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Abstract

The obliquity, or angular separation between orbit normal and spin pole, is an important parameter for the geodynamics of most Solar
System bodies. Tidal dissipation has driven the obliquities of the Galilean satellites of Jupiter to small, but non-zero values. We present
estimates of the free and forced obliquities of these satellites using a simple secular variation model for the orbits, and spin pole precession
rate estimates based on gravity field parameters derived from Galileo spacecraft encounters. The free obliquity values are not well constrained
by observations, but are presumed to be very small. The forced obliquity variations depend only on the orbital variations and the spin pole
precession rate parameters, which are quite well known. These variations are large enough to influence spatial and temporal patterns of tidal
dissipation and tidal stress.
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1. Introduction lead to incorrect models of several important geodynamic
processes.

The Galilean satellites of Jupiter exhibit considerable ev-  As Will be demonstrated subsequently, it is impossible for
idence of the influence of tidal dissipation. One consequencethe obliquities to be identically zero since the orbit poles
of that process is that the spin poles of these bodies (lo, Eu-are inclined to the equator plane of Jupiter and are precess-
ropa, Ganymede, and Callisto) are nearly coincident with ing- If the obliquity were momentarily zero, the precessional
their respective orbit normals. In fact, most previous analy- forque would vanish and the spin pole would be unable to
ses have assumed these obliguities to be identically zero. Théollow the orbit pole. Further, it is not even possible for the
objective of the present investigation is to continue an exam- obhqume§ to be constant since the orbit precession occurs
ination into the question of the orientations of the spin poles &t non-uniform rates. If the spin poles were able to precess
of Galilean satellites, relative to their respective orbit poles. rapidly enough to track the motion of the orbit poles, then the

It is well known that the obliquities of these bodies are ©Pliquities could be quite small. However, the spin preces-
small, and for many purposes it is quite adequate to treatSion rates of the Galilean satellites, qther th_an lo, are _small
them as zero. However, there are still incentives to exam- compared to most of the rates associated with the orbit pre-
ine the situation further. First is that it is impossible for the ¢SS!0 and the obliquity variations are expected to be com-
obliquities to be identically zero, or even constant. Second pargblg to the varl_atl?ns in orbital inclination. T_hese orbital
is that finite obliquities will change the spatial and temporal inclinations to Jupiter's equator plane are all quite small, but

pattern, and the total amount, of tidal dissipation and tidal they. are mu_chllarger than th_e obl|qume§ which WOUId. re-
stress within these bodies. Ignoring these variations could sult if tidal dissipation had driven the spin to a generalized
Cassini state appropriate to a uniform precession of the orbit.

To the extent that the obliquities are non-zero, there will
E-mail address: bbills@igpp.ucsd.edu be interesting consequences for the spatial and temporal pat-
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terns of tidal stress and tidal dissipation within the bodies. obtained directly from the relationship
If the obliquity and orbital eccentricity are both zero, then o
the tide raising body will always be on the equator, and at €0S¢ =7 - 5. 3)

fixed distance. If the orbital eccentricity is non-zero, then  \ye can already anticipate that rapid variations in the orbit
the tidal amplitude will vary over the orbit, and the loca- normal will map directly into obliquity variations, since the
tion of maximum tidal displacement will librate in longitude. spin pole will not be able to respond quickly enough. Con-
If the obliquity is non-zero, then the sub-jovian point will  yersely, slow variations in the orbit pole will not contribute
also librate in latitude, and the patterns of dissipation and g obliquity oscillations since the spin pole can follow them.
stress from that motion will add to the contribution from The most interesting case is one in which the orbit pole and
longitudinal librations. The eccentric and oblique patterns of spin pole rates of precession are comparable, as it can lead
stress and dissipation will change relative phase as the orbit, resonant amplification of the spin pole motion. Our linear
precesses. This will lead to temporal changes in the global o|ytion for forced spin pole motion will make that resonant
average rate and spatial pattern of tidal stress and diSSipa-amp“fication effect quite clear.
tion. . . . The remainder of this paper is divided into 5 sections. In
The precession of the spin pole of a rotating body can gection2 we examine the torque balance for synchronously
be modeled by equating the rate of change of spin angu-rqtating triaxial bodies, and develop approximations to the
lar momentum to the applied gravitational torque. For a spin pole precession equation. In Sect®we estimate the

rapidly rotating body, this torqge ballance can b(_a written in  5te parameters which specify how fast the spin poles of
the form(Ward, 1973, 1992; Kinoshita, 1977; Bills, 1990; {he Galilean satellites will respond to a unit torque. In Sec-

Hilton, 1991) tion 4 we explore solutions to the spin precession equation
ds o o for the Galilean satellites, for a generic orbital model. In
di  (1—e2)32 (1 -5)( x n), (1) Section5 we develop a series of simple analytic models of

) ) _ _ the secular orbital evolution of the Galilean satellites, and
wheres andn are unit vectors along the spin pole and or-  {hen adopt the published modellgeske (1998Yor further
bit normal respectively, is the orbital eccentricity, and is analysis. In Sectiol we briefly summarize the results and
a scalar rate parameter which depends on the principal mo-yiscuss implications.

ments of inertiaA < B < C, the spin rater, and the orbital
mean motiom, via

3/C—(A+B)/2\n? 2. Precessional torque balance
o= \—F—"" )7 @)
N . — In this section we will examine the influence of rotation
The situation for a synchronous rotator differs significantly yate on spin pole precession. The most familiar form of the
if the_ orbital eccentricity and obliquity are I_arge. How_eve_r, precessional torque balance, as represented in(Egand
as will be shown below, when the eccentricity and obliquity () s only strictly valid in the case of a rapid rotator. In that
are small enough, the rapid rotator and synchronous rota-gjyation, the solar gravitational torque can be averaged over
tor forms of the precession equation converge. The Galilean,o spin period, holding the orbital position fixed, and then
satellites have small enough eccentricities and obliquities separately averaged over the orbit. For a resonant rotator

that the trajectories of_ their spin pole motion are well rep- departures from axial symmetry modify the torque balance,
resented by the equations above. and this must be properly accounted for. We will see, how-

