and the caret 
designates  unit vectors. The International System  of  Units e. 
(&A) is  used throughout. 

An asymptotic  evaluation of (3a)  shows  that the radiating 
spectrum 6(R) is proportional to the  far-field  function of the 
source [4]; specifically 

- iy6(@ = E(?= i))re-ikr f(@. (3c) r- m 

1 Reciprocity  implies  that the receiving  spectrum f((R) (i.e., the 
complex  vectorial  receiving pattern as a function of R )  of  the 
probe is proportional to the far electric field of the probe when 
the probe is  transmitting [4], [5].  (For nonreciprocal probes 
the  receiving  spectrum  is proportional to  the far electric field 
of the “adjoint” probe [4].) Thus, both ti(@ and 3(R) are far- 
field  functions  with no radial components, i.e., r 

6(@ * E=o (44 

3(@ * E=o. (4b) 

The phase references for the  radiating  and  receiving spectra 
are the  chosen origins 0 and 0 ‘ , respectively. 

The double integration in (1) spans  the transverse part I? of 
the  propagation vector E ,  where 

P=K+yz^ 
4 

(5a) 

K =  kJ?+ k,$ (5b) 

dK = dk,dk, ( 5 )  



YAGHJIAN  AND WTMANN: RECEIVING ANTENNA  AS LINEAR DIFFERENTIAL OPEFATOR 1 1 7 7  
r 

and 

y = (k2 - K2) 1'2 (54 

is positive real or imaginary  (assuming the frequency w is 
greater than zero). The  magnitude  of E is simply k = d c ,  c 
being the speed  of light in free space, and the magnitude of I? 
is denoted  by K .  The integration covers  both the propagating 
( K  < k )  and  evanescent ( K  > k )  parts of the spectra. 

B. A Multipole Expansion for the Receiving  Spectrum of 
the Probe 

Because the receiving spectrum $(I?) is proportional to the 
far electric field of the probe  (adjoint  probe,  if the probe is 
nonreciprocal), it can be expanded in a series of vector 
spherical harmonics 1161, [13]. Specifically, 

SC@ = [cS/rn(@ + c~/rn(@~ (6) 
I =  I m= - I  

where (Ck, Cfi )  are the electric and  magnetic spherical mode 
(multipole) coefficients, and (NIm, MI,,,) are the angularly 
dependent vector spherical harmonics (multipole far fields), 

Nlm(@=kV [ . p ( ~ ) ( % + i ~ ) m ] A / m .  (7b) 

The Pi" are the associated Legendre functions as defined by 
Stratton [6].  The AI, are arbitrary real  normalization factors 
included  in  (7) to facilitate comparisons  with  the  various 
definitions of (NI,,,, M I , , , )  used  by different authors. The 
gradient in (7b) differentiates with respect to the E coordi- 
nates. Equations (7) can  be  put into their more familiar form 
involving the spherical angles 0 and 9 if  one associates with 
F,  y / k  with cos 8 ,  tan - l  k,/k, with +, and  then  notes that (kJ 
K + iky/K) becomes  simply  exp (i+) (see (26)). 

We  want to substitute the receiving spectrum (6)  into (1)  and 
express the integrand so that (1)  can  be rewritten in  terms  of 
the source electric and  magnetic fields (and their spatial 
derivatives) incident upon the probe.  We  know  that  if the 
probe were  an ideal electric or magnetic dipole (i.e., if only 
Nlm or Mlm for m = 0 and * 1 had  nonzero coefficients in 
(6)) ,  then the output bp of  the  probe  in (1) would be 
proportional to the  incident electric or magnetic field, respec- 
tively, at the reference point 0' of the probe [4, sec. 111-6.11. 
Thus, if one  could  express all the multipole fields in  terms  of 
Nlrn and  with m = 0 and 2 1 only, one  may  be able to 
find the desired linear differential operator representation for 
the probe response. Indeed, substitution from [6] of the 
definitions of the associated Legendre functions P$ and dPT/ 
dv, i.e., 

Mm(@ = M l o ~ I o / ~ l o .  ( 9 4  

The  symbols a,  0, and 77 stand for k.Jk, ky/k,  and y / k ,  
respectively. The functions Flm and GI,,, are finite-order 
polynomials  in v that are conveniently  expressed  in  terms of 
derivatives of  Legendre  polynomials: 

