
Reflection Coefficient of a Waveguide wi.th 
Slightly Uneven Walls 

Abstract - First-order results are derived for the reflection coefficient of 
a waveguide with slightly uneven walls. Specific analytical and numerical 
results are given for rectangular waveguides and coaxial transmission lines. 
Simple upper bounds are given for reflection coefficients in terms of the 
maximum deviation of the waveguide. For typical tolerance5 the reflection 
coefficients are very small ( < but the results are important in 
precise six-port measurements. 

I. INTRODUCTION 
ONUNIFORM waveguides have been studied for N some time with application to antennas [I] and ta- 

pers [2]. The generalized telegrapher's equations [3], [4] 
provide a useful starting point, and Solymar [2] has worked 
with coupled traveling waves for studying spurious mode 
generation. 

In t h s  paper we use Solymar's formulation to derive 
first-order results for waveguides with small nonuniformity 
or wall roughness. Section I1 treats the reflection and 
transmission of the dominant mode and the generation of 
higher order modes for a waveguide of arbitrary cross 
section. Section I11 contains specific results for the reflec- 
tion coefficient of the TE,, mode in a rectangular wave- 
guide. Section IV contains similar results for the reflection 
coefficient of the TEM mode in a coaxial line. For typical 
tolerances the reflection coefficients are very small, but the 
results are important in precise six-port measurements [ 5 ] .  

11. FIRST-ORDER SOLUTION 
We consider a perfectly conducting waveguide with a 

nonuniform section of length L as shown in Fig. 1. Start- 
ing with the generalized telegrapher's equations of Reiter 
[4], Solymar has derived the following differential equa- 
tions for coupled traveling waves [2]: 

1 d(lnK,)  
A r- -- - - jD,A,+ - - ___ 

dA: 
dz 2 dz 

+ c (S,I,A,+ + XpAy 1 
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- jB,Al- - - ~ '4 I+ 
-- 
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A r t  and A ,  are amplitudes of the forward and backward 
traveling waves, subscript i refers to the ith mode. p, is 
the wavenumber of the i th mode, K ,  is the wave impedance 
of the ith mode, SI; and SI,, are forward and b ac .k ward 
coupling coefficients, and the p summations are over all 
waveguide modes. The time dependence is exp(jot) .  In (1) 
it is assumed that K ,  # 0 and K ,  # m. and this means that 
p, f 0. Thus (1) is not valid for modes at the cutoff 
frequency (p ,  = 0). However, (1) remains valid for modes 
below cutoff where 6, and K ,  are pure imaginary. 

If the waveguide is fed by a single mode m ,  the bound- 
ary conditions at the ends of the nonuniform section are 
[21 

A,: (0) = A ( ) .  A,,, ( L )  = 0 

and 

A,'(())  = 0, A ,  ( Ld) = 0. for i + tn .  (2)  

Because we are interested in  the effect of small waveguide 
roughness or imperfections. we assume that the waveguide 
cross section is nearly constant. Consequently we are able 
to use a perturbation solution. This is in contrast to the 
work of Solymar where intentional waveguide tapers were 
considered. The zero-order perturbation solution to ( I )  
and (2) is the solution to the uniform guide, and only the 
forward-traveling m th mode is nonzero: 

A ; (0 )  ( ) = A & //<!:"I 

A,; ' ( ) ' (z)  = 0 

A , ' ( ' ' ) ( ~ ) = A ,  ( ' ) ) ( z ) = O .  for i + m .  (3) 
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A first-order analysis of (1) and ( 2 )  shows that the 
first-order amplitudes satisfy the following differential 
equations: 

Here the superscript (1) refers to first-order quantities. The 
solutions to the differential equations in (4) are 

1 ~ : ( 1 ) ( z )  = Aoe-/BI’z [ 1- j /‘(  /32) - P L O ) )  dz’ 
0 

We are actually most interested in the wave amplitudes at 
the ends of the nonuniform section; these are given by 

1 A,+‘”( L )  = A oe - /B I ’ L  [ 1 - j i ” (  - fldp)) dz 

A,+(I)( L )  = A0/LS,”[B’D’2+fl~0’(L-2)1 dz , i + m  
0 

Al- ( l ) (0)  - A / L S- -/(#’+P?’)zdz, i # m. 
o ,me 

0 

The results in (6) are slightly different from those 
Solymar, but they are equivalent to first order. 