In order to examine the obliquity variations of these four gy that the proper torque balance equation for the Galilean
satellites of Jupiter, we will need estimates of several quan- gag|jites can be written in a form which is quite similar to
tities. First, we need estimates of the spin precession rateya for a rapid rotator,

parametew for each of the bodies. Second, we need amodel 11,4 precession of the spin pole of a planet or satellite is

of how the orbit varies with time. Explicitly, we need repre- . 14aiaq by equating the change in spin angular momentum

sentations of the long period variations in eccentricity and  the applied torque. The instantaneous gravitational torque
orientation of the orbit normal. In order to obtain an explicit acting on a triaxial body, due to a distant point mass, can be
solution to the differential equation of spin precession, we \,itten in the form ' ’

need an initial condition on the spin pole. That would appear

to be the most challenging part of the analysis, from an ob- 7 —
servational perspective, in that present observations are not r
sufficiently accurate. However, we will see that the spin pole in which G is the gravitational constant;; is the source
trajectory can be written in a form which separates the in- mass,r is the distance from the rotator to the sourtés
fluence of initial conditions from the forced response of the the inertia tensor of the triaxial body, aids a unit vector
changing orbit. If dissipative effects are included, we obtain oriented toward the source, as seen from the center of the
a solution which has no long-term memory and thus does rotator. This formulation yields both short period torques,
not require any initial conditions. Finally, the obliquityis which give rise to nutations and librations, and long period

o

@ x1-0) (4)
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torques which cause the precession we are mainly interested 1 N\ _
in. For recent discussions of the short period effectsydee S “lel = o / <;) sin(gf) sin(j M) dM. 12)
et al. (2001)andWilliams et al. (2001) 0

If the triaxial body and point source are in a binary or- The evaluation of these integrals, though rather tedious for

bit, 'and th? torques are averaged over the rotation penod andCaery, is now readily implemented via recurrence relations
orbital period of the body, we can write the precession equa- (Hughes, 1981; Vakhidov, 2001)

tion in the form
ds 3(n? . A A
——<;>(a*(n~s)+,3 )(s X 1), (5)

If the rotation angle of the axis of least inertia of the tri-
axial body is
dr 2
wheren ands are unit vectors along the orbit pole and spin
pole, respectively; ando are the angular rates of mean or- i ! : ,
bital motion and rotation of the triaxial body, amdt and  the orbiton the equator plane at perlapsg,olarsﬂa hgl;‘ijnte-
B* are functions of the orbital eccentricigyand the princi- ~ 9€F th_e3”2‘};"e will need three coefficienty:™ "[e], Cy, " [e],
pal moments of inerti@A < B < C). The particular forms ~ @nd Sz, “[e]. The first of these has a simple closed-form
taken by the dimensionless parametersainds* dependon ~ €XPression
the relative rates of rotational and orbital motion, a pointto ,_ —3/2
which we will return momentarily. P Co el = (1 B 82) ~ (14)
Several features of this formulation deserve comment. The others are given in terms of Taylor series expansions,

All but the terms within the first set of parentheses are di- with different forms for each value of the spin—orbit rate ra-
mensionless. The direction of the precessional motion is tio b.

s=t+bM, (13)

wherer is the angle, measured from the ascending node of

dependent only on the two unit vectorsands, and is per- The most familiar form of the precessional equation is
pendicular to both of them, due to the 7 term. The orbital that which is applicable to rapid rotators, such as Earth or
mean motiom: is related to source strengtfm; and orbital Mars. In that case, the torques can be averaged over the spin
semimajor axis: via Kepler’s third law period, holding the orbital position fixed, and then separately

averaged over the orbital position angle. In that case the di-

32 _
a’n”=Gms(1+v), 6) mensionless parameter$ andg* are given by

where the mass ratio is

3
o= JoCy el = o[ 1+ 22 +--- ), 15
Lom @) atc=Jolo " lel = Jo{ 1+ e + (15)
and m is the mass of the rotator. For small mass ratios ) ) o
(v < 1) we can make the approximation whereJ; is the degree two zonal harmonic coefficient of the
gravitational potential of the rotator, which is related to the
G";S —5n2 8) principal momentsA, B, C), massn and mean radiug of

a

the body via
which was employed in writing E@5).
: , : ) A+B
In averaging the torques, we need to write functions ofor- jobmR=C — | —— |, a7
bital radiusr and orbital true anomaly in terms of orbital 2
mean anomaly/, which varies linearly with time. A conve-  andc is the dimensionless polar moment of inertia
nient format for such expansions was introducedayley

(1861) He tabulated expansion coefficients for functions of = Lz (18)
the form mR
» o For a synchronous rotator, in whiéh= 1, the torque av-
(i) cosqf) = ch_’,q[e] cos(j M), (9) eraging is still a simple calculation, but is somewhat more
a ‘2o / tedious. After adjusting the phase anglso that the mean
» o torque about the spin axis vanishes (in order to maintain syn-
r i — P4 in(i chronous rotation), the result can be written as
(a) sin(qf) —ZSj [e]sin(j M), (10) )
j=0 a*c = JoCy > Ole] + C2.2C5 *?el, (19)
. -~ g
where p andq. are mteggrs, and th.e .coefﬂa.er.ﬂ; and Bc = —C2,202_3’2[e], (20)
SP1 are functions of orbital eccentriciy, Explicitly, those ) ] o
C(J)efficients are given by the integrals whereCs  is a harmonic coefficient of degree two and order

two in the potential of the rotator, and is given by

2
1 r\” . B—A

c}”"f[g] = Z/(E) coggqf)cosjM)dM, (12) CZ’ZmRzz (T) (21)

0
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Note that the rapid rotator has no term proportional to the which they are estimated was given above, in Eq. It
difference in equatorial moments, as the spin averaging isdepends on the orbital mean motianwhich is very well
equivalent to settingl = B. If we truncate the Cayley coef- known, and on the differenc€ — (A + B)/2 between the
ficient expansions at second degree in eccentricity, we havepolar moment and the average of the two equatorial mo-

for the synchronous case ments of inertia, which are not nearly as well known. We
3 5 first comment on how the current the moment estimates were

a¥c= Jz<1+ —e2> + C2,2<1 — —e2>, (22) obtained, and then produce estimates of the spin rate para-
2 2 meters, with corresponding error estimates.