The  modes Nll and Nlo represent the far electric fields of 
electric dipoles oriented in the transverse (x, y )  and longitudi- 
nal (z) directions, respectively. Similarly, Mll and are the 
far electric fields of magnetic dipoles oriented in the transverse 
and longitudinal directions. They  can  be written explicitly as 

N l I / A I l  =(a+ iy) - &a + $3)  (1  la) 

A?1o/A10=2xk^. (1 1 4  

Equations (9a) and (9b) determine Nlrn and for positive 
values  of m. For  negative integers m,  the vector spherical 
harmonics  can  be  defined  conveniently by the simple relations 

N/,-,,, = (-  1)"Nf ( 12a) 

M/,-n,=(-l)"M& (12b) 

where the asterisk denotes  the  complex conjugate. 

C. Transformation of the Plane- Wave Transmission 
Integral  by the Multipole Expansion of the Probe's 
Receiving  Spectrum 

When the dipolar expressions (9) and  (12) for the multipole 
fields are inserted into (6) ,  the receiving spectrum $(I?) takes 
the  form  of  polynomials  in a, 0: and 9 multiplied by Nil. Mi l l ,  
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1 m  

With  the  help  of  the  explicit expressions (1 1) for Nl &fl f l l o  

and &fl0, (13)  can  be  written as follows in terms of the f , y ,  2 
unit  vectors: 

S(f9=fd:,E(cy, 0, v)+%CyE(a, P ,  q)+2Jy(a ,  PI  7) 

+ f X f q ( C Y ,  p, q )  

+Exk^d:,H(a, P, q ) + i x ~ q T C Y ,  6 ,  TI) ( 14a) 

where the  polynomials d: are defined by 

f cj":(CY-iip)m-1( - l)"] 

The I? part of Nl in (1 la) and Nlo in (1 IC) has  been  dropped  in 
(14a)  because k*d(R) is zero and  thus  the  part of f i l l  and 
Nlo will  not contribute when S((R) is substituted  into (1). 

Consider the  substitution of the multipole  expansion  (14) for 
the  receiving spectrum s(R) into the transmission  integral (1). 
Since the d: in (14) are all polynomial  functions  of CY, 0, and q ,  
and E equals k ( d  + 09 + q2), the 6: can  all  be transferred to 
the  left of the  integral  sign  in (1) if CY, P ,  and q are merely 
replaced by the partial derivatives, 

This operator transfer leaves  only  the  functions 6(@ and i x 
d(R) multiplied by exp (iE.0 in the integrand of (1). Since 
these  remaining integrals define the electric and  magnetic 
fields (see (3a), (3b)), (1) reduces to 

or in more compact vector notation 

where &E and &H are the linear differential  operators  formed by 
replacing a, 6 ,  and q in (14) with the x ,  y ,  and z partial 
derivatives in (15). 

Equations  (16)  represent  the  output  of  an  arbitrary linear 
receiving  antenna in terms of the incident electric and 
magnetic fields (incident  from  the - 2 side of the  antenna)  and 
their spatial derivatives at the  point 0' to which  the  receiving 
spectrum of the antenna  is referenced. The linear differential 
operators &E and &H are defined by (14)  directly  in  terms  of  the 
coefficients  of the electric and  magnetic  multipole fields of the 
receiving  spectrum of the probe, phase referenced to 0'. In 
other words, if one computes or measures  the  complex 
vectorial receiving pattern of  an antenna, one  can  compute the 
spherical  mode  coefficients  of  that  far-field function, insert 
those  multipole  coefficients into (14b)  and (14c), replace CY, 8, 
and 9 by the derivatives in (15), and determine from (1 6) the 
response of the  receiving  antenna to an arbitrary incident  field 
produced by sources on the -2 side of the  probe. 

Although (16) requires both  the  incident electric and 
magnetic  fields to determine the response of the  receiving 
antenna, (16) could  be rewritten in terms of the incident E or 
H alone  merely be representing E or as  the curl of the other. 
However, we  retain  the form (16) because  it  shows  only the 
azimuthally symmetric multipoles (rn = 0) responding  di- 
rectly to the  longitudinal (z)  components of the incident fields, 
and because  it  proves  convenient for application to spherical 
near-field scanning. 