6) 

of 

In our application only the mth mode is propagating, 
and all other modes are below cutoff. Thus PI is negative 
imaginary for i # m, and A,+(’) and AI-(” are negligible 
because of the exponential decay in the integrands (see 
Appendix A). The reflection coefficient S,, and the trans- 
mission coefficient S,, of the propagating mode rn are 

and 

l- -a- 

Fig. 2 Rectangular waveguide. The width ( I  and height h arc functions 
of 2. 

111. REFLECTION COEFFICIENT FOR A 

RECTANGULAR WAVEGUIDE 

A .  Integral Form 
In this section we derive the reflection coefficient for the 

dominant TE,, mode in a rectangular waveguide. The 
geometry for a rectangular waveguide of width a and 
height b is shown in Fig. 2. In our model a and b are 
allowed to vary with z ,  but the guide cross section is 
always rectangular. Using the notation of Solymar, we 
write the scalar mode function +[lol as 

sin ( , , / U )  

where [ ] on the subscript indicates a TE mode. The 
electric-field mode function e[,,] is [2] 

e[,,,] = f x ~~4 = j i - a; i cos ( ,,/a) ( 9 )  

where superscript A indicates a unit vector and V, is the 
transverse gradient operator. The wavenumber Prlo, is 

where k = 27r/X and A is the wavelength in the medium 
filling the guide. The wave impedance Kllol is 

where p and c are the permeability and permittivity of the 
medium inside the guide. 

The expression for the backward coupling coefficient 

where the integration is over the waveguide perimeter 
C(z), ds is an element of C(z) ,  and tan6 is the slope of 
the waveguide wall in the z direction. The sidewalls (1 and 
3) do not contribute to the integral in (12) because the s 
derivative is zero. If we substitute (8) into (12) and per- 
form some algebra, we can simply SiolilOl to 

-1 db 
S i O l , l O ]  = 2h z. (13) 

To evaluate (7), we also require the following derivative: 
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Equation ( I  3) is consistent with Solymar's rectangular 
waveguide example, but he did not require (14) because he 
did not consider any variation in a. 

In keeping with our first-order analysis, we write the 
guide width and height in the following form: 

and 
a(.) = a , + A , ( z )  

b ( z )  = b o + A , ( z )  (15) 
where A c l / a o  << 1. Ab/hO << 1, and a. and bo are indepen- 
dent of z .  In addition we require that A,(O) = A,(O) = 
A(,( L )  = Ah( L )  = 0 so that the waveguide surface is con- 
tinuous. Using (13)-(15) in (7), we obtain the following 
first-order expression for Sll: 

where 

and 

@((, = [ k 2  - ( T/a,,)2]1'2.  

The expression in (16) provides a formal solution for 
S I , ,  but its form is inconvenient because it requires the 
derivatives of A,  and A,,. Using integration by parts, we 
can rewrite (16) in the following form: 

S I 1  = Sllo + &b (17) 
where 

Sllr, = j2/?{~~lC,,/or,A,l( Z ) ~ - J ~ ~ I : A I '  dz 

and 

This form is more convenient than (16) because it involves 
the width and height deviations, rather than their deriva- 
tives. We have broken SI, into two parts to illustrate the 
separate dependencies on A ,  and A,,. 

The form of (17) is similar to that in sea scatter [6] 
where the backscattered signal has the Bragg diffrac- 
tion form. The integration in (17) essentially picks out 
the Fourier components of the surface variations with 
wavenumber 2/3$',,,. If we are given the width and height 
variations, A,( z )  and A,( z ) ,  we can calculate S,, numeri- 
cally from (1 7). 