Bc = —C2,2<1 -~ _ez) (23) The degree two c'ompone.r)t of the gravngnonal potential

of a satellite, at a point specified by raditidatituded, and
If the obliquity is small enough that longitude¢, can be written in the form

A A GM .

n-§x=1 (24) 2= r—3(—12P2,0[M] + (C2,1€08p + S215iNg) P2 1[114]

then the precession formula can be written as + (C2,2C0S 2 + S22 SN 2p) P2 o[ 1]), (32)

ds 3 n_z Ole] 6 x A) (25) whereG is the gravitational constan#/ is the mass of the

dr ~ 2\ o ellsxn body, latitudinal position is parameterized by

with w=sing (33)

QOlel = (@ + B%). (26) and P[] is an associated Legendre function of degree

[ and ordernn. Alternatively, the quadrupole component of

We will see below that this small angle approximation is ver . . . -
J'e app y the potential can be written, via MacCullagh’s formula, in

well justified for the Galilean satellites.

If the Taylor series expansion in orbital eccentricitys the form
i 3G

truncated at degree two, we can write By = > r_3(J — D, (34)
ds A S
- = (ot + @26?) (5 x ). (27) where the mean moment of inertia is
The rapid rotator version of this formula can be written with 7 — % (35)
op = g’(ﬁ) <ﬁ)n (28) and the moment of inertid about an axis along the unit

2\ ¢ /)\o vectoru is

9/ 3
ay == <_2> <Z)n = . (29) N A 0 O A

a\ ¢ J\o 2 J=a'"-{0 B 0])-a (36)
The corresponding form for synchronous rotators, with 0 0 C
o=n,is and the unit vector itself is
ap= g(£>” (30) (0, ¢) = {cosh cosp, cosd sing, sind}’. (37)

Cc

9/ There are 5 spherical harmonic coefficients and 6 indepen-
o= - (—)n (31) dent terms in the inertia tensor.
4\ c Estimates of the degree two gravity fields of the Galilean
We thus see that, keeping only terms of first order in satellites have been obtained from the perturbations expe-
obliquity and second order in eccentricity, the resonant ro- rienced by the Galileo spacecraft during numerous close
tator and rapid rotator versions of the precession equationencountergAnderson et al., 1996a, 1996b, 1998a, 1998b)
are virtually identical in form. Analyses of the dynami- It is difficult to estimate the full degree two gravity field
cal evolution of the Moon or other resonant rotators into from these incomplete samples of the surface field, but the
low obliquity configurations(Ward, 1975a; Peale, 1969; situation has beenimproved by the insi¢tibbard and An-
Jankowski et al., 1989; Gladman et al., 19869 obligated derson, 1978bhat the expected degree two components will
to consider the higher order terms, but for treatment of the be dominated by tidal deformation and will have a relatively
present situation, this simpler form is quite adequate. simple spatial pattern.
The expected pattern is that the potential will be a su-
perposition of a linear response to the rotational potential,
3. Spin precession rates which is symmetric about the rotation axis, and a linear re-
sponse to the tidal potential, which is symmetric about the
In this section we estimate the spin pole precession ratemean satellite-primary line. As a result of this assumed sym-
parameterse for the Galilean satellites. The formula from metry, only two of the five spherical harmonic coefficients
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of degree two will be non-zero, and they will be linearly re- Written this way, the factor in parentheses will be nearly the

lated. That is, we expect to find same for all of the Galilean satellites, and the spin pole pre-
10 cession rate will be proportional &, or from Kepler’s third
Jo=—=Cz2 (38) law, proportional ta:~%/2. The rate of spin precession for the
3 close satellites will be much greater than for the distant ones.
and Table 1contains values of the relevant input parameters
Cop= ﬁ q (39) and estimates of the resulting spin pole precession rate pa-
' 47 rameters for each of the Galilean satellites. Note that the

where k, is the proportionality constant, or secular Love relative accuracy of the spin precession rate of lo is roughly
number, and; is a parameter which characterizes the rel- 0-5% and all the others are roughly 5%. This is due to the
ative strength of the rotational tendency for oblate mass dis- better relative accuracy of the gravity field parameters of lo,
tribution versus the gravitational tendency toward spherical Which is mainly a result of larger departures from spherical
symmetry. For a body with magd, radiusR, and rotation symmetry.

rateo, that ratio is

23
q= o°R . (40) 4. Spinresponseto orbit variations
GM
Using this template, the solution algorithm effectively re-  In this section we explore the response of the spin poles

duces the gravity field to 2 unknown parameters, the total of the Galilean satellites to generic variations in orbital pa-
mass of the satellite and the scale factprfor the degree  rameters. Specifically, we note that the orbital eccentricities

two pattern. Estimates of the polar moment of inertia are are all quite smalie < 0.01) and that the spin pole evolution
also obtained, under the assumption of hydrostatic balancedepends on eccentricity only via a term
from the Darwin—Radau relation

c 2 2 (1—e?) %% =1+43/2%+5/8*+ . (45)
- As
= WYrR2™3 (l - g\/ 1+ ks ) (41) We Wi.|| thus ignor(_e eccentri_city in our furt-her-analysis. The
. ~ most important driver of spin pole evolution is the rate and
For a homogeneous fluid body, the secular Love number is amplitude of variations in orientation of the orbit normal.
ks = 3/2 and the normalized polar momentis= 2/5. The torque from Jupiter causes the spin poles of the Galilean

In terms of the spherical harmonic coefficients of the po- satellites to precess about their instantaneous orbit normals.
tential, we can now write the spin pole precession rate para-|f the orbit normals were fixed in orientation, the spin pole

meter as trajectories would just be circular cones centered on the re-
_3( ]2 42 spective orbit poles. However, as the orbit poles themselves
“=3 ¢ n (42) precess, the spin pole trajectories become more convoluted.

