
Making sense of data
streams:
Complex Event Pro-
cessing for Controls
Applications

August 2014

Author:
Kacper B. Sokol

Supervisor(s):
Filippo Tilaro
Axel Voitier

CERN openlab Summer Student Report 2014

CERN openlab Summer Student Report 2014

Project Specification

CERN is currently investigating the usage of data analysis technologies to study the behaviour of the

industrial control systems. An activity related to these analysis is using Complex Event Processing

(CEP) tools to classify a real abnormal behaviour from one generated by a human intervention on

the system.

In this study the Complex Event Processing classification is run over signals produced by variety

of sensors and simulators. The selected tools is Esper. Presented here work consists of installing

chosen tool, and developing the classification system with it to address given above merit.

CERN openlab Summer Student Report 2014

Abstract

This project aims at building a tool to process live streams of data produced by various sensors and

artificial generators. To this end, a Java code is written, which uses Esper Complex Event Pro-

cessing package to: receive data feeds, apply user defined rules and filters, and pass the resulting

information to a clustering framework.

The last step employs Affinity Propagation based clustering algorithm, which choice is motivated

by its dynamic adaptation to number of clusters in the data. This is key feature in data streaming

scenario as the number of clusters can evolve with time. Furthermore, [Zhang et al., 2013] have

documented overall good performance of Affinity Propagation in cases of live data analysis.

Finally, presented here approach is compared and contrasted against static clustering algorithms ap-

plied to data gathered from streams incoming over one run of the program, followed by in-depth

results analysis.

Keywords: Esper, Complex Event Processing, Affinity Propagation, data streams

This report was written in LATEX.

CERN openlab Summer Student Report 2014

Table of Contents

1 Introduction . 5

1.1 What is Complex Event Processing . 5

1.2 What is Esper . 5

1.3 Why to use it . 6

1.3.1 Complex Event Processing at CERN . 6

1.4 Applications . 6

1.4.1 Nuclear Power Plant . 7

1.4.2 Stock market exchange . 7

2 Model of processing . 7

2.1 Feeds and generators . 8

2.2 Esper engine . 8

2.3 Rules: feature extraction . 8

2.4 Listeners for change . 11

2.5 Clustering with Affinity Propagation . 11

2.5.1 Live stream adaptation of clustering algorithms 11

2.5.2 Affinity Propagation . 13

2.5.3 Making sense of signals . 14

2.6 Data visualization . 14

2.7 Static clustering . 14

3 Results . 14

3.1 Comparison with static clustering . 16

3.2 Overall performance . 16

4 Summary . 19

4.1 Future work . 19

4.2 Conclusions . 19

CERN openlab Summer Student Report 2014

1 Introduction

Physicists at CERN are mainly concerned with event reconstruction. This implies collecting data

first and then processing them. It is not possible with sensors data like pressure, or temperature. In

case of abnormal behaviour, e.g. overheating, the action need to be taken instantly.

This study presents an approach to handle live data streams and analyse them “on the fly” to differ-

entiate between noisy feed and real threats, hence produce human readable data inferences.

In machine learning, unsupervised clustering aims at discovering cluster structure underpinning

the data ([Flach, 2012] extensively describes main concepts of machine learning). There are many

state-of-the-art algorithms designed to solve this problem, nevertheless, majority of them deals with

static data, forcing user to define many parameters prior to classification. The example of these

might be a predefined number of clusters. Also, many of these algorithms need data with static dis-

tribution, and what is more static dataset, i.e. not changing with time.

The major study addressing these issues is presented by [Zhang et al., 2013], who proposed cluster-

ing algorithm based on affinity propagation scheme that solves all of the above concerns: it adapts to

patterns evolving in data by tracking current number of clusters, therefore it handles non-stationary

data distribution; furthermore it can be easily adjusted to data streams.

I aim at extending presented by [Zhang et al., 2013] approach with Esper framework (Esper
engine is briefly introduced by [Marinescu, 2006]). My concept facilitate modular feature extrac-

tion: user can change signal characteristics of interest while application is running; and it gives all

advantages of time windowing provided by Esper.
I construct feature extraction system based on EPL statements and clustering solution capable of

handling live data stream.

1.1 What is Complex Event Processing

Complex Event Processing (CEP) is a software family facilitating complex analysis of high through-

put live data feeds.

The concept behind it is similar to database queries, but instead of interacting with static data pool

the extraction is done on live streams. It gives possibility of applying filters, functions, and statistical

analysis to chosen part of signal by querying it. [Etzion and Niblett, 2010] presents comprehensive

introduction to the topic.