If the probe in Fig. 1  is  moved  along  the + z axis to the far 
field  of  the source so that  the probe is  illuminated by the plane- 
wave  field 

E(F)  = Eye*z (174 

H(F)  = 2 X B;/z,eikz (1%) 

equations (16) predict the familiar result that the output of 
the probe in  a  plane-wave  field  is  proportional to the 
transverse electric or magnetic  field (E? or I?$. To see this, 
note  that E, and Hz are zero for an incident  plane  wave 
propagating  along the z-axis, all  the transverse (x, y )  
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derivatives in  (16) are zero  because the plane-wave incident 
field  does  not  vary in the transverse direction, and the 
longitudinal derivatives (7 = Wikdz) in (16) become  unity 
because the plane  wave  has  exp (ikz) dependence. Thus, .& 
and 2, reduce to constant vectors ( c ~  and cH) and (16b) 
becomes 

III. APPLICATION TO SPHERICAL NEAR-FIELD SCANNING 

In general, the far fields of  antennas  can  be  determined 
accurately from  measurements  in the near  field  only  if  one 
corrects for the response of the measurement  probe  [14]-[ 171. 
For planar [4], [ 151, [ 181 and cylindrical [ 191-[2 11 near-field 
scanning, the probe-corrected  formulation  is  hardly  more 
complicated  than the uncorrected  formulation  that  assumes the 
probe  measures the electric or magnetic  field at each  point  in 
space, i.e., the probe  responds as an ideal electric or magnetic 
dipole. However,  the  formulation of probe correction for 
spherical scanning [7], and  its practical realization using 
symmetric  probes  [8]-[IO], [22], involve rotational and 
translational addition theorems  that  lead to coupling equations 
and  deconvolution  theorems  that are considerably  more 
complicated  than those of planar, cylindrical, or nonprobe- 
corrected spherical scanning. Thus, the primary  aim of this 
section is to provide a new,  yet rigorous formulation for 
probe-corrected spherical near-field  measurements [ 1 11, [ 121 
that retains the simplicity of the uncorrected  formulation  and 
thus  the practicality of the probe-corrected planar and 
cylindrical near-field formulations. The new formulation 
proceeds naturally and directly from the differential operator 
representation for the probe  that  was  derived  in  Section II. 
A .  Differential  Operator  Representation for  the 
Spherical  Scanning Probe 

Consider a receiving probe  scanning  in 6 and 0 on  an 
imaginary  sphere  of radius r centered at a chosen origin 0 and 
enclosing a radiating test antenna, as shown  in Fig. 2. (In 
practice, of course, the test  antenna  usually rotates and the 
probe stays fixed; for ease of visualization we assume the 
converse.) Unlike the probe  in Fig. 1 which  remained parallel 
to the z-axis, the spherical probe of Fig. 2  remains  fixed in the 
radial  axis as it scans the test antenna. Moreover, we  assume 
that  complete polarization data for the test  antenna is required, 
and thus the probe scans in two spin orientations, $ = 0 and $ 
= 90". A convenient  vector  response 6, for the probe  can  be 
defined as a combination  of the scalar responses in these two 
orientations; 

6, = b,($ = 0")e + b,($ = 90")$. (19) 

For  example, if the probe in the rl/ = 0" orientation can  be 
represented by an  ideal electric or magnetic dipole parallel to 
e, 6, is proportional to the incident electric or magnetic field 
transverse to the radial direction. 

We  can  apply the differential operator representation (16) to 

/ -  I 

' \  I '. I 
'4 

Fig. 2. Receiving probe scanning on an imaginary  sphere enclosing the 
radiating  test  antenna; b, = bP($ = O")O + b,($ = 90")&. 

the spherical scanning  probe  of Fig. 2 if  we  choose the z- 
coordinate of (16) parallel to the radial direction. In particular, 
v in (16) becomes a/ikar instead  of a/ikaz. In addition, 
probes  commonly  used for spherical near-field  scanning are 
constructed so that their receiving multipole coefficients 
satisfy the relations [SI-[lo]: 

c ~ ~ = o  m #  f 1 (20a) 

c;= -cy-, = cy. (20c) 

For  these m = f 1 probes,  which  have the azimuthal 
symmery  of  $-directed electric dipoles and adirected mag- 
netic dipoles, the transverse derivatives in the operators of 
(16) vanish, leaving just the derivatives with respect to the 
longitudinal direction (r  in Fig. 2). 