B. Upper Boiuid 

Frequently the actual z profiles of A ,  and A,, are not 
known, but an estimate of the upper bound is available. 
Let us assume that 

I A , W  I4  A,,, 

6x10  

4x10 

m 

a a 3 

2x10 

0 

Fig. 3. Upper bound of the rcflcction cocfficicnt inagilitudc IS,, 1. I'a- 
rameters: U" = 2.29 crn, I,,,  : I .02 cm. 1. = 7.02 ~ ' 1 1 1 .  and A 3 n ~ t y  = 2.54 pili. 

and 

l A b ( 4  I h,,1nx (18) 

where A max is a known di rnensional toleraiice. Then from 
(17), lS,ll satisfies 

IS111 2q;;\,/,( lCl t l ~ ~ / , l ) ~ l l l ~ l y ~  (19) 

Thus the upper bound on IS, 1 is directly proportional to 
A,,,, and I , .  For realistic profilcs of A,, and A b ,  the actual 
value of ISll\ will norinally be niiich smaller than the 
upper bound in (19) because uf the oscillatory nature of 
the exponential factor in (1'7). 

To illustrate the order of tnagnitude of the quantities i n  
(19) we consider a six-port application at X band. Typical 
parameters are [7]: u0 = 2.29 cni (0.9 in), h,, = 1.02 cm (0.4 
in), I, = 7.62 cm ( 3  in), A,,,, = 2.54 pm (10 - 4  in). and 
frequency = 8.2-12.4 GHz. The upper bound on lS,ll is 
shown in Fig. 3 as a function of frequency. Also shown are 
the separate contributions (~iused by v;iri;itions in U and 
b: 

IS ,  l t l l  2/~~1:,,,I,/(:,I11,,,,,\ 

and 

The JSIlNJ term can be viewed ;is an iriipedancc effect and 
could be predicted by classical nonuniform transmission 
theory [8]. However, tlie IS,  term is caused by backward 
coupling into the same mode and i s  not predicted by a 
classical transmission line analysis. I n  gencral, the two 
terms are of the same order of tnagnitude. 'I'heir frequency 
dependence is different because I (  :,I is frequency depcn- 
dent and lC/,l is not. I n  contrast the forward coupling 
coefficient is zcro [ 2 ] .  and clianges i n  /> (10 not affect the 
transmission coefficient (sec Appetidix H ) .  

The treatment here h;is assumed that tlic nonuniform 
section of wavegriidc i s  continuous at thc ends. h,,(U) = 
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A,@) = A,(L) = Ab(L). If there is a discontinuity at ei- 
ther end (as with a junction), then that effect must be 
addressed separately [9]. 

C. Sinusoidal Profile 
In this section we consider an idealized sinusoidal pro- 

file for both A a  and Ab. This is a convenient profile to 
consider because it is zero at both ends ( z  = a and z = L )  
and the integrations in (17) can be performed analytically. 
The specific forms for A a  and A,, are 

A , ( z )  = Aa,,sin(n~z/L) 

and 

Ah(z) = A,,,sin(nmZ/L) ( 2 1 )  
where A,,, and Ab,= are maximum deviations and n is 
a positive integer equal to the number of half cycles in the 
interval of length L. 

To evaluate S,, using (17), we need to evaluate the 
following integral: 

I ,  = JoL sin(12az/L)e-J2Pr(Pdlzdz. ( 2 2 )  

If we replace the sine factor by complex exponentials and 
perform some algebra, we can write I ,  as 

The first term in (23)  has a peak at Pf&L = n ~ / 2 ,  which is 
the condition for Bragg scatter. 

Using (17) and (23), we can write Sll, and S,,, as 

Slla = J2fi&caAam,I, 

'1 I b  = j2P [:dl A h ,,In. (24) 

and 

Numerical results for the magnitudes of Slla and S,,,, are 
shown in Figs. 4 and 5 for Aama  = A,,,, = 2.54 pm. The 
curves for n = 8 have a peak in the center of the frequency 
band where the Bragg condition is satisfied. For n = 2 and 
n = 20,  the Bragg condition is not satisfied, and the magni- 
tudes are much lower. The results in Figs. 4 and 5 indicate 
that a special profile is required for the magnitudes to even 
approach the upper bounds, and generally the magnitudes 
are much lower. 