1.2 What is Esper

Esper is a flagship software of Complex Event Processing tools family. It is capable of handling

and analysing multiple independent incoming data streams. The main goal of analysis is to trigger

user defined actions, e.g. if the temperature feed is above some level for given amount of time an

additional cooling system can be deployed.

Esper’s main advantage is time windowing, which allows to focus on a specific time period.

The windowing can be done in multiple modes:

Time incoming data from last tmilliseconds/seconds/minutes/etc. are processed—sliding window.

Time batch data are processed in t milliseconds/seconds/minutes/etc. batches i.e. algorithm col-

lects data for t units of time, then process them, and repeats this cycle—fixed length interval

5 | P a g e

CERN openlab Summer Student Report 2014

windows e.g. {[0, t); [t, 2t); [2t, 3t), ...} where 0 point is the start of our analysis.

Length n most recent events are processed—the order of arrivals is the only quantity of interest.

Moreover, Esper is capable of joining multiple, independent, asynchronous (events form one

stream can be lively processed regardless of others) incoming signals for processing purposes. With

proprietary EPL querying language the analysis is as simple as writing number of human readable

statements.

One approach is to hard-code the EPL queries in the application but it is more convenient to provide

them as a module (external plain text file) what gives flexibility of changing the queries without

stopping the application.

Finally, Esper is available as a Java and .NET framework hence it is multi-platform and easy

to incorporate into any application. It can work as both: local and server programme, where later

solution facilitates on-the-fly changes like rules injection via AIP.

1.3 Why to use it

The major advantage of Esper is ability to process millions of events per second with low compu-

tational complexity and no time consuming read/write disk operations.

The data processing is describe by developers as “4-D” concept:

Detect events of interest.

Derive events complying with specified rules.

Decide what to do based on gathered evidences—data.

Do the action bonded with occurring event.

1.3.1 Complex Event Processing at CERN

I adopt the “4-D” flow to my application as follows:

• detect incoming signals from the sensors (generators);

• derive the specified features from the signal;

• decide to send the features to clustering algorithm; and

• do the classification.

1.4 Applications

Esper is mainly used in high throughput data analysis services, where processing must be flexible

and adaptable to constantly changing environment. The following examples show different aspects

of Complex Event Processing.

6 | P a g e

CERN openlab Summer Student Report 2014

1.4.1 Nuclear Power Plant

While managing nuclear power station there are plenty of components whose malfunctioning may

lead to a disaster, for example:

• to high core temperature,

• failure of cooling pumps, or

• abnormal seismic movements.

Only specific combination of these factors states should raise an alarm. For instance low flow of

cooling liquid and constantly raising core temperature.

Esper is a great fit for this scenario. It allows to view the sensors readings in different time windows

hence discover long and short term patterns. For instance, if the temperature raises slowly the trend

will not be visible in last hour frame, but it will appear in week or month window. Discovering this

long term property may prevent a disaster.

1.4.2 Stock market exchange

In this example we consider signals as all the real time price processes injected to Esper. We begin

by filtering them with EPL statements to retrieve stocks of interest. Then, we use our financial

knowledge to create inferences between them and perform complex analysis of price processes. We

can also use weather forecast and news feed to gather some background. Combining all these rules

can trigger market actions like: shares quantity, and buy/sell order; therefore increasing bidding

speed and automatizing trading. Other approach could be to extract market statistics which can be

used by financial advisers.

2 Model of processing

In this section I describe a model of processing used in the application, and presented in Figure 1.

We divide the model into two main branches: off-line resources and live data processing.

The first one consists of

• EPL file (see Listing 1), that defines the features to be extracted form the incoming signal

(rules);

• CSV file which serves as a data repository—signals are saved here for future analysis; and

finally

• data reconstruction script written in Python: visualize.py, which uses CSV data repository

to plot signal and all extracted features against time as well as features against each other.

Live data processing module consists of the following components:

Signals layer includes signal generators and signal feeds interfaces.

Esper layer collects signals, and applies to them rules taken form EPL file. It also saves signals,

extracted features, and time stamps to CSV repository. Finally, it performs defined actions, in

this particular application it supplies them to clustering algorithm.

Events layer transfers data (events) to clustering module.

7 | P a g e

CERN openlab Summer Student Report 2014

Affinity Propagation Clustering layer receives events and performs clustering on live data stream.

Once a datum point is assigned to cluster, this information is appended to CSV repository.