: : . For now, we consider generic variation in the orientation
We note that this parameter is expected to be a rapidly de- . : :
of the orbit normal, and examine how the spin pole responds.

creasing function of distance from Jupiter. As written above . . . .
. : The simplest approach to constructing spin pole trajecto-
it appears to have only a linear dependence on mean mo-

. . : : ries would appear to be direct numerical integration of the
tion n. However, if we combine the expected tidal values of : . - "

o equations of motion. In that case, initial conditions would
the other parameters, we can rewrite it in the form

be required. However, since the present spin pole positions
_A5(5+ 20k \ 5 (43) of the Galilean satellites are not well determined, other than
~ 64 7Gp e to indicate that they nearly coincide with their respective or-

where we have expressed the satellite mass in terms of radiu% 'trf]zlf(félthr:fepr;f%:tfoa tcehallgng:. Ig \;]Vsevﬁgegoaﬂ:ﬁgﬁéhe
R and mean density, and have written the secular Love umerical integratl ute, we wou xami w

number in terms of departure from the homogeneous value the derived trajectories yaned as the initial conditions were
allowed to span a plausible range of values.

o

ke — § 4k (44) More insight can be obtained by constructing a first order
T2 * analytic model for the spin precession. It will not yield as

Table 1

Spin precession rate parameters

Body n (deg/day) Jo (1079) C/MR? o (deg/day)

lo 20348895 1840+4.2 0.3769+ 0.0004 1495+ 0.005

Europa 10137472 43%+48.2 0.346+0.002 (1.91+0.05 x 101

Ganymede 5317608 127%442.7 0.311+0.003 (3.09+0.05) x 102

Callisto 21571071 327/+0.8 0.355+0.004 (3.08+0.11) x 10~3
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accurate a representation of the high frequency variations asThe second of the terms in square brackets in the original
could be obtained by numerical integration, but it does relax equation for forced response is removed by dissipation. To
our requirement for precise initial conditions. Similar lin- obtain this expression, we allow a finite valuefftake the
ear analyses of spin pole precession have been constructedmit ass — oo, and then sef back to zero. Itis evident that
previously, in the context of studying obliquity variations of the orbit pole and spin pole trajectories are characterized by
the Earth(Miskovitch, 1931; Sharaf and Boudnikova, 1967; identical frequencies and phases, but different amplitudes.
Vernekar, 1972; Berger, 1976Mars (Ward, 1973, 1992) This solution can be viewed as a rough generalization
and VenugWard and deCampli, 1979; Yoder, 1979, 1995, of the Cassini state for the case of non-uniform orbit pre-
1997) cession. In the case of a single orbit precession frequency,
The first step in that process is to represent the unit vec- the expected end-state for dissipative spin evolution is a spe-
torss andn, which point along the spin pole and orbit pole, cial situation in which the obliquity has adjusted to a value
in terms of complex scalars and N, by projecting each of  at which the system maintains a constant relative geome-
them onto the invariable plane. In the present context, thattry. That is, the spin pole and orbit pole remain co-planar
will be approximated by Jupiter’s equator plane. That is, we with the invariable pole as the spin pole precesses about
are ignoring the slow precession of Jupiter’s spin pole, since the orbit pole and the orbit pole precesses about the in-

it is much slower than the Galilean satellite precession rates.
If we also ignore the variations in satellite orbital eccentric-
ity values, the governing equation for spin pole precession
can now be written in the simple linear form

dt
If the orbit pole evolution is represented via the series

NI =Y njexpi(fit + )]
j

—ia(N — S). (46)

(47)
then the corresponding solution for the spin pole can be writ-
ten simply as

S[t] = Stree + Storced (48)

where the free pole motion, which depends only on the initial
condition is

Stree = S[0] expliat) (49)
and the forced motion is
Storced= Y _ s;[explifjt] — expliat]] expliy;] (50)
J
with amplitudes given by
o
Sj=<a+fi>nj. (51)

Each term in the series describing the orbit pole has a cor-

responding term in the forced spin pole series. The spin rate

parametet is positive, and all of the orbit pole ratgs are
negative. If one of the sums+ f; is close to zero, then the
corresponding amplitude in the spin trajectory will be am-
plified.

Dissipation can be easily introduced by simply making
the spin precession parameter comptex:> o + i8. When
included this way, the dissipation completely damps the
free term and somewhat modifies the forced terms. Assum-
ing that the damping term is small, the resulting model for
damped forced spin evolution takes the form

S[t1=")_s;(explif;t]) expliy;]. (52)
j

variable pole(Colombo, 1966; Peale, 1969; Ward, 1975b;
Henrard and Murigande, 1987)

If the orbit pole precession is not steady, no such coplanar
configuration is attainable. However, the motions of the orbit
and spin poles can achieve a mode-by-mode equivalent of
the Cassini state. The solution above is such that each mode
of the orbit pole precession, with amplitude, rate f;, and
phasey;, has a corresponding mode of spin pole precession
with rate and phase identical to the orbit mode values, and
with an amplitude proportional to the orbit amplitude. The
constant of proportionality is just the ratig'(« + f;) of the
spin precession rate to the relative spin—orbit precession rate.

Since the series representing the orbit pole and spin pole
are similar in form, itis not surprising that angular separation
between spin pole and orbit pole has a simple expression

AS[t]=S[t]— N[t] =Y _ Asjexdi(fjt +v))].

J

(53)

The amplitude of each term is just the difference in ampli-
tudes of the spin and orbit solutions:
o —fj

Boj=0j =i = <a+f,- _l)"f <a+f,>”f' 9

The magnitude of the phasor generated this way is the oblig-
uity. It has the same frequencies as the orbital inclination,
but different amplitudes.

The spectral admittance, or ratio of obliquity to inclina-
tion, at frequencyf is just
As —f

n o oa+f’
Written this way, it is clear that if any of the forcing frequen-
cies are close te-«, the corresponding obliquity amplitude
will be large due to resonant amplification. It incorrectly
implies an infinite response at the resonant frequency. To
properly model the behavior in the immediate vicinity of
the resonance a finite dissipation term needs to be retained.
However, it will emerge that the present configuration of the
Galilean satellites is such that none of the orbital periods are
close enough to the spin precession periods to cause any dif-
ficulties with the linear theory.

