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The embedded-atom method (EAM) is a semi-empirical, many-atom potential for computing 
the total energy of a metallic system. It is especially useful for systems with large unit cells, and is 
appropriate for metals with empty or filled d bands. With the EAM, the materials community has 
investigated many problems of interest: point defects, melting, alloying, grain boundary structure 
and energy, dislocations, segregation, fracture, surface structure, and epitaxial growth. In general, 
most of the EAM calculations have been carried out in close connection with experimental work. 
We review here the history, development, and application of the EAM. 
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1. Introduction 

It is an appealing notion to consider the physical properties of materials on the fundamen- 
tal scale of the atomic structure. Our knowledge of the atomic structure of solids has 
advanced considerably in recent years. It is now possible for experiments to resolve the 
atomic-scale structure of complex systems like interfaces, surfaces, and grain boundaries. 
These experimental breakthroughs have provided strong motivation for further theoretical 
investigations of structure. First-principles calculations are capable of explaining certain basic 
properties. In many cases, however, the complexity of the system demands more approximate 
methods. A simpler approach, which has been around for many years, is the pair potential. 
However, the pair-potential scheme omits a crucial piece of the physics of metallic bonding, 
and so falls short as a reliable tool. The past decade saw the development of the embedded- 
atom method (EAM) [1-5], which incorporated an approximation to the many-atom interac- 
tions neglected by the pair-potential scheme. The advent of the EAM allowed simulation of a 
very large set of interesting problems. This review emphasizes the physical insight that 
motivated the EAM, and summarizes some of the calculations of atomic-scale structure in 
metals that the EAM made possible. 

Most of our questions regarding structure and thermodynamics can be answered from a 
knowledge of the total energy. The total energy of a solid at any atomic arrangement can be 
calculated, at least in principle, by solving the many-electron Schr6dinger equation. This 
problem is overwhelming in practice. Some approximations to this scheme, such as the 
local-density approximation, reduce the complexity of the problem while hopefully retaining 
the important physics. However, even with recent impressive advances in computers and 
algorithms, these traditional band-structure calculations are impractical for systems with very 
low symmetry, such as grain boundaries. 

At the other extreme, it has been useful to assume that the total energy of a solid, E~o h, 
takes the form of a sum over pair bonds: 

Ecoh = 1 E v ( n i j ) "  (1) 
i , j(j  ~ i) 

In this picture, the bonds between atoms are independent of each other (that is, the strength 
of one bond is unaffected by the presence of other bonds). This ansatz is very simple and very 
useful for the problems at hand. However, there is a major difficulty with this approach. It is 
not possible to show theoretically that the total energy can be expressed in the form of pair 
bonds (eq. (1)). The error in the pair-potential approximation arises from the fact that, in 
general, the bonds between atoms are not independent of each other. 

One can see this effect by considering the cohesive energy of a series of crystal structures 
that differ only by the coordination, Z, of a typical atom. It is easy to see from the pair model 
that the cohesive energy scales linearly with Z, so that Eco hot - Z .  But the reality is that the 
cohesive energy scales more weakly. On rather general grounds [6], one can estimate that the 
energy should scale something like - Z  1/2. This is like saying that the strength of an 
additional bond is not constant but rather decreases with increasing Z. 

Coordination-dependent, or many-atom, interactions manifest themselves in the funda- 
mental properties of solids. One can illustrate this point nicely by examining the elastic 
constants, vacancy formation energy, cohesive energy, and melting points, in table 1. In a 
cubic solid held together purel~¢ by pairwise, central-force interactions, it is simple to 
demonstrate that two distinct elastic constants are equal. That is, C12 = C44, which is known 
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Table 1 
Some indicators of many-body effects in some fcc metals. Ni, Cu, Pd, Ag, Pt, and Au are compared with a 
Lennard-Jones solid (LJ) [7,8], taken as a typical two-body system, and two rare-gas solids. This table was inspired by 
and partially copied from Ercolessi et al. [9] 