2.1 Feeds and generators

A number of signal generators is implemented to test the framework:

• sine wave with normally distributed noise,

• cosine wave with normally distributed noise,

• normal distribution generator,

• uniform distribution generator,

• multivariate normal distribution generator.

The time between generated samples is modelled according to Poisson distribution—it simulates

pseudo-random signal occurrence.

The package also contains module which collects temperature readings from the electronic ther-

mometer placed at CERN Prévessin site, and Yahoo! weather forecast feed for the same location.

Both of them can be used as signal providers for the application.

In Esper the easiest (and the one that I use) way to represent a signal is POJO—Plain Old Java

Object. Such object contains some properties—constants—like currentValue and timeStamp.
Every event arriving from source is or can be converted to a POJO. Such container holding signal

properties is delivered to the processing unit of Esper via listeners.

2.2 Esper engine

The Esper engine runs in the background gathering signals from all indicated by user (see §2.3)

sources. It filters all these incoming data with EPL rules and delivers desired ones to corresponding

listener (see §2.4).

The Esper framework is capable of running multiple servers simultaneously. It also allows to make

changes to model of processing without stopping the server via provided API. This feature signifi-

cantly increases usability of Esper as it prevents any data lose and allows fine-tuning.

2.3 Rules: feature extraction

In presented model rules decide what measures of data feed the user is interested in. They allow to

get the value of the signal and apply built-in or user-defined filters on-the-fly.

Esper allows to either hard-code the rules in a source code of a program, or read them in from

external EPL file, alternatively they can be sent to the engine via API.

The EPL language is similar to database queries, but instead of fixed pool it uses part of stream se-

lected by time-window.

In my application I use rules as signal feature extractors. In particular I am interested in:

mean signal average in given time period v̄,

8 | P a g e

CERN openlab Summer Student Report 2014

Data processing with Esper

Signals Esper Events
Affinity Propagation

Clustering

O
ff

lin
e

R
es

o
u

rc
es

Li
ve

 D
at

a
P

ro
ce

ss
in

g

G1

G2

S1

S2

Actions
Feature

Extraction

Signals & Features

EPL file:
Defining
features

CSV file:
Data

repository

A1

A2

Events
Reconstruction:

Data Plotter

AP Clustering

APC1

APC2

A3

Class
information

Figure 1: Data processing model.

9 | P a g e

CERN openlab Summer Student Report 2014

standard deviation standard deviation in given time period vσ,

k-lag a difference between current value of the signal and nth previous value i.e. vt − vt−n,

threshold a user-defined function which thresholds the signal based on a single value V ,

current value a current value of the signal vt,

FN a number of defined features,

TS an assigns time-stamp t of received signal.

The example of rules extracting above features are placed in EPL file shown in Listing 1.

The EPL file consists of (in preserved order):

• module name,

• dependencies that need to be imported,

• alias definitions i.e. short names for signals,

• rule name,

• rule description,

• rule body.

Generic rule starts with a select keyword. Then, features are extracted by applying functions to cur-
rent signal value. For simplicity, each extracted feature is assigned an alias with as keyword. To clar-

ify, in example given below variables current and timer aremembers of randomGenerators.Sine
class—they are signal properties. Finally, from keyword is used to indicate which signal is used and

win:time(60 sec) is placed to indicate time window of interest.

For convenience each file can contain multiple rules.

module

Sp r i n g f i e l dNu c l e a r P owe r P l a n t . e ng i n e . E x t e r n a l F e a t u r e E x t r a c t o r ;

import

f e a t u r e E x t r a c t o r s . F e a t u r e E x t r a c t o r ;

c r e a t e schema S inT i ck as r andomGene ra t o r s . S ine ;

@Name(’ Bas ic−−−S t a t i s t i c s ’)

@Descript ion (’ E x t r a c t b a s i c s i g n a l s t a t i s t i c s t o f e a t u r e s ’)

s e l e c t

avg (c u r r e n t) as F1 ,

s t d d ev (c u r r e n t) as F2 ,

f e a t u r e E x t r a c t o r s . F e a t u r e E x t r a c t o r . posNeg

((c u r r e n t − prev (1 , c u r r e n t))) as F3 ,

f e a t u r e E x t r a c t o r s . F e a t u r e E x t r a c t o r . posNeg

((c u r r e n t − prev (2 , c u r r e n t))) as F4 ,

c u r r e n t as F5 ,

10 | P a g e

CERN openlab Summer Student Report 2014

f e a t u r e E x t r a c t o r s . F e a t u r e E x t r a c t o r . t h r e s h o l d

(c u r r e n t) as F6 ,

6 as FN ,

t ime r as TS

from S inT i ck . win : t ime (60 sec) ;

Listing 1: EPL file example.