(55)
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5. Secular orbit model Table 2
Jupiter’s contribution to nodal and apsidal rates
In this section we develop a simple model of the secular Body a (km) dw/di (degday  ds2/dt (deg/day
variations in the orbital parameters of the Galilean satellites. lo 421761 14626x 101 —1.4336x 1071
In a previous section we saw that the spin pole precessionEuropa 671044 B783x 102 ~2.8213x 1072
Ganymede 1070370  .G151x 1073 —5.5039% 1073

rate parameters range fromx3L0~3 to 1.5 degrees per day.

This implies that any orbital variations which occur at sub-

stantially higher rates will not influence the spin pole and

will contribute directly to the obliquity variations. Our pri-  5.1. Jupiter oblateness

mary interest here is in developing a simple orbital model

which captures the essence of the variations which occur on  The influence of the oblate figure of Jupiter on the orbits

time scales comparable to the spin precession rate, as thosef the satellites is quite simple to model. If we consider the

most significantly influence obliquity. first two even zonal harmonics of Jupitely and Js, their
Mutual interactions between the satellites lead to very contribution to orbital evolution can be approximated by the

high frequency perturbations in their orbits, with some rather expressiongGreenberg, 1981)

Callisto 1882600 77815x 10~4 —7.6274x 1074

significant oscillations occurring with periods of only a few ;- 3 5 9, 15 .

days(Musotto et al., 2002; Lieske, 1998; Sampson, 1921) —— = +n<§J2§_ - (é J5+ ZJ4>§_ ) (56)
These we will completely ignore. On time scales of several

years, the distance and direction from Jupiter to the Sun and?$? = _n<§J2§—2 — (2_7J2 + E’h)g—‘l) (57)
Saturn vary, and this will influence the satellite orbits. On  d? 2 872" 4 ’

very long time scales, the orbit of Jupiter varies and the equa-where
tor plane of Jupiter precesses. Both of these processes are 4
important for a general model of the satellite orbits but will ¢ = R (58)

be neglected in the present analysis, as they will contribute . _ o i _ .
very little to obliquity variations. is the orbital semimajor axis normalized by the radius of

The orbital motion of an isolated pair of spherically sym- JUPitér. The nodal lines of the orbits regregsz/dr < 0)
metric bodies is very simple. Each of them follows a Kep- and the apsidal lines advantéw /dr < 0). The rates are
lerian ellipse about their center of mass, and the trajectoriesvfary S_'m"?“r but the _nodal and ap3|da! mojtlons are in oppo-
can be described by 6 parametes:e, I, 2, @, M}, with site directions. At this level of approximation, all the other

5 of them constant, and one of thé#) changing at a con- orbital elements remain unchanged. As estimates for the
stant rate. In this n,otatiorazq is the semimajor axis; is the zonal coefficients and radius of Jupiter, we use the values

eccentricity,/ is the inclination,$2 is the longitude of the (Lieske, 1998)
node,w is the longitude of periapse, and is the mean R; = 71420 km
anomaly. The situation for the G_alllean satelllftes iS much J,— 1.48485x 10°2.
more complex. Each of them receives perturbations from the A
non-spherical mass distribution of Jupiter, the presence of Ja= —8.107x 107". (59)
the other satellites, and the distant effects from the Sun andyjgie that, in this situation, the mean motioand semimajor

other planets. Even in a perturbed orbit, we can still repre- 4y 4 are no longer functions only of the Jupiter monopole
sent the instantaneous position and velocity in terms of the 6 yoment, via Kepler's third law. Instead, they are related via
orbital elements, but rather than have 5 of them constant, all

of them will vary somewhat. We seek orbital models which 2 _ 19%s _ Gmy <1+ ;,2; 2 _ 1§5J4§ —4)’ (60)

represent variations in the orbital parameter pgirgo } and a or a8
{1, £2} which take place on time scales long compared to the where9, is the gravitational potential of Jupiter. This makes
unperturbed orbital period. relatively small changes in the semimajor axes. It amounts to

In order to develop an accurate model of the slow or- of a few parts in 1 at lo and parts in 10for the others.

bital variations, we would need to consider 4 primary con-  The resulting apsidal and nodal rates, due to the figure of
tributions. First is the contribution from the oblate figure of Jupiter alone, are listed ifable 2 If the oblateness contri-
Jupiter. Second is the secular interactions between the orbitsputions were dominant, then the satellite orbits would pre-
in which each body is replaced by a hoop of mass obtainedcess at uniform rates, and it would be reasonable to expect
via the time averaged position of the unperturbed orbital mo- the satellite spin poles to have been driven to Cassini states
tion. Third is the influence of solar torques. Fourth is the (Colombo, 1966; Peale, 1969; Ward, 1975bhich means
resonant interaction between the pairs of satellites. Therethat they would precess about their respective orbit poles in
are 2:1 mean motion resonances between lo—Europa, anduch a way as to remain coplanar with the orbit pole and the
Europa—Ganymede, and a 7:3 mean motion resonance bespin pole of Jupiter. That was the basic assumption of the
tween Ganymede and Callisto. analysis byBills and Ray (200Q)However, as we will see
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nj mip

in the next section, mutual perturbations between pairs of A jy = —— ————0; Tjkb[3/2, 2; 0], (67)
satellites make the orbital motions rather unsteady. 4 me+m;
and

5.2. Mutual orbit perturbations .

P Bjjz_nsz#ajkfjkb[s/z» 1; ojkl, (68)

In this section we consider the secular orbital perturba- ktj e

tions due to pair-wise interactions between the satellites. For p Y= nj o mg ointinbl3/2,2: o ikl (69)
the secular variation analysis, the satellites are no longer ’ 4dme+m; " TR

treated as isolated point masses, but are instead average\qlhere the masses of the satellites
over their unperturbed orbital trajectories. We thus consider
the response of gravitating and rotating mass hoops to their
respective torques. In order to obtain a representation of the
coupled behavior of this system, we first write a set of differ- [ ax/a; if a; > a,
ential equations which reflect the perturbations each satellite®/* = { aj/a; otherwise
experiences from its neighbors, and then solve this systemand
of equations.