Substitution of the relations (20) into (14b) shows that X,,", 
.=Cy, and 2: for these probes are zero  and  that 2; and 2: 
reduce to 

LE= J2;=2i (C fFI -  iCyGl)  (2 la) 
13 

/ = I  

cs 

LH= S f = 2  (CYF/+ iCfG/ ) .  (2 1b) 

The operators Fl and GI in (21), which  involve  radial 
derivatives only, are found  from the definitions (10) by setting 
m = 1 and 7 = Wikar, to get 

I =  I 

d2P/(d  GI=- 
drl 

A / .  (22b) 

With (21) inserted into (16), and  (16) into (19), the vector 
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output  response 6, of  the probe becomes  simply 

6, -- - LE[E, x PI + zJHII?t] (23) 
2n F 

where ,!?,(F) and D,(P) are the transverse (with  respect to F )  
fields of the test antenna. Again, note  that  if  the  probe  has  the 
complex  receiving pattern (far field) of  an  ideal electric dipole 
located  at 0' , all  the  probe  coefficients are zero except Cf; 
since Fl = 1 and GI = 0, LH is zero, LE is  equal  to  the 
constant 2FiCf, and the vector  output 6t of  the probe becomes 
proportional to the incident transverse electric field (cross f i  at 
the point 0 I .  Similarly for a probe with the receiving  pattern of 
an ideal  magnetic dipole, all probe coefficients are zero except 
Cy,  and 6, becomes  proportional to the  incident transverse 
magnetic field. This close relationship (23) of  the  vector 
output of the probe to the incident transverse electromagnetic 
fields permits  a straightforward derivation of a probe-cor- 
rected spherical transmission  formula [I 11 which  is free of 
complicated  rotational  and  translational  addition theorems, 
and  which approaches the  simplicity  of  the  nonprobe-corrected 
formulas involving  only  the transverse E- or H-field. 

B. Derivation of Simplified  Probe-Corrected  Spherical 
Transmission  Formula 

The fields outside  the  smallest sphere centered at the  chosen 
origin 0 and circumscribing the test  antenna  which  radiates 
into free space can be expanded in a series of vector spherical 
harmonics [6] ,  [ 131. In particular, the transverse electric and 
magnetic  fields (I??, I??) of the test antenna can  be  written  in 
the form 

E f ( r y  4, e) = x x [b%gn(kr)Nnm + brrnfn(kr)MnrnI 
m n  

n = l  m = - n  

(24a) 
1 m  I?;@, d, e)=- 

1'0 n = l  m = - n  

tbrmgn(kr)Nnm + b f i m f n ( k r ) M n m l .  (24b) 

The constants (bEm, bfm) are the electric and  magnetic 
multipole coefficients of the test antenna, Cf,, g,) are the 
radially  dependent spherical Hankel functions 

f n ( x >  = h f ) ( x )  (254 

I d  
x dx 

gn(X) =- - (xh f ) (x ) )  (25b) 

and Mnm) are the angularly  dependent vector spherical 
harmonics  defined  previously in (7) as  functions  of I? but 
repeated here as functions of 4 and 0, 

M,,,,,=N,,~XP, N n m = i X M n m  (26a) 

Nflm(4, e) = r V [P;(cos B)eim+]Anm. (26b) 

The coefficient a. of the  propagating  mode  that feeds the  test 
antenna in Fig.  2  is absorbed into  the  multipole  coefficients 
(bEm,  bf;',). 

If multiple reflections between the probe and  test  antenna 
are negligible,  the fields (24)  of the test antenna in free space 
can be substituted for the (E,, I?,) fields in the differential 
operator representation  (23) for the spherical  scanning  probe. 
This substitution of  (24) into (23) yields immediately  a simple, 
yet rigorous probe-corrected spherical transmission  formula in 
terms of  the familiar vector Spherical  harmonics: 

The  transmission formula (27) expands the vector  response of 
the probe in the  same orthogonal vector  spherical  harmonics 
that  expand  the electric and  magnetic  field  (24) of the  test 
antenna. The only difference between  (27)  and  (24)  is in  the 
radial functions. In (24) the radial  functions  involve just the 
spherical  Hankel  functions fn and g,. In (27)  the radial 
functions  involve, through LE and LH, the  multipole coeffi- 
cients (Cy, Cn of the  complex  receiving pattern of the probe 
as well as f ,  and g,. 