Solid 
C12 E, f Eco h 

C44 Ecoh k Tm 

pair potential 
LJ 1.0 1.00 13 

rare gases 
Ar 1.1 0.95 11 
Kr 1.0 0.66 12 

fcc metals 
Ni 1.2 0.31 30 
Cu 1.6 0.37 30 
Pd 2.5 0.36 25 
Ag 2.0 0.39 27 
Pt 3.3 0.26 33 
Au 3.7 0.23 34 

as the "Cauchy relation". A solid described by any central-force pair interaction, such as the 
Lennard-Jones pair potential, has the ideal ratio of C12 : C44 of 1. So do the rare gases, which 
are the prototype Lennard-Jones systems. However, fcc metals generally have C12 : C44 closer 
to 2. Some metals, like Au and Pt, have high values of C12:C44 , between 3 and 4. These 
simple phenomenological observations reveal the presence of significant many-atom interac- 
tions. A similar statement can be made about the ratio of the vacancy formation energy (Ev f) 
to cohesive energy (Ecoh). In a purely pairwise solid, counting the broken pair-bonds shows 
that Ev f : E¢o h is unity. A quick review of the metals shows that the fcc metals have values of 
this ratio closer to 0.35. Once again, Pt and Au appear to be unusual in their deviation from 
pairwise bonding. Another indicator is the ratio of the cohesive energy to the melting point. 
The fcc metals stand out as being distinctly non-pairwise. From arguments such as these, we 
have evidence that metallic bonding is distinctly non-pairwise and that deviation is stronger 
for Pt and Au than for Ni, Cu, Pd, or Ag. 

The thesis of this review is that many of the interesting problems in the structure of metals 
require a treatment of the coordination-dependent bonding. It seems fruitful to look for a 
practical method that can be applied to low-symmetry systems and yet retains the many-atom 
aspects of bonding. Such an approach would be useful as a guide to exploring the essential 
physics, and as a tool for probing ahead of more accurate and expensive calculations. 

It was with this in mind that Daw and Baskes [1,2] proposed the embedded-atom method. 
In this approach, we view the energy of the metal as the energy obtained by embedding an 
atom into the local electron density provided by the remaining atoms of the system. In 
addition, there is an electrostatic interaction. The ansatz they used is 

Econ = Gi Ep;(Rij) +~ ~_, U~.j(Rij ), (2) 
j4~i i,j(j~i) 

where G is the embedding energy, pa is the spherically averaged atomic electron density, and 
U is an electrostatic, two-atom interaction. We define the embedding energy as the interac- 



256 M.S. Daw et al. 

o 

J 

-5 

-10 
0.01 0.02 

p (A -a) 

0.03 0.06 

I I 

1 
0.04 0.05 

Fig. 1. Embedding energy for Ni as a function of the background electron density. 

tion of the atom with the background electron gas. Fig. 1 illustrates a typical embedding 
energy. The background density for each atom in eq. (2) is determined by evaluating at its 
nucleus the superposition of atomic-density tails from the other atoms. Fig. 2 illustrates the 
electrostatic pair interaction. 

A particularly appealing aspect of the EAM is its physical picture of metallic bonding. 
Each atom is embedded in a host electron gas created by its neighboring atoms. The 
atom-host interaction is described in a way that is inherently more complex than the simple 
pair-bond model. In this way, the embedding function incorporates some important many-atom 
interactions. It is possible to describe and understand interatomic interactions at defects in 
terms of either the embedding function or the effective many-atom interactions that arise 
from it. In particular, it is simple to demonstrate how bonding is affected by coordination. 
This naturally leads to an understanding of the difference between bulk and surface bonds, 
for example. 