IV. REFLECTION COEFFICIENT FOR A COAXIAL LINE 

A.  Integral Form 

In this section we derive the reflection coefficient for the 
dominant TEM mode in a coaxial line. The geometry for a 
coaxial line with inner radius p, and outer radius po is 

t i  8' 

I 
12 13 

Frequency ( G H r )  

Fig. 4. Magnitude of SI,, for a sinusoidal profile. Parameters: uo = 2.29 
cm, bU=1.02cm, L=7.62cm,and h,,,=2.54pm. 

lo-zL 
Upper B o u n d  

Frequency (GHz l  

Fig. 5.  Magnitude of Sllh for a sinusoidal profile. Parameters: uo = 2.29 
cm, h, =1.02 cm, L =  7.62 cm, and hhlnax = 2.54 pm. 

shown in Fig. 6. In our model p, and p,? are allowed to 
vary with z,  but the guide cross section is always coaxial. 

The electric-field mode function e,  for the TEM mode is 

( 2 5 )  
ri 

e,  = 
[2a In ( P J P ,  11 l l 2  P 

where the subscript 0 indicates the TEM mode. The propa- 
gation constant Po of the TEM mode is the wavenumber of 
the medium: 

Po = k = 2a/h.  (26) 

The wave impedance El, of the TEM mode is the intrinsic 
impedance of the medium: 

KO = 77 = (pL /c ) ' / * .  (27) 

Since KO does not depend on p, and p,, the derivative 
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Fig. 6. Coaxial line. The inner and outer radii, p, and po, are functions 
of z .  

term in (7) is zero. Thus the reflection coefficient S,, of 
the TEM mode obtained from (7) is 

s,,= - l L s -  - J 2 k r d z .  (28) 
0 

The backward coupling coefficient S& of the TEM 
mode is most directly determined from the general formula 
of Reiter [4] which is an integral over the cross section of 
the guide. For the coaxial line t h s  integral takes the 
following form: 

If we substitute (25) into (29) and carry out the integra- 
tions, we obtain 

The result in (30) is equivalent to that of classical theory 
for nonuniform transmission lines [7] if we take into ac- 
count the difference in the definition of voltage and cur- 
rent. In keeping with our first-order analysis, we write the 
inner and outer radii as 

P , ( 4  = P , o + A , ( Z )  

P o ( . >  = Po0 + A , ( 4  

and 

(31) 
where A,/pj0 << 1, A , / p o 0  << 1, and pl0 and po0 are inde- 
pendent of z .  Using (30) and (31) in (28), we obtain the 
following first-order solution for S,,: 

(32) 

where 

c; = - [2P;oln(P,o/Pio)l - l  

e o =  [2~oo ln (~oo /~ io ) I  -'. 

and 

As with the rectangular guide, we prefer not to deal with 
the derivatives of the dimensional variations. Using inte- 

zxlo-*- 

0 4 8 12 16 20 
Frequency (GHz)  

Fig. 7. Upper bound of the reflection coefficient lS,ll for a coaxial line. 
Parameters: p, =1.52 mm, p,, = 3.5 mm, L = 3 cm, Armax = 0.635 pm. 
and Aumm =1.27 pm. 

gration by parts, we can rewrite (32) in the following form: 

S,,= Sill+ S l l o  (33) 
where 

Slll = j 2 k C , / o r . A , ( ~ ) e ~ ' ~ " d ~  

and 

Sllo = j2kCo A(,( z)e-12x2 dz LL 
We have again broken S,, into two parts to illustrate the 
separate dependencies on A,  and A,. 