The unknown spherical mode  coefficients (b$my bfm) can be 
found from the  measured  output 6Xr, 4 ,  0)  of the probe with 
the  help  of  the  following orthogonality relations for N n m  and 
a n m :  

s: I,̂  Nnm($, e )  N;,m,(q5y @sin 8 de d4 

Brim 

(2n + I)(n - m)! 
4nA;,n(n + l ) (n  +m)! * Anm = 

Dotting a$, and  into (27), integrating  with 8 and 4 over 
the  measurement sphere, and  applying  the  orthogonality 
relations (28), one obtains 

* A?*($, e) sin 0 dB dd (29a) 

. N*(@, e) sin 0 de d4. (29b) 
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Once the modal coefficients of the  test  antenna are 
computed  from (29), the fields outside  the  test  antenna  can  be 
determined by substituting  these  constant  coefficients  back 
into  the  summations (24). In particular, the far fields of the  test 
antenna, obtained by letting  the  radius r approach  infinity in 
(24a) or (24b), take the form 

,,ikr m n 

The  orthogonality integrals in (29a) and  (29b)  required to 
determine the  spherical  mode  coefficients are identical  to  those 
that would  be required  from  (24)  if  the  probe  measured  the 
transverse electric or magnetic  field on the sphere enclosing 
the  test antenna. In other words, the differential operator 
representation  of  the probe has  enabled a reformulation of 
probe-corrected spherical near-field  measurements  that paral- 
lels and approaches the  simplicity of the formulation for near- 
field  measurements  with an ideal probe that  measures  the 
transverse electric or magnetic field. In fact, if the  probe  has 
the  receiving pattern of an ideal electric dipole, it  was  noted 
after (23) that LH vanishes, LE equals a constant, and 6, is 
proportional to Et x P; thus (29) reduces  directly to the  result 
that  would be obtained from (24a)  with  measured E?. 
Similarly, for a probe with  the  receiving  pattern  of an ideal 
magnetic dipole, 6, is proportional to R$ and (29)  reduces 
directly to the  result  that  would be obtained from (24b)  with 
measured nf. 

Although  they  may  not  have  the  receiving pattern of a single 
electric or magnetic dipole, the  probes  most  commonly  used 
for near-field  scanning are open-ended  waveguide or small 
horns which require very  few  modal coefficients Cf and Cy 
to approximate  well their complex  receiving  patterns (far 
fields). For example, scalar horns whose far fields can  be 
approximated by superimposing  the far fields of crossed 
electric and magnetic  dipoles  have just two nonzero  modal 
coefficients, Cf and CY, and  thus  both LE and LH reduce  to 
constants. Such  Huygens-source probes have  been  used by 
Wood [23]  for spherical scanning  at  intermediate  distances. 
Equations (23) and  (21)  show  immediately how probe correc- 
tion  with  these scalar horns simplifies, and (27) provides a 
straightforward transmission  formula  that  can  be used  at  near- 
in as well as intermediate distances. 

The far fields of open-ended  rectangular  waveguides,  prob- 
ably  the  most  common  and  convenient  near-field probes, can 
be well-approximated  with just three modal  coefficients  [24] 
Cf, Cq, and Cy; thus from (21) and  (22) LE and LH for open- 
ended  rectangular  waveguide  probes  reduce to 

It  is  emphasized that, even  though the near fields close to as 

well as within  the  material  of  the probe may differ drastically 
from  the near fields of the finite number  of  multipoles  used to 
approximate the far fields of the probe, the probe responds to 
an arbitrary incident field (produced by sources that do not 
“encroach” upon the probe with  respect to the  radial 
direction) as if  it were  the finite number of multipoles  located 
at  the origin 0‘ to which  the far field of the probe is 
referenced. Moreover, physically different antennas  with the 
same  complex  receiving pattern (far field)  respond  identically 
to such  an arbitrary incident field. These rather remarkable 
conclusions  follow directly from  the result that the differential 
operator representation (16) expresses the  response of  an 
arbitrary receiving  antenna in terms of the spherical mode 
coefficients (Ck, CY,) of  the  receiving  pattern (far field) of 
the  antenna. 