The EAM is currently the method of choice for doing semi-empirical calculations in 
close-packed metals; it combines the computational simplicity needed for larger systems with 
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Fig. 2. Pair interaction for Ni as a function of separation. 
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a physical picture that includes many-atom effects and avoids some of the problems of the 
pair-potential scheme. This method has been applied successfully to bulk and interface 
problems, such as phonons [10], thermodynamic functions and melting point [11,12], liquid 
metals [13], defects [2-4], grain boundary structure [14-19], alloys [3,4,20,21], segregation to 
grain boundaries [21-23], interdiffusion in alloys [24,25], and fracture and mechanical proper- 
ties [26-32]. The EAM has been applied to problems in surface structure [2-4,33-36], 
adsorbate phase diagrams [37-41], segregation to surfaces [42-48], surface structural order-  
disorder transitions [34], surface ordered alloys [35,47], surface phonons [49,50], and clusters 
on surfaces [51,52]. 

This review will discuss the history, development, and application of the EAM to a wide 
variety of problems in the physics of metals. We will review the fundamentals as well as the 
phenomenology of the approach, and go on to describe some of the numerous applications. 
We will focus on two types of applications: simple tests of the EAM, and more complicated 
problems that probably could not have been treated any other way. 

This review devotes special attention to the work performed by the present authors, 
although several other groups have applied the EAM (or methods mathematically equivalent 
to the EAM). Though some of the work by other groups will be discussed at appropriate 
places in this review, we do not intend here to give a thorough review of the work by other 
groups, simply because that task long ago became impractical. (We apologize to those whose 
work has been omitted.) Certain remarks, however, about the general trends predicted by the 
EAM will pertain to the work by other groups as well. 

There has been a great deal of work using methods related in spirit to the EAM. We 
include here only a partial list. The effective-medium theory [53-56] has been applied to a 
number of problems at the surface and in the bulk [57-62]. DePristo and co-workers have 
developed the corrected effective-medium theory [63-69]. The excellent review by Raeker 
and DePristo [67], makes a detailed comparison between the several variant theories in the 
family; this review will not cover this ground. 

The relationships of various models of interatomic potentials and the concepts of pair and 
cluster functionals (the EAM is a pair-functional method) are discussed in the elegant review 
by Carlsson [70]; the reader is referred to that review for a larger view of work on interatomic 
potentials. 

This review is organized as follows. Section 2 describes the development of the embedded- 
atom method and the interpretation in terms of many-atom interactions. In particular, we 
consider the effects of coordination on metallic bonding. Sections 3-8 give an overview of 
calculations we have done with the EAM, covering bulk properties, grain boundaries, 
surfaces, alloys, and mechanical properties. Finally, in section 9, we make a short summary 
and briefly explore possible avenues for future work. 

2. Embedded-atom method 

Some years ago, Friedel [71] suggested that the dissolution of hydrogen in copper was 
related to the dissolution of hydrogen in jellium (electron gas with a uniform, neutralizing 
positive background). He was led to the investigation of the Friedel oscillations, i.e. impurity- 
induced oscillations in the jellium density. More recently, detailed calculations of the 
impurity-in-jellium problem were carried out within the local-density approximation (LDA) by 
Puska, Nieminen, and Manninen [72]. The solutions give the self-consistent impurity-in-jel- 
lium charge density and the embedding energies as functions of the background gas density. 
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The impurity-in-jellium work formed the basis of the independent developments by 
N~rskov and Lang (effective medium [53]) and by Stott and Zaremba (quasiatom [73]). 
N~rskov and Lang showed in detail that the heat of solution of a light, interstitial impurity 
(e.g., H or He) in a host metal could be calculated by replacing the host with a suitable 
effective medium, which in this case was jellium. The heat of solution was then related to the 
embedding function, which is the energy associated with placing the impurity in jellium. 
N~rskov and his co-workers have had great success in calculating from first principles the 
heats of solution [54] and heats of chemisorption [74] of hydrogen in metals. The optimal 
density of the jellium was determined by weighing the background metallic electron density by 
the Hartree potential of the metal ion. Stott.and Zaremba arrived at a similar idea, based on 
viewing the impurity as a quasiatom in a nearly uniform electron gas. 