It would, of course, be possible to obtain solutions via = { 1 ifa; > ay, (71)

arge and the mass of
the central body ig:.. The ratios of the semimajor axes are
expressed viédDermott and Nicholson, 1986)

(70)

numerical integration of the averaged equations of motion. i* aj/ar otherwise

However, itis much more instructive to obtain a simple ana- 1o | apjace coefficients are defined by the relationship
Iytic solution. If the perturbations are restricted to pair-wise

interactions, and the expansion is limited to first order terms 1 2t cosro

in the masses of the perturbing bodies, it is quite simple to Zp[s, r; x]= — 5—dg, (72)
obtain a solution in which the eccentricity and inclination 2r A (1—2xcosp +x%)°

oscillations are decoupled. In that solution, we will estimate ) )

the normal modes of oscillation of the coupled perturbations. Wheres is a half integer. _ .
There will be as many modes in the solution as there are [N térms of the disturbing functio®;, the perturbation
satellites. The frequencies of oscillation depend only on the €duations for satellitg can be written as

masses and semimajor axes of the interacting bodies. Thegp; 1 R, dh; 1 R
amplitudes and phases of the oscillations are set by the ini-~;,~ = +ﬁm’ a2 an (73)
i L njas; oKj t njas on;
tial conditions. J J
It will be convenient to use a new set of variables to de- 4Pj _ Lt IR dgj _ 1 R, (74)
scribe the orbits. For each satellitewe define: dt njajz- aq;’ drt nja;’.- ap;
hj=ejsinw;, The solutions to these differential equations are readily ob-
k; = ej cosw), 61) tained as a superposition of normal modes
4
and .
hj(t) = Zeji sin(git + vi),
ijIjSin.Qj, i=1
q;=1;c082;. (62) 4
L : , k=) ejicosgit +¥), (75)
In terms of these variables, the secular part of the disturbing a
function can be written afDermott and Nicholson, 1986; nd
Murray and Dermott, 1999) a
4
2 .
Rj:njaj(Aj+Bj)s (63) pj(t)=an,~Sln(f,-t+ga,-),
where A and B are separate matrices which account for the i=1
eccentricity and inclination effects, respectively. They have 4
explicit forms qj(t) =" njicod fit + ;). (76)
i=1
1 4
Aj= 54 (A% +K2) + Aji(hjhy + kjke). (64) As written here, the indey identifies the satellite and the
1 indexi corresponds to the mode of oscillation. The frequen-
Bj= EBjj (P,Z + qu) + Bjr(pjpx +q;qk) (65) ciesg; and f; are eigenvalues of the matrice$ and 3,

respectively. Likewise, the amplitudeg; andn; are cor-

responding eigenvectors. The phageandy;, and suitable

Ajj= Z/ Z — o jktjkb[3/2, 1; 0], (66) scaling of the eigenvectors are all determined from the initial
ks J

and the individual matrix elements are

conditions.

c
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Table 3 solar torque is a relatively small perturbation to the effects
Orbital frequencies without oblateness already considered, but it is easy to incorporate. In the spirit
Mode fi (deg/day) gi (deg/day) of secular perturbation analysis, we consider the Sun to be a
1 —0396x 10-3 8.725x 10-3 nearly circular ring of mass lying in Jupiter’s orbit plane. Itis

2 —3.365x 1073 3.156x 1073 thus equidistant from each of the satellites, on average, and
3 —-1.335x 1073 1.584x 103 is nearly, but not quite, in the reference equatorial plane. The
4 0 6298x 104 secular effect of the solar torque is thus very similar to that

of the oblate figure of Jupiter, but with two minor changes.
The main similarity is that both torques cause the satellite

Table 4 bit nodal lines t d apsidal lines to ad
Orbital frequencies with oblateness orbit nodal lines to regress and apsidal lines to advance.

The differences are related to the distance and direction of
Mode f; (deg/day) gi (deg/day)

. 1 the source of torque. The average distance to the Sun is the
1 —1.34001x 10~ 1.34043x 10 same for all the satellites, so that the solar effect on each of

_ -2 2 . e .
g _2'32232 18_3 2‘3212‘7‘?( ig_s them is rather similar, in marked contrast to the influence of
4 _156144% 10-3 1.62174% 10-3 Jupiter’s oblate figure. The solar torque, acting alone, would

make the satellite orbit poles precess about Jupiter’s orbit
pole, whereas the oblate figure of Jupiter would make them
Table 3lists the eigenvalues for the Galilean satellite sys- precess about Jupiter’s spin pole.
tem secular variation model. On very long time scalesX10* years), the eccentricity
Note that in this solution, as in the case of oblateness per-and inclination of Jupiter’s orbit both change due to inter-
turbations alone, the nodal lines regrégs < 0) and the action with the other planets. On even longer time scales,
apsidal lines advancag; > 0). However, for the inclination  the orientation of Jupiter’s spin pole also changes due to so-
solution, one of the frequencies is zero. This corresponds tolar torques. In that process, the solar torques on the satellite
the fact that, in the absence of oblateness effects from theorbits play an important role, as they provide a long lever
central body, there is a degeneracy in that the choice of aarm for the solar torque, and they are quite firmly coupled
reference plane for the orbital inclinations is arbitrary. to the equator of Jupiter. We will ignore those long period
Comparing these rates with those from the oblate fig- effects, and use the present values of obliquity and eccen-
ure of Jupiter, is it clear that the oblateness effect cannottricity. However, it is worth noting that changes in those
be ignored. It is a simple matter to include the secular parameters will influence the satellite orbits and spin trajec-
effects of an oblate primary and the mutual orbital per- tories on very long time scales.
turbations of the satellites. In fact, all that is required is In the absence of other effects, the solar torques would
adding some extra terms to the diagonals of the mattices make the orbit planes precess at rates which are given by
andB. The extra terms ar@Dermott and Nicholson, 1986; ;0. g