IV. COMPARISON  WITH PREVIOUS SPHERICAL  TRANSMISSION 
FORMULA 

In this  section we  show  that  the  new spherical transmission 
formula  (27)  is  consistent  with  the  previous  spherical transmis- 
sion  formula  that  was first derived by Jensen [7], and later 
modified by Wacker [8], [9]  and  Jensen [lo] to allow  inversion 
by means  of  generalized  orthogonality relations. An excellent, 
comprehensive  treatment  and  review of spherical near-field 
antenna  measurement$  before 1981 may be  found in the  thesis 
by Larsen [25]. 

A ,  Derivation of Jensen- Wacker Transmission Formula 
The Jensen-Wacker  transmission  formula may be derived 

from  the  plane-wave  transmission integral. Specifically, with 
the probe at its reference position (r, 9 = 0, 0 = 0, 11/ = 0) 
along  the z-axis, and the spectrum of the  test  antenna  written in 
terms of  its far-field function (3c), the  transmission  integral (1) 
becomes 

b,(r)=Fi I:, Sm S(@ f(@ - dK. (32a) 
e iTr 

- m  Y 

Similarly, when the probe is  oriented  at arbitrary Eulerian 
angles (4, 0, $), (32a) may be  rewritten 

J - m  J - m  Y 

where7 (K) is the far-field function  of the test  antenna  rotated 
by the  Eulerian  angles ( - $, - 0, - 9). 

The far-field  function f for the  test  antenna may  be obtained 
from (30a) in terms of the  vector spherical harmonics, 

(33a) 

The far-field function7 of  the “rotated” test  antenna  follows 
from  (33a)  and  the  rotational  addition  theorem for spherical 
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waves [26, sec. 321, output, ht, defined by (19)  can be written from (34) as 

The translated probe coefficients, which are functions only 
of the  radial  separation  distance r between  the  probe  and  test 
antennas, are defined here explicitly by the integrals 

Physically, each translated probe coefficient RE,, or RE 
may be interpreted as the  response bp of the  probe in its 
reference position  along the z-axis (I-, 4 = 0,O = 0,  $ = 0) to 
the incident  field  of the "np" electric or magnetic  multipole 
(i.e., N,,,, or h?fn,,), respectively, radiating from the origin 0 of 
the  test  antenna  with  unity amplitude. 

The constants (b:,, bf,), which were defined  in (24), are 
the  unknown  coefficients  of  the electric and magnetic  multi- 
pole fields radiated by the  test  antenna.  In order to conform to 
Jensen  and Wacker, throughout  Section IV the arbitrary factor 
A,, normalizing  the  multipole fields will  be  chosen to make 
A,,, defined in  (28)  equal  to  unity;  specifically  let A,, = 
(-  l)"J(2n + l)(n - rn)!Mnn(n + l)(n + m)!. 

Generalized  orthogonality relations for the  angular  func- 
tions in (34) demand integrations over all three-Eulerian angles 
4 ,  0 and $ [8]-[10]. Thus, the  modal  coefficients (b:,, bf,) 

The relations  (37) may be  obtained  simply by considering  an 
ideal p = k 1 probe that  measures the +component of the 
electric field  when in the $ = 0 orientation. The output of this 
ideal probe will equal the $-component of the electric field 
(24a) of the  test antenna. But since the response of the probe 
on the z-axis to each  multipole field I V n p  or M n p  defines the 
translated probe coefficients Rfj, and RE,  respectively, the 9- 
component of (24a) immediately  yields the translated coeffi- 
cients for this  ideal probe 

When  (38)  is  introduced  into (34), and (34) is equated to E$ in 
(24a), the  relations (37) result. 