The basis of the EAM is the realization that the cohesive energy of a metallic system can 
be expressed in terms of embedding energies. Daw and Baskes [1,2] made this important 
generalization by proposing to view the cohesive energy of a metallic solid as composed of the 
embedding energy plus electrostatic interactions. In this view, each atom in the metal is 
embedded into the electron gas created by the other atoms. Atoms near a defect, such as a 
surface, are embedded into an electron gas of different density profile than atoms in the bulk. 
Daw and Baskes suggested the ansatz (2) that will be discussed here. They then obtained the 
functions empirically by fitting to properties of the bulk metals. The generality of the 
functions was tested by applying them to surfaces and other defects. This generalization 
allowed calculations of complex metallic structures to be done within the approximate 
embedding-energy framework. The EAM is thus a significant improvement in simplified 
total-energy calculations for metallic systems. 

More recently, Jacobsen, N¢rskov, and Puska [55], Manninen [75], and Kress and DePristo 
[63,64] re-examined the ansatz used in the EAM with arguments based on the effective-medium 
approach. Jacobsen et al. demonstrated how the cohesive energy of a metallic system could be 
related to the embedding energies, with corrections accounting for the d -d  hybridization in 
the transition metals. Their approach showed that with the neglect of the d -d  hybridization 
(valid for simple metals and presumably for early and late transition metals), the EAM 
expression is recovered. (For AI and Cu, for example, the practical application of the 
effective-medium theory is mathematically equivalent to the EAM.) The density of the 
effective medium was taken to be an unweighed average of the background density over the 
Wigner-Seitz cell of the atom. Kress and DePristo suggested using as a weighing function the 
electron density of the atom itself, so that the background density is related to the overlap of 
charge densities. Kress and DePristo, for their corrected effective-medium theory, added a 
correction for the inaccuracies in the definition of the optimal effective-medium density. 

It is also possible to derive the EAM form from approximations made within density-func- 
tional theory [5]. This work will be summarized in section 2.1. 

Several other methods, equivalent to the EAM in practice, have been proposed since the 
original work of Daw and Baskes. These methods all take the form of eq. (2), with differences 
due to specific parameterizations or functional forms and differences in the physical interpre- 
tation of the quantities. Finnis and Sinclair [76] proposed that the d -d  hybridization could be 
approximated in the second moment, which is of the same form as eq. (2). Their "N-body" 
potential was intended to be applied to defects in bcc metals. The Finnis-Sinclair model is 
formally equivalent in the case of homonuclear metals to the EAM. For alloys, however, the 
Finnis-Sinclair model leads to a form different from the EAM. The "local-volume-forces" 
model represents an alternative parameterization of the EAM by Chen, Voter, and Srolovitz 
[77], and has been applied to surface relaxations and grain boundaries in binary metallic 
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alloys. The "glue" model of Ercolessi, Tosatti, and Parrinello [78,79] also belongs to the EAM 
class of models, and has been applied mainly to surface reconstructions. The "equivalent- 
crystal" model of Smith and Banerjea in its original implementation is mathematically 
equivalent to the EAM, though again the motivation is different [80,81]. 

2.1. Fundamentals 

Our goal is to derive an approximate expression for the cohesive energy of a metallic 
system that is an explicit function of the positions of the atoms and which is simple to evaluate 
(i.e. eq. (2)). This derivation has been discussed in detail by Daw [5], and we will only 
summarize it here. 

We start with the density-functional expression for the cohesive energy of a solid [82]: 

1 t ZiZ j ZiP(r) 1 P(r l )p(r2)  
dr+ f]  drl dr -Eatoms Ecoh=G[pl+~Y '~ ~ Ef tr-Ril 

i , j  J i r12 

(3) 

where the sums over i and j are over the nuclei of the solid, the primed sum indicates 
omission of the i = j  term, Z i and R i are the charge and position of the ith nucleus, the 
integrals are over r (or r 1 and rz), and rx2 = I rl - r2 I. Eatoms is the collective energy of the 
isolated atoms. G[p] is the kinetic, exchange, and correlation energy functional. 