B. Upper Bound 
As with the rectangular waveguide, we can obtain an 

upper bound on IS,,l if we have upper bounds on A ,  and 
A,. Let us assume that 

and 

where A , max and 
Then, from (33), 

IAO(4 I Aomax  (34) 

A, max are known dimensional tolerances. 
[Sill satisfies 

l%l G IS11;l+ ISllOl (35) 
where 

and 

For realistic profiles of A ,  and A,, the actual value of lSlll 
will normally be much smaller than the upper bound in 
(35) because of the oscillatory nature of the exponential 
factor in (33). 

To illustrate the order of magnitude of the quantities in 
(35), we consider a six-port application. Typical parame- 
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7 z 10.0 

8.0 g.O: 

r. 
I 

30.0 

25.0 ; 

15.0 5 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 

Z A x i s  ( M e t e r s )  
Fig. 8. Profile of the outer radius of a coaxial line and magnitude of the reflection coefficient for a frequency of 6 GHz 

(7 mm air line). 

r. 

8.0 -1 
I 

0 . 0 0 0 . 0 2  0.04 0.06 0.08 0.10 0.12 0.14 0.16 

Z A x i s  [ M e t e r s ]  
Fig. 9. Profile of the outer radius of a coaxial line and magnitude of the reflection coefficient for a frequency of 12 GHz 

(7 mm airline). 

ters are [7]: p, = 1.52 mm, p, = 3.5 mm, L = 3 cm, A,,, = 

0.635 pm, AomU = 1.27 pm, and frequency G 18 GHz. The 
upper bounds on lSllrI, ISllol, and JSllI are shown in Fig. 7. 
All three quantities are directly proportional to frequency 
because of the k factor in (35). The results for a realistic 
profile would normally have a more complicated frequency 
dependence because of the exp( - j 2 k z )  factor in the 
integrals in (33). 

C. Actual Profile 
The outer diameter of a precision air line was measured 

with an air gauge. The parameters are the same as in the 
previous case except that the line is longer ( L  =16 cm). 
We assume that the inner conductor has no variation 
( A j  = 0). In Figs. 8-10, we show the magnitude of the 
reflection coefficient lSlll as a function of the length of the 
line for three different frequencies of interest. The actual 
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v 

0 

' O . O l  
r. r 30.0 '$ 

9.0 4 1 25.0 ; 

0 . 0 0 0 . 0 2  0.04 0.06 0.08 0.10 0.12 0.14 0.16 

Z A x i s  ( M e t e r s )  

Fig. 10. Profile of the outer radius of a coaxial line and magnitude of the reflection coefficient for a frequency of 18 GHz 
(7 mm airline), 

profile Ao(  z )  of the line is shown in each case. (The profile 
is indicated by solid circles and the reflection coefficient 
by open circles.) There is a small increase in lSlll with 
frequency, but it is much less than the linear increase in 
the upper bound as shown in Fig. 7. Its also interesting 
that lSlll does not increase as rapidly with line length as 
indicated by the upper bound expression in (35). The 
actual ISlJ stays well below the upper bound expression in 
(35) for all lengths and frequencies. 

APPENDIX A 
HIGHER ORDER MODES 

When only the m th mode is propagating and all higher 
order modes are below cutoff, the propagation constant 

mately equal to l/r,(')) to contribute to the integral. 
Consequently the amplitudes of the reflected higher order 
modes are much smaller than that of the reflected domi- 
nant mode which is proportional to L as shown by (19). 
For a more precise comparison, we would need to evaluate 
the coupling coefficient S,;, but it is of the same order as 

To examine the transmitted higher order modes, we 
substitute (Al)  into (6) and obtain the following expres- 
sion: 

s i m .  