Substituting (37) into (36), we find 

m n  0 
m . 3  4 9  e> = F  x (Bfm(r)h?fnm+ B;m(r)Nn,) (39) 

n = l  m = - n  

of  the  test  antenna  cannot be determined, by applying 
orthogonality  alone  to (34), from measurements  with an where Bfi;n(r) and Bf,(r) denote  radial hnctions defined by 

arbitrary probe unless the probe output is recorded as a 
function of the spin  angle $ for each  value of 4 and 0 on  the 
scanning sphere. Wacker [ 8 ] ,  [9] and later Jensen [ 101 show Bfi;,= idg 
that  such prohibitive amounts of near-field data are not 
required if symmetric  probes are used  that  have  all their Rfi; . [ b ~ , ( R f , _ , + R f j , ) + b ~ , ( R ~ _ , + R f ; : ) I  (40a) 
and Rg zero except for p = k 1. These special  probes  allow 
the direct inversion of  (34)  (through orthogonality) from  data 
taken  with  the probe in two spin orientations ($ = 0" and 90", 
say) at  each  measurement  point (@, e). 2n+ 1 

Specifically, for p restricted to k 1, the probe's vector .[b~,(Rfi,_,-Rfjl)+bS;',(R~-,-Rj;',)1 . (40b) 



1 YAGHJIAN AND WITTMANN: RECEIVING ANTENNA AS LINEAR DIFFERENTIAL OPERATOR 1183 

Equation (39) confirms the  result of (27). Namely,  the p = 
f 1 probe may be  viewed as an  ideal  probe  measuring  the 
components of  an effective field bt, such  that  the  effective 
modal  coefficients Bfm(r) and Bf,,(r) can  be  computed  simply 
from the  orthogonality relations (28) for the  vector  spherical 
harmonics. Once  the effective modal  coefficients are com- 
puted, the  actual  modal  coefficients btm and bFf, are deter- 
mined from (40). 

B. Evaluation of the Translated  Probe  Coefficients 
We  have  shown  in (39) that  the  conventional  form of the 

Jensen-Wacker  spherical  transmission  formula (34) can  be 
recast  into  the  same form as the new spherical transmission 
formula (27) derived in Section 111-B. To complete  the 
comparison  of (34) with (27), we  show  in  this  section  that  the 
expressions (40) involving  the  translated probe coefficients 
(Rfj,, R E )  reduce  to the radial  functions  in  (27)  involving LE 
and LH. In the  conventional  formulation of the probe 
correction for spherical  scanning [7]-[ IO], the  translated probe 
coefficients (RE,, RE)  are determined  from  the  receiving 
pattern of the probe through  complicated  translational  addition 
theorems for the vector spherical wave functions. In order to 
avoid  direct  manipulation  of  these  cumbersome expressions, 
we evaluate the  translated probe coefficients  from  the  plane- 
wave  coupling integrals of the spherical harmonics in (35). 

Substituting  the spherical mode  expansion  (6) for the 
receiving  spectrum  of the probe into (33 ,  we obtain2 

RfP = i ( -  0" 'c [CfPP I f 0 9  + cy -PJ f ( r ) l  (414 

R E  = (-  i)" 2 - q P  J f 0 - 1  + C y J f ( r ) l .  (41b) 

m 

I =  1 

m 

I =  1 

The mode-mode  coupling integrals in (41) are given  by 

I f ( r ) =  lm N I , - ~ ( @  N n J @  - dK (42a) 
e'lr 

--m -m yk  
e i-,r 

Jk(r)= j y m  im - NnP(@ - dit. (42b) 

The  single  summation over 1 in (4 la) and (41b)  reflects  the 
vanishing  of  the  integrals  corresponding  to  (42)  with m # - p. 
Note  from  (42)  that I f  and J f  obey  the symmetries, 

- m  y k  

I& = I;/=  I&" (434 

J P  = J P  = - JliP. 
In nl (43b) 

The mode-mode  coupling integrals in  (42) are evaluated in the 
Appendix by two different methods  that  lead to two different 

* Equation (41) shows that each Rf, ,  and RE depends upon all the spherical 
multipole coefficients (Cis-,, C",,-,) of  the receiving pattern of the probe. 
However, if the receiving pattern of the probe can be approximated by just  a 
few, multipoles, all but a few C are negligible and the summation in (41) 
extends over only a few values of 1. 

closed forms for I f  and J f .  The first method  leads to the 
closed form (53), which  when  substituted  into  (41):  results  in 
expressions for R& and R E  that agree with  those  obtained 
from  the  translational  addition theorems for the  spherical  wave 
functions [7]-[lo]. The second  method  of  evaluation  in  the 
Appendix leads to a closed form (55) that  can  be  used to obtain 
the  simplified  spherical  transmission  formula (27). 