We can go from eq. (3) to eq. (2) if we make the following two assumptions: (a) G[p] can be 
described by G[p] = fg(p(r), Vp(r), V2p(r) . . . .  ) d r  where g is the density and is assumed to 
be a function of the local electron density and its lower derivatives; and (b) the electron 
density of the solid can be described as a linear superposition of the densities of the individual 
atoms ps(r) = Eipa(r - Ri)). The first approximation is motivated by studies of the response 
function of the nearly uniform electron gas. The second approximation is justified by the 
observation that, in many metals, the electron distribution in the solid is closely represented 
by a superposition of atomic densities. In addition, due to the variational nature of the energy 
functional, errors in the assumed density should only affect the energy to second order. It is 
also useful for us to define the embedding energy for an atom in an electron gas of some 
constant density ~ (neutralized by a positive background): G i ( P i )  =-- G[p a + Pi] - G[P a] --  G [ P i ] .  

Using these two assumptions and the definition for the embedding energy, we can obtain from 
eq. (3): 

Ecoh= Ei ai(j~iP;(Rij))-[-2 E Uij(Rij)'~-Eerr. (4) 
• i,j(j~ 1) 

The error (Eer r) is a function of the background density Pi. Setting the error to zero gives an 
equation for the optimal background density. 

The solution t o  E e r  r = 0 is discussed in detail by Daw [5]. An approximation to the 
equation is provided by 

foig(pa +Pb,i) d r  ~ fOg(pa + Pi) dr. (5) 
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Here O i is the volume around atom i. The background density for atom i, Pb, i, is the 
superposition of tails from neighboring atoms: pb,i(r)= ~, j , ip~(r-Rj) .  This background 
should be slowly varying over most of £2;. In the limit that the background density is slowly 
varying compared to p~, then the solution to eq. (5) is ~i = pb,i(Ri), which leads to the EAM 
form (eq. (2)). 

Tests of these approximations and corrections to the EAM are discussed by Daw [5]. In 
particular, it is demonstrated that if the charge is allowed, to redistribute, the EAM form can 
be recovered to lowest order in the charge relaxation. Large charge redistributions make the 
form inappropriate. 

The many-atom interactions in the EAM originate with the embedding function. That is 
because the embedding function is non-linear for chemically active elements. This non-linear- 
ity reflects the saturation of the metallic bond by increasing the background density. Tracing 
the argument further, this saturation of the bond can be related to the Pauli exclusion 
principle. From this, one can see that the nature of the metallic bonding requires the 
embedding function to have positive curvature; that is, G" > 0. 

There are two caveats to become aware of at this point. First, the EAM will not work as 
well for systems where directional bonding is important, such as semiconductors and elements 
from the middle of the transition series. For more on this point, we encourage the interested 
reader to read the review by Carlsson [70]. That review describes the relationship of the EAM 
to concepts of bonding in transition metals, including the saturation of bonding in metallic 
systems. Second, any subtleties due to Fermi-surface or band-structure effects are ignored in 
the EAM, so that any situations where these are important should be treated carefully. 

22. Phenomenology 

Although the EAM form is calculationally convenient, it is often conceptually useful to 
visualize effective N-atom interactions. The two physical pictures (the first in terms of 
embedding energies, the second in terms of explicit N-atom interactions) are unified under 
the EAM. On one hand, the embedding picture (within the approximations made by the 
EAM) provides a compact scheme for computing energies. On the other hand, the N-atom 
interaction picture provides a more direct way to visualize interactions. The two pictures are 
equivalent in the EAM. One way to see this equivalence is to examine how the total energy 
changes when one makes small perturbations from a reference state. 