Malhotra et al., 1989; Murray and Dermott, 1999) I (79)
1
1 3 9 15 i
AAj = +§n§aj2~<§J2§j2 - (5 2+ ZJ4>{].4)65, (77y  With .
1 3 7 15 H=": (—) cose; =5.1958x 1072 (deg/day)®, (80)
22 2 2 4 4\ p3
ABj:—Enjaj(é.IZCj _<§J2+ZJ4>§]' ) J
whereM; is the solar mass,; is Jupiter’s obliquity, and the
x Sirt 1. (78) semiminor axish,; of Jupiter’s heliocentric orbit is related to

With those additions, the orbital frequencies are quite differ- the eccentricity and semimajor axi via

ent, as may be seen Table 4 b2 = a2(1 - 62). (81)

Note that the modal frequencies are now close to the apsi- I :
dal and nodal precession rates computed initially for the four The nodal rate contributions, computed this way, for the Gal-
ilean satellites are-{33.45, -67.16, —1353, and—3156}

satellites, using the oblateness of Jupiter alone. However, .
S . ._'arcsegyear, for lo, Europa, Ganymede, and Callisto, respec-
these are not individual satellite responses, but frequencies

- . tively. The corresponding apsidal rate contributions from so-
of the coupled modes of oscillation of the entire system. lar toraues have the same maanitude but opposite sian
Note also that the oblateness of Jupiter has removed the q 9 P 9

degeneracy of the inclination system, as there is now a pre-d@i _ d$; 82)
ferred orientation of the orbit planes. dt dt

To properly include these effects, we add the solar torque
5.3. Solar torques contributions to the diagonals of the matricdsand 5, in

much the same way as the oblateness effect of Jupiter was
In this section we consider the influence of solar torques dealt with. The resulting nodal and apsidal rates are listed in
on the orbital motions of the Galilean satellite system. The Table 5
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Table 5 Table 6

Orbital frequencies with solar torque Orbital frequencies frorhieske (1998)

Mode fi (deg/day) gi (deg/day) Mode fi (deg/day) gi (deg/day)

1 —1.34029x 1071 1.34071x 101 1 —1.32806x 1071 1.61023x 10~1
2 —3.32623x 1072 3.32413x 102 2 —3.26154x 102 4.64564x 102
3 —7.04153x 1073 7.04831x 103 3 —7.17678x 1073 7.12408x 103
4 —1.79897x 10~3 1.86081x 10~3 4 —1.76018x 10~3 1.83939x 103
5.4. Resonant interactions on the secular systenvi@lhotra et al., 1989Apostolos and

Dermott, 1997, 1999). The primary effect is a change in the

In this section we briefly consider the influence of mean frequencies of the apsidal oscillations. Since our primary ob-
motion resonances in the Galilean satellite system on thejective, at present, is to obtain a simple representation of the
orbital motion. Resonances can profoundly influence the dy- motions of the orbit pole, at frequencies which will influence
namics of orbital systems, and the Galilean satellites are thethe satellite spin poles, we can safely neglect these resonant
best known example of such a situation. Despite that cir- effects.
cumstance, we will argue that the mean motion resonances, One way to assess the error incurred by our neglect of
important as they are for understanding the variations of ec-resonances is to compare the current orbit model with a
centricity and periapse, can be ignored in developing a sim- model which does include resonances. The most accurate
ple representation of the inclinations and nodes. analytic model of the Galilean satellite system, at present,

The mean motions of the inner three Galilean satellites is that of Lieske (1998) It is based on the extensive de-
very nearly correspond to successive ratios of 2:1. The actualvelopment bySampson (1921)and includes a very wide

values are range of time scales, including perturbations from the Sun
and Saturn, precession of the Jupiter equator plaaee 6

n1 — 2nz = 0.739506 degday, lists the frequencies from Lieske’s model that correspond

na — 2n3 = 0.739506 degday, (83) to the secular analysis developed above. A comparison be-

tween them and the values listedTiable 5reveals that the
inclination frequencieg; are quite close, but that the eccen-
(n1— 2np) — (np — 2n3) =n1 — 3nz + 2n3 = 0. (84) tricity frequenciesg; in the two models are rather different,

) ) ) ) _ with Lieske’s values consistently larger.
The corresponding mean longitudes satisfy the relationship

(Lieske, 1998) 5.5. Synthetic secular model

or

A1 —3k2 — 203 =180+ 0.064 sin(ﬁ). (85) In this section we abandon our attempt to develop a sec-
Y ular variation model ab initio, and simply extract the low
That is, the mean value is 18@and the angle librates with a frequency components from an existing analytic model. In
small amplitude and rather long period. The small amplitude the previous several sections we have made successive ap-
of librationis clearly related to tidal dissipation in the system proximations to the actual behavior of the Galilean satellite
(Peale et al., 1979; Yoder and Peale, 1981; Malhotra, 1991)system, and have achieved fair agreement with established
though exactly how the dissipation in Jupiter is balanced theories, at least in terms of the inclinations and nodes. The
against dissipation in the satellites remains controversial nerformance of the eccentricities and periapses is apprecia-
(Greenberg, 1987; Goldstein and Jacobs, 1995; Aksnes anghly worse. As the spin pole behavior depends more strongly
Franklin, 2001; loannou and Lindzen, 1993a, 1993b, 1994; gn the parametef ands2 than one andz, it might appear

Peale and Lee, 2002) that we are close to success in that regard. However, the ef-
In addition, there is also a near resonance betweenfort required to include the resonant terms, and thereby gain
Ganymede and Callist@.ieske, 1973) full agreement, is not warranted at present.