To show this, we first restrict our attention  as we  did  in 
Section III-B, to the special p = k 1 probes  with  spherical 
mode  coefficients displaying the symmetries given by (20). 
From (20), (41)  and (43), the translated probe coefficients 
obey  the corresponding symmetries, 

R"H=O np ,u# f 1 (Ma) 

R f l = R f , - ,  c Rf  W b )  

R:= - R C - ,  RF (Mc) 

which, in turn, allow (39) and (41) to be  written 

Finally, substitution of (55) from the Appendix  into  (45) 
reveals  the spherical transmission  formula (27), and thus 
completes the demonstration  that the spherical  transmission 
formula  (27)  is  equivalent to the previous transmission 
formula (34) based  on  the  rotational  and  translational  addition 
theorems for spherical waves. 

APPENDIX 

EVALUATION OF MODE-MODE COUPLING INTEGRALS 

We  wish to evaluate the integrals in (42) of the  main  text: 

m 

I f ( r ) =  [Im 1 N1,-J@ Nn,(@ - dit (46a) 
- m  yk 

With a change  of variables from k, and ky to q = y / k  and 9 
= tan - l  (ky/kx), 

l:m -m dk,  dky-+k2l2'  d9 r] dv (47) 
0 lo, 

where  the contour in the 7-plane may be taken as the 
imaginary  axis  between r]  = io3 and I] = 0, and the real axis 
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and  the  expansion (51) that the integrals in (50) may be 4 
(48b)  performed  analytically to obtain 

because the integrands  in  (46) are azimuthally symmetric, and - 
thus  the +-integrals merely produce a factor of 2n. Substitu- 
tion  into  (48)  of  the  components  of AT and N from (7) of the 
main  text yields, after a straightforward manipulation  that  uses i ’ [ f ( f +  l )+n(n+ ~ ) - Y ( v +  l)](/n; p l ~ ) h r ) ( p )  (53a) 
the differential equation for P t ,  * 

2ppa( - 1 ) p  
J P  = i”(fn; p l ~ ) h y ) ( p ) ,  (53b) 

If = T( - l)PA,PAnP In Ja,a,, Y 

JL = 2api( - 1)PAlPAnp 

Partial integrations with  respect to q and  differentiations  with 
respect  to p transform (49)  into 

I& = n( - l)PA1/lnp 

where  use  has  been  made of the differential equation  satisfied 
by the  Hankel function. 

When p is  equal to 1, the formulas 

and 

= n ( n + l )  q -+- [( :) 
- (nqP, + Pn- ,)/(n + 1) - 2 P, 

d2p1 drl 1 

c 

4, 

JL = 2np( - 1)PAlPAnp 1’ PyP;eipq dq. (50b) convert (49) to 
im 

It  follows from Rodrigues’ formula  ((Sa)  of  main text) that 
PYP; is a polynomial  in q and  hence may be  expanded in terms 
of Legendre polynomials P,(r]). This expansion may be 
written in the form [26, eqs. (34.39) and (25.19)] 

-4- (- (2Z+ 1)(2n+ 1 )  ( 2 Y +  1 )  ( )( f n v )  ( 5 1 )  

where the A are defined in (28)  of the main text. (For the 
normalization  chosen  Section IV the A equal unity.) The 3 
- j symbols ( L: Ai A:), may be efficiently  calculated  from 
recursion formulas, although  useful  closed-form  expressions 
for (fn; p l y )  exist for the special  case5 p = 0 and 1 [27]. Note 
that (fn; ply) is zero if v < ( I  - nl or Y > f + n, or if / + n 
+ Y is odd. 

4T f ( f +  l )n(n + 1 )  -ppo 000 

where (FI,  GI) and Cf,, 8,) are defined in (22)  and  (25) of the 
main text. Equations  (55) are derived by moving  the factors of 
(54)  dependent on I outside the integrals of (49) as differential 
operators. Integration of the remaining  n-dependent factors is 
accomplished  using (52). 
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