From (A5) we can obtain the following upper bound: 

where r,(') is the attenuation constant and is pure real. If 
we substitute (Al)  into (6), we get the following expression 
for the amplitudes of the reflected higher order modes: 

Thus the upper bound for the transmitted higher order 
modes has the same form as (A4) except that the forward 
coupling coefficient SA appears in place of the backward 
coupling coefficient. Both coupling coefficients are small 

0 dz ,  z # m.  (A2) first-order quantities proportional to the guide nonuni- 
A (1) ( 0 )  = A OJLS,,e - (1~:) + r:O))Z 

formity [2]. From (A2) we can develop the following upper bound: 
APPENDIX B 

TRANSMISSION COEFFICIENT S,, 
I A ; ( ~ ) ( O )  I < lAol lSJ[l- e-r:o'L]/I':o). (A3) 

L A  

The coupling coefficient SI; actually depends on z, and by 
ISl;[ in (A3) we mean the maximum value. For modes well 
below cutoff, T,"L is normally large, and (A3) reduces to 

From (7) the transmission coefficient for the dominant 
TE,, mode of a rectangular waveguide is 

I ~ ; ( l ) ( o )  I G IA,I is;i/r,(o). (A4) S 21 - - e - J P g I r .  [ 1 - iJ"( B;;& - B&)  4. (B1) 
0 

Thus IA,-(')(O)l is inversely proportional to r,(O) and is not 
proportional to L. This results from the exponential decay 
which allows only a small portion of the guide (approxi- 

The zero-order propagation constant B{pdl is given by (lo), 
and the first-order propagation constant can be obtained 
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from a Taylor expansion: 

where 

Thus 62, is proportioiial to the average value of A I ,  and is 
normally much less thaii one. Also, a,, is independent of 

For the usual case of /i32,1 <r 7 ,  we can write S,, in the 
‘ h ’  

following exponential form: 
s,, >z / ( / $ ? , , I .  t 6 2 , ) .  

Thus to first order the magnitude of S,, is one, and S2, 
undergoes an additional phase shift of -- a,,. 

For the coaxial line, the propagation constant Po of the 
TEM mode is equal to k and is independent of z .  Conse- 
quently, the transmission coefficient S,, is the same as that 
of the uniform line to first order: 

(B5 ) = e  J L I ,  
21 

APPENDIX C 
1MPERFECTI.Y COND(1CTING WALLS 

For iniperfect wall conductivity, the analysis is in gen- 
eral much more complicated, and even the modes for the 
uniform waveguide are difficult to analyze [lo]. The analy- 
sis for the coupling coefficients for nonuniform wave- 
guides is very complicated, hut the simpler two-dimen- 
sional case of a parallel-plate waveguide has been analyzed 
using the surface-impedance boundary condition [l l] .  

For metal waveguides of high conductivity, the surface 
impedance is very small, and the mode fields do not differ 
much from those of the perfectly conducting waveguide. 
Consequently the coupling coefficients for nonuniform 
waveguides which depend on the mode fields do not differ 
much from those of perfectly conducting waveguides. The 
main effect of imperfect conductivity is to cause attenua- 
tion and a small change in the phase constant [9]. For the 

where vo is the free-space impedance, A ,  is the free-space 
wavenumber, and Z,,, is the surface impedance of the 
waveguide walls. For high wall conductivity, the surface 
impedance is 

where p,, is the wall permeability and U,,, is the wall 
conductivity. 

To account approximately for the effects o f  finite wall 
conductivity, we can replace jb$, i n  Section 111 by y as 
given by (Cl). In most cases this effect will be negligible. 
For example [9], a copper waveguide at X band has an 
attenuation rate a of approximately 1 0 ~  ’ Np/m and a 
relative change in the real part of P,C$, of less than 10 ’. If 
we make the y substitution for ,jb$)& in (23) and (24) the 
relative changes in ISIldl and lSllhl in Figs. 4 and 5 are less 
than lop3 .  

The correction for finite wall conductivity can be inade 
in a similar manner for the coaxial line. Here the complex 
propagation constant, y = (Y + jb, of the TEM mode is 
approximately [12] 

where Z,. is again given by ((12). ‘IO account approxi- 
mately for the effects of finite wall conductivity, we can 
replace j k  in Section 1V by y as given by (C3). In most 
short line applications, the effect will be negligible. 
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