2.4 Listeners for change

A listener is a thread running in the background and acting upon arrival of new event—signal tick—

according to some attached rule.

Esper gives user a flexibility to define multiple rules and listeners, and pair them in non-restrictive

manner e.g. :

• multiple listeners are attached to a single rule,

• one listener is attached to multiple rules,

• one listener is bonded with one rule.

I use this module to pass features extracted from signals to clustering framework (see §2.5 for ref-

erence).

2.5 Clustering with Affinity Propagation

2.5.1 Live stream adaptation of clustering algorithms

[Zhang et al., 2013] presented a general framework for adapting an unsupervised clustering algo-

rithm to data streams. Their approach can be used with any clustering algorithm that does not need

a fixed, predefined number of clusters as a model parameter. This restriction motivates their use of

Affinity Propagation unsupervised clustering which is presented in more details in §2.5.2.

The overview of their approach is presented in Figure 2.

The process begins by feeding the framework with stream of extracted features. The algorithm

uses initial batch of data (user defined, fixed number of initialization points) to create first model.

Once the model is initialized, all incoming points are tested for fitting the model: if they do, they

are appended to current model, and if they do not they are stored in reservoir. Fitness test checks

whether given point is an outlier with regard to current model.

There are two possibles events that can trigger model rebuild: full reservoir—its fixed size is defined

by user, or positive outcome of change point detection test on incoming stream—it detects “signif-

icant” and “sudden” change on the input stream. If any of these triggers fire, the model is rebuilt

with data from reservoir.

The detailed description of outlined approach is presented in Algorithm 1.

11 | P a g e

CERN openlab Summer Student Report 2014

Data Reservoir:
Outliers or

New Patterns?

Model Initialization

Data
Model

no fit

?

fit

Trigger

Features Stream

Rebuild Model

change point detection

full reservoir

Data Stream

Esper Feature
Extraction

Figure 2: Stream clustering model.

12 | P a g e

CERN openlab Summer Student Report 2014

Data: Data stream ...xt, xt+1, xt+2, ...;number of initialization points T ; reservoir size r; fit
threshold ε.

/* Initialization */
1 m←APModel(x1, ..., xT);
2 Reservoir←{};

/* Receiving data */
3 for t > T do

4 Compute ei = nearest exemplar to xt ;
5 if d (xt, ei) < ε then
6 Update modelm ;

7 else

8 Reservoir←xt;
9 end

10 Rebuild Trigger←(|Reservoir| > r || Change Point Detection on input stream);

11 if Rebuild Trigger then

12 Rebuild modelm;

13 Reservoir←{};

14 end

15 end

Algorithm 1: Streaming Affinity Propagation Clustering Algorithm.

2.5.2 Affinity Propagation

The predominant part of my application is Affinity Propagationmodule—an unsupervised clustering

algorithm adapted to data streams as described above (§2.5.1).

Imagine two dimensional clustering task. It can be described as finding clouds of points which

are similar. If we choose an Euclidean distance as our similarity measure the task is to locate areas

on R2 plain where points lie close together.

Each cluster can be represented by a medoid or a centroid. The first is a central datum point of a

“cloud” that belongs to the data set; and the later is a point on a plane which describes “centre of

gravity” of the “cloud”.

Affinity Propagation is a state-of-the-art clustering solution based on concept of message pass-

ing between data points. The algorithm uses notion of distance or similarity between any two points

to find centroids of clusters. To this end, it maintains two matrices: R—responsibility matrix and

A—availability matrix. Entries rij of the first one quantify how good does a datum point xj act as
an exemplar for xi. Matrix A with elements aij describes how well does xi fit to the model while

being assigned to exemplar xj .
Both matrices are initialised to 0 and iteratively updated by passing messages between each other.

Once they are ready, one can retrieve from them the most probable centroids and all points assigned

to them. For more details please refer to [Frey and Dueck, 2007].

13 | P a g e

CERN openlab Summer Student Report 2014

2.5.3 Making sense of signals

At this stage of processing we gain valuable information about the signal: its current status. Imag-

ine a noisy sine wave with possible flat state, which can be described with three parameters: value

low/medium/high, threshold negative/0/positive, and direction decreasing/steady/increasing. Such

classification yields 27 distinctive states which we want to predict. The main difficulty in presented

scenario which prevents from simple fixed-value thresholding is lack of knowledge what value of

the signal is low and what is high as it can evolve with time. Also in some cases it might be tricky

to predict the direction of the signal: distinguishing between noise and trend.