We pick as a reference state a uniform solid. For this case, all the atoms have the same 
environment, so w e  define ~ = Enpa(Rn) and U = ~ . ,nU(Rn ) where the sums are over the 
neighbors of a typical atom. Then the total energy of the uniform solid is N[G(~)+ ~U],I- 
where N is the number of atoms. 

If we now allow a small distortion of the lattice, each atom will experience a slightly 
different electron density, and the embedding energy can be expanded in the small difference. 
The cohesive energy of the solid can then be written as a sum of N-body interactions. 

For small distortions, the change in the energy within the EAM is equivalent to the change 
in the sum of effective two- and three-atom interactions [13]: 

t t  " a 2 [ ( i  ~j)]), ~tcij(e ) ~-I([U/j(R)-{- 2G;(pi)pj(R ) '[-Gi (Pi)(Dj(R)) ] + (6a) 

Xijk(ei, gj,  ek)  ~ G;'(~i)p~(Rij)p~(Rik ) + ( i~j - ->k-->i)  + (i-->k-->j-->i). (6b) 
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Fig. 3. (a) Effective pair interactions for Ni in two different environments:  "bulk"  and "surface".  (b) Effective pair 
interactions for Pt in two different environments:  "bulk"  and "surface".  (See text.) 

Here the symbols involving arrows ( ~ )  indicate a repetition of the previous expression with 
the indicated permutations of the indices. Higher-body interactions can be obtained by 
carrying the perturbation expansion to higher order. Note that the effective interactions 
depend only on the distances between the atoms and not (explicitly) on any angles. This is an 
important property of the EAM and is a direct result of the form of eq. (2). 

The effective interactions in eqs. (6) are environment dependent, in that the interaction 
between two atoms depends on the slopes of their embedding functions, which depend on the 

for each atom. As one goes to the surface, for example, the effective two-atom interaction 
becomes stronger and the bond length shortens. Within the EAM, this is a result of the 
requirement that G" > 0. In this way, the EAM describes the effect of coordination on bond 
strength: the less-coordinated surface atoms tend to have stronger bonds and shorter bond 
lengths. This is the strength of the EAM, and is directly connected to the non-linearity of the 
embedding function. Note that if G is simply a linear function such that G " =  0 in eqs. (6), 
then X vanishes and the EAM can be replaced by a pair-potential model based on ~(R).  It is 
then straightforward to demonstrate that the properties of the solid will resemble those of 
"Lennard-Jonesium" of table 1. Thus the EAM contains pair potentials as a special case. 

The effective pair interaction is illustrated in fig. 3, along with how the interaction changes 
with environment. Suppose we know the background density of a typical atom in the bulk, and 
for an adatom on the fcc(100) surface. If we plug these densities into eqs. (6), we can get a 
feel for the change in effective interactions due to the change in background densities. This is 
shown in fig. 3, where we have evaluated the background density of Ni and Pt in the bulk and 
for an adatom on the (100) surface. Here it is seen that, due to the curvature of the 
embedding function, the atoms on the surface tend to have stronger bonds and shorter bond 
lengths. It is also seen that the effect for Pt is stronger than for Ni. This is a manifestation of 
the observation made in section 1 that Pt and Au deviate furthest from simple pairwise 
behavior. 

The trio interaction from eq. (6b) is positive and exponentially decaying; the trio interac- 
tion in the EAM is always repulsive. Notice that it is the sum of three terms, each of which 
depends only on two bond lengths and no angles. It is this lack of angular dependence that 
makes the EAM in its present form less applicable to metals from the center of the transition 
series. 
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2.3. Empiricism 