The primary objective of the current effort is to examine
3n3 — Tna = —0.04467 degday, the behF;vior ())/f thje spin poles of these bodies, and an ac-
Though this is a fourth order resonance, the commensurabil-curate orbital model already exists. We will simply extract
ity is close enough that it too has significant influence on the the low frequency part of the Galilean satellite ephemeris of
orbits. Lieske (1998)with constants due térlot (1982), as given

A proper treatment of the secular dynamics of a system by Rohde and Sinclair (1992Yhat process is not quite as
with resonances is rather complicated. The averaging in- simple as it might sound, for at least two reasons. First is
volved in the standard derivation of the secular disturbing that Lieske, following the earlier work ddampson (1921)
function explicitly assumes that the orbital mean motions are represents the orbits in a cylindrical coordinate system, and
not commensurate. Several recent analyses have considereghat we require are amplitudes, frequencies and phases for
the influence of near commensurabilities in mean motion a Poisson series representation of the slow variations in the
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Fig. 1. (a) Inclination spectrum for lo. (b) Inclination spectrum for Europa. (c) Inclination spectrum for Ganymede. (d) Inclination spectrdiistfmr Ca

Keplerian element pairél, £2) and (e, w). Second is that  each of the bodies, the dominant line in the inclination spec-
the analytic formulation of Lieske’s model involves not just trum is at the corresponding secular frequerfgySome of
trigonometric functions of time, but trigonometric functions the other important lines are also at secular frequencies, but
of trigonometric functions of time. many of them correspond to general terms in the disturbing
The approach we use is similar to that employed by function. The inclination spectra are very nearly symmetric
Carpino et al. (1987Nobili et al. (1989)in extracting syn- in frequency about the dominant line.
thetic secular variation models from the results of numerical ~ Figure 2illustrates the obliquity spectra of the Galilean
integration. The first step is to generate a list of Cartesian satellites, obtained from the inclination spectra via the linear

state vectorsx, y, z; dx/dt,dy/dt,dz/dr) for each satel-  mapping of Eq.(54). In contrast to the inclination spec-
lite from Lieske’s model. We used a time span of 6000 years, tra, which are quite symmetric, the obliquity spectra exhibit
centered on the epoch of the ephemedid = 34430005), larger amplitudes near the frequency at which resonant am-

with 0.25 year sampling. Next, each of these Cartesian stateplification occurs.
vectors is converted to a corresponding list of osculating Ke-  Figure 3shows time series of the variations in the scalar
plerian element$a, M, e, w, I, $2}. Finally, we estimate the  quantities! ande, for each of the satellites. The time spans
amplitudes corresponding to each of the fundamental fre- illustrated are different for each satellite since the dominant
guencies in a Poisson series representations of the coordifrequencies decrease with increasing distance from Jupiter.
nates{h, k} and{p, q}. Note that for lo and Europa, the obliquity values are consid-
In a linear secular variation theory, there are as many fre- erably smaller than the inclination values. In both of these
quencies as satellites. In higher order theories, many morecases, the inclinations are nearly constadtl(+ 0.73) x
frequencies appear. What had appeared to be isolated spect0~2 degree for lo, an@4.68+ 0.23) x 10~ ! degree for Eu-
tral lines, in the lowest order theory, now emerge as denseropa) and the spin pole precession rate parametsiarge
forests of multiply split lines. However, most of the side- enough that the spin pole can easily keep pace with most of
band spacings are expected to be low order integer linearthe motions of the orbit pole. As as a result, the obliquity
combinations of the frequencies which emerge in the linear values are small and nearly consta@ @5+ 0.76) x 103
theory. degree for 1o, and9.65+ 0.69) x 102 degree for Europa).
Figure lillustrates the inclination spectra of the Galilean For Ganymede and Callisto, the situation is somewhat
satellites, as depicted in the model lakske (1998) For more complex. For Ganymede, the range of inclination val-
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ues is quite larg€2.04+0.74) x 10! degree and the oblig-  rates are fast enough that the obliquity variations are rather
uity values cover nearly an equal spdrb5+ 0.65) x 1071 smaller than the inclination variations. For Ganymede and
degree, though with higher mean frequency of oscillation Callisto, the obliquity variations are actually comparable to

in obliquity than in inclination. The most extreme case is the inclination variations.

Callisto, where the inclination oscillates from 0°16 0.70° We have deliberately used a very simple model of the or-
with a 580 year period, and the obliquity spans a range 3—4 bital motion to illustrate the basic principles upon which the
times as large, with the same dominant period. spin model is based. A better model of the spin pole mo-

Figure 4illustrates the asymmetry of the obliquity spec- tion could be rather easily produced by using a better model
tra of Europa, Ganymede, and Callisto, by focusing on a of the orbital motion. In particular, use of numerically inte-
lower frequency range than is easily resolveHim 2 For lo grated orbits, like that dflusotto et al. (2002)appears very
and Europa, the largest amplitude obliquity variation occurs promising. However, we anticipate that the basic conclusions
at the same frequency as the largest amplitude inclinationwould remain unchanged. That is, we expect that the forced
variation. However, for Ganymede and Callisto, the largest obliquity of lo will be small, and for the other bodies the
obliquity effect arises from resonant amplification of smaller forced obliquities will be comparable to the orbital inclina-

terms in the inclination series. tion variations.
Our analysis essentially assumes that tidal dissipation has

driven the free obliquities of all four bodies to vanishingly
6. Discussion small values. Sufficiently accurate monitoring of the spin
pole orientations could conceivably reveal departures from
We have developed a simple model for the orbital and this situation, as is the case for Veni¥eder, 1997) In the
rotational precession trajectories of the Galilean satellites, Galilean satellite case, a likely source of excitation of free
and have shown that the forced obliquities of these bod- obliquities would be impacts of comets or astergi@sale,
ies are non-zero. In fact, for all of these bodies, the forced 1975, 1976)
obliquities are non-negligible in comparison to the forced Perhaps the most significant implication of our analysis
eccentricity and inclination variations. For lo and Europa, is that it reveals an additional source of tidal stress and dis-
due to their proximity to Jupiter, the spin pole precession sipation within the Galilean satellites. If the eccentricity and
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obliquity were both zero, the tides raised by Jupiter on the
satellites would be large but stationary. A finite orbital ec-
centricity causes the tidal bulge to librate in longitude, yield-

ing time dependent stress and potentially significant heating.

A finite obliquity causes the tidal bulge to librate in latitude.

The global average rates of tidal heating from longitudinal
and latitudinal librations both depend on the internal struc-
ture of the body, and do so in exactly the same way. The

spatial patterns of heating from these sources are different,

and the rates scale witf and sirf ¢, respectively.
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