Another, simplistic inference that we may want to do is: behaviour normal/abnormal. In this case

we can either combine 27 named above states into 2 groups or we can perform separate classification.

Being able to build a model which can distinguish different state of signal based on complex

features gives the user significant advantage over raw stream analysis. With such information user

can write simple rule to trigger different actions based on current signal status.

2.6 Data visualization

To visualize gathered data, I wrote a separate Python script. It uses CSV repository generated by the

main program to show the signal and its defined features as functions of time. It is also capable of

plotting in “re-play” mode, where timestamps are used to model pause between plotting two adjacent

points.

The script can also be used to scatter a plot of selected features against each other.

2.7 Static clustering

To analyse the quality of my experimental results (final stage of live clustering) I compare them

with results obtained via static clustering performed on data gathered in CSV repository. For this

purpose I use k-means, expectation-maximization, and affinity propagation algorithms. First two

are implemented in Weka machine learning tool-kit and the last one is a part of APCluster package

for R language.

3 Results

This section presents result gathered over a short run of signal analysis with feed generated as noisy

sine wave. Figure 3 shows the waveform.

We begin signal processing by feature extraction. The sample of average, standard deviation,

and 5-Lag features extracted in 60 seconds time-sliding-window are presented in Figure 4.

Once the features are extracted, they are sent to affinity propagation clustering algorithm, which

runs in the background. Sample results of clustering can be seen in Figure 5, where separate cluster

have distinctive colours.

The main idea behind signals clustering in system controls is to either detect abnormal behaviour or

recognize the current signal status.

The first one can be understood as points appearing outside ofmain cluster (seeFigures 5a, 5b , and 5c).

In both figures, clusters were pruned to produce eye-friendly plots. In case of presented here sine

14 | P a g e

CERN openlab Summer Student Report 2014

Figure 3: Generated signal sample—noisy sine wave.

(a) Signal average in time. (b) Signal standard deviation in time.

(c) Signal 5-Lag in time.

Figure 4: Features extracted form signal.

15 | P a g e

CERN openlab Summer Student Report 2014

wave the abnormal behaviour can be caused by sudden change of period or stretch in y-axis dimension—

in graphs visible as detour from the main concentration of points and caused by the 60-seconds time-

window not being filled yet with events at the very beginning of analysis.

In all of these graphs we consider red as “healthy” cluster, and blue as “suspicious” state. If new-

coming points are assigned to the first group the system works smoothly, but once stream is being

shifted towards blue zone the alarm is raised.

The current signal status recognition (see Figure 5d) is based on classification with respect to 3

distinctive measures based on extracted features:

• increasing—decreasing: k-lag being positive or negative,

• positive—negative: the sign of current signal value,

• high—low: inference made by clustering algorithm based on absolute value of current signal

value.

Figure 5d shows result of clustering, where each colour corresponds to combination of listed above

signal states e.g. green is decreasing-negative-low.

In both mentioned above approaches to noisy sine wave analysis implemented algorithm per-

forms well and gives enough precision to be useful in real life applications.

3.1 Comparison with static clustering

To benchmark above results I use static clustering on data repository created by one run of my

program. Static clustering algorithms are: k-means, expectation maximization (EM), and affinity

propagation; first two implemented in WEKA machine learning package, and the last being extension

for R language.

The choice of the first one is motivated by its simplicity and popularity, nevertheless it needs fixing

the number of clusters therefore its application in my case is not realistic. Two later ones do not need

aforementioned parameter hence are more suitable for my approach.

Figures 6, 7, and 8 present 3 static approaches to good/bad state signal classification. Once

pruned (similar clusters are joined) these outcomes become very similar to results in live clustering

case. This indicates good performance of proposed in this paper approach.

Graph 9 presents signal classification with respect to 8 presented above categories. We can see

that static clustering struggles with differentiating between high and low signal values. Live clus-

tering over-performs in this scenario probably because it sees the data as they come (one-by-one)

therefore slightly simplifying the classification.

3.2 Overall performance

All presented above experiments indicate that proposed in this paper live stream clustering frame-

work performs at least as well as static approach. These results show that my approach is worth

further investigation and should be tested more carefully with use of real-world data streams to de-

termine its capabilities and possible applications.