The embedding function and pair interaction can be obtained from first principles, as was 
discussed in section 2.1 and described in detail by Daw [5] (also see Jacobsen et al. [55], for a 
different treatment). These first-principles functions do reasonably well in describing the 
properties of nickel. However, in practice, we have taken a semi-empirical approach, where 
the fundamental theory has guided the fitting of the embedding function and pair interaction 
to basic bulk properties. In general, we have fitted to lattice constant, cohesive energy, elastic 
constants, and vacancy formation energy. Notice that these are precisely the properties that 
dearly show the many-atom properties of the interactions in the solid (see table 1). We have 
also found it useful to require that the cohesive energy as a function of lattice constant follow 
the "universal binding curve" of Rose et al. [83]. This restriction appears to guarantee that 
the anharmonic properties are treated well. In other papers, we have also fitted to the dilute 
heats of alloying for binary alloys [3,4] or stacking fault energy [27]. In general, the fits are 
over-determined, and the fact that we can achieve a reasonable fit at all is in some sense a 
check of the EAM form. Functional forms have varied from case to case. In some cases, the 
functions are determined by general splines. In other cases, we have found it more useful to 
use analytic functions. 

We include in table 2 a summary of the functions we have published. Because the functions 
are approximations, it is wise to understand the sensitivity of results to different parameteri- 
zations. For example, a study of Pd adatom diffusion on a Pd(100) surface could be performed 
both with functions from Daw and Baskes [2] and Foiles [13]. Also, the table emphasizes that 
EAM functions generally are not transferable: for example, functions determined separately 
for Ni and Pd likely will not treat the Ni-Pd  alloy properly. The safest approach is to view the 
EAM as a means for interpolating between known quantities, or extrapolating only slightly 
away from known quantities. 

A convenient starting point for fitting functions is the analytic work of Johnson [85,86]. 
When comparing the embedding functions and pair interactions from different sources, it 

is important to be aware of an ambiguity in the practical implementation of eq. (2). This 
results from the observation that adding a linear contribution to the embedding function can 
be exactly compensated for by a change in the pair interaction [48]. (This is related to the 
observation made above - that a linear embedding function, G, leads to a purely pairwise 
model.) For this reason, sets of embedding functions and pair interactions can appear to be 

Table 2 
A brief summary of functions determined by the present authors. All functions are determined semi-empirically 
except for those in Daw [5], which are calculated from first principles 

Authors Elements Intended applications 

Daw and Baskes [1,2] Ni, Pd, H elemental Ni, Pd 
H in solution and on surfaces of Ni, Pd 
elemental metals 
Cu-Ni alloy system 
fracture, dislocations, H embrittlement 
dilute alloys 
Ni-rich end of Ni-A1 alloy system 
elemental Ni 
elemental A1 

Foiles [13] Cu, Ag, Au, Ni, Pd, Pt 
Foiles [42] Cu, Ni 
Daw, Baskes, Bisson and Wolfer [27] Ni, H 
Foiles, Baskes and Daw [3,4] Cu, Ag, Au, Ni, Pd, Pt 
Foiles and Daw [84] Ni, AI 
Daw [5] Ni 
Hoagland, Daw, Foiles and Baskes [30] AI 
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quite different and in fact be equivalent. In particular, the freedom to vary the linear part of 
the embedding function means that one can have pair interactions that are purely repulsive, 
purely attractive or of a Morse-like shape and the total energy, which is the physically relevant 
quantity, will be the same. A good way to compare potentials is to compare the effective pair 
and trio interactions defined in eqs. (6) since they are independent of this ambiguity. 

3. Overview of applications 

The EAM has been applied to a large variety of problems related to properties of metals. 
From the EAM we obtain information on the structure, dynamics, phase transitions, vibra- 
tions, diffusion, and segregation. Some of the applications of the EAM appearing in the 
literature are reviewed in the following. We consider the following general topics: bulk 
properties (section 4); grain boundaries (section 5); surfaces (section 6); alloys (section 7); and 
mechanical properties (section 8). In this review we concentrate on applications that are 
simple tests of the EAM or which highlight the many-atom nature of the EAM. 