16 | P a g e

CERN openlab Summer Student Report 2014

(a) Average clustering. (b) Standard deviation clustering.

(c) Average—Standard Deviation clustering. (d) 5-Lag clustering.

Figure 5: Signal clustering based on extracted features.

(a) 2-means clustering. (b) EM clustering.

(c) Affinity Propagation clustering.

Figure 6: Signal Value vs. Average clustering.

17 | P a g e

CERN openlab Summer Student Report 2014

(a) 2-means clustering. (b) EM clustering.

(c) Affinity Propagation clustering.

Figure 7: Signal Value vs. Standard Deviation clustering.

(a) 2-means clustering. (b) EM clustering.

(c) Affinity Propagation clustering.

Figure 8: Average vs. Standard Deviation clustering.

(a) 2-means clustering. (b) EM clustering.

(c) Affinity Propagation clustering.

Figure 9: Signal Value vs. 5-Lag clustering.

18 | P a g e

CERN openlab Summer Student Report 2014

4 Summary

4.1 Future work

Created application only scratches the surface of a vast field of live signal processing. In future study

I would like to carry out throughout comparison of different clustering algorithm that can be used

with proposed in this paper framework. Furthermore, presented here solution has not been tested

with real-world signals therefore investigating the efficiency and accuracy of my clustering scheme

in such scenario is crucial.

Produced application is fully functional but lacks graphics user interface to show status of in-

coming signal, behaviour of extracted features, and current cluster structure.

Moreover, directing clustering results back to Esper might be worth a closer look as it would fa-

cilitate live analysis of patterns emerging in the data. Such approach would allow to trigger actions

based on cluster assignment of currently processed datum point.

Finally, converting my application to server based service managed via API could facilitate per-

forming multiple independent analyses, and new rules deployment on the running application i.e.

adding/removing/changing features of interest without stopping the signal processing.

4.2 Conclusions

This paper proposes an application ofComplex Event Processing tool: Esper, to helpmake sense of data streams.

It describes how to generate signals samples, easily extract meaningful features from them, and

cluster the data to discover its underlying structure. Moreover, all presented here processing steps

contribute to the goal of better understanding the behaviour of a signals.

Use of Esper brings all the advantages of efficient, multi-platform, and simple to use library,

which can process at once thousands of events per second produced by multiple signals. Further-

more, it gives possibility to apply different filters, functions and time-windows in modular manner

to extract relevant information. Last but not least, presented here live stream clustering model of

processing, allows to use number of different clustering algorithms without significant alterations to

the programme.

Finally, designed approach is capable of efficient live streams analysis and automatic signal

status recognition. Moreover, presented in this paper results seem promising as in artificial setting

(with use of signal generators) its performance was shown to be no worse than the one of static

clustering.

With wide variety of application areas which demand more than simple signal thresholding e.g.

system monitoring, presented here approach might be worth further investigation.

19 | P a g e

CERN openlab Summer Student Report 2014

References

Opher Etzion and Peter Niblett. Event Processing in Action. Manning Publications Co., Greenwich,

CT, USA, 1st edition, 2010. ISBN 1935182218, 9781935182214.

Peter Flach. Machine Learning: The Art and Science of Algorithms That Make Sense of Data.

Cambridge University Press, New York, NY, USA, 2012. ISBN 1107422221, 9781107422223.

Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points. Science,

315:972–976, 2007. URL www.psi.toronto.edu/affinitypropagation.

Floyd Marinescu. Esper: High volume event stream processing and correlation in java. Online

article, July 2006. URL http://www.infoq.com/news/Esper--ESP-CEP.

Xiangliang Zhang, Cyril Furtlehner, Cécile Germain-Renaud, and Michele Sebag. Data stream

clustering with affinity propagation. 2013.

20 | P a g e

www.psi.toronto.edu/affinitypropagation
http://www.infoq.com/news/Esper--ESP-CEP

	Introduction
	What is Complex Event Processing
	What is Esper
	Why to use it
	Complex Event Processing at CERN

	Applications
	Nuclear Power Plant
	Stock market exchange

	Model of processing
	Feeds and generators
	Esper engine
	Rules: feature extraction
	Listeners for change
	Clustering with Affinity Propagation
	Live stream adaptation of clustering algorithms
	Affinity Propagation
	Making sense of signals

	Data visualization
	Static clustering

	Results
	Comparison with static clustering
	Overall performance

	Summary
	Future work
	Conclusions