The EAM is typically implemented in one of four different types of calculations: (1) energy 
minimization, (2) molecular dynamics, (3) Monte Carlo, or (4) vibrational-normal-mode 
analysis. The current practical limitations of EAM calculations on a CRAY-XMP, for 
example, allow molecular-dynamics simulations of up to 35000 atoms. (One of the virtues of 
the EAM is that supercomputers are not essential. Smaller calculations can be performed 
easily using high-performance workstations.) Simulated times for molecular dynamics typically 
run up to tens of picoseconds. Generally, the calculational cost scales linearly with the 
number of atoms. Monte Carlo simulations based on the EAM are in practice capable of 
approximately 105 iterations per atom. These simulations are most useful for annealing 
structures and obtaining transition temperatures or equilibrium concentration profiles. The 
dynamical matrix can be obtained analytically and the vibrational normal modes obtained by 
matrix diagonalization. Normal-mode calculations are currently possible for unit ceils of up to 
about 260 atoms. 

In each section, we consider results that have been calculated with specified EAM 
parameterizations (see table 2). The details of results do depend on the specific parameteriza- 
tions. In spite of that, we will usually not be very careful in this review to explain which 
specific functions were used for a given calculation. Rather, it is assumed that the interested 
reader will refer to the published papers which do have such details spelled out. 

4. Bulk properties 

First we consider the work on some bulk properties: (1) phonons; (2) liquids; (3) thermal 
expansion, melting, and thermodynamic functions; and (4) point defects. 

To be a reliable tool, any model of energetics must give a reasonable representation of 
these simple properties. With this in mind, most of the calculations discussed in this section 
are intended to show that the EAM gives a reasonable description of metallic bonding. 

4.1. Bulk phonons 

The phonon spectrum is obtained from the force-constant tensor [87], Ki j  , which can be 
derived from eq. (2) in a straightforward way. The result is [50] 
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Fig. 4. Calculated and measured bulk phonon frequencies of fcc Cu. The experimental points, taken from Svensson et 
al. [88], are the solid circles with error bars. (From Nelson et al. [50].) 
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~ij = G; ( Pi)p~( Rij) + G] ( p-j)pa( RU) + U/.,(Ru), 

g i  = (Tb) 

Here  the unit vector ~ij = ( R i  - R / ) / R i j  and the primes denote differentiation with respect to 
the argument. The dynamical matrix for the system, which yields the squared phonon 
frequencies and polarizations, can be constructed from Kij. 

The tensor A above represents the contribution to K from the environment-dependent,  
effective pair potential ~i~ (discussed in section 2.2). The other  terms in K include explicit 
many-atom contributions, which depend on the environment through the quantities g. Thus 
the phonons are directly related to the basic interactions in the solid. 

The bulk phonons of fcc Ni, Pd, and Cu were calculated along several symmetry lines and 
compared to experiment [10,49,50]. Good agreement between theory and experiment is found, 
as is illustrated for the case of Cu in fig. 4. The agreement near the zone center is to be 
expected, because the functions are fitted to the elastic constants. However, agreement over 
the full zone was obtained as well, and this was not guaranteed by the fitting. Careful 
comparison over the full zone has been carried out by Luo et al. [89,90]. 

4.2. L iquids  

Above the melting point, the static structure factors of various liquid transition metals were 
computed by Foiles [13]. The structure factors were obtained by averaging over molecular-dy- 
namics simulations performed at elevated temperatures. The results for Ag are shown in fig. 
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Fig. 5. Static structure factor S(k)  for liquid Ag at T = 1270 K and n = 0.0517 A -  . The solid line is the EAM result 
and the points are the experimental data from Waseda and Ohtani [91]. (From Foiles [13].) 

5. The agreement between theory and experiment for the structure factors was quite good and 
was comparable to the agreement between different experimental determinations. The results 
also indicated that the equilibrium zero-pressure densities were within about 1 or 2% of the 
experimental values. 

In the work on liquids, Foiles also presented a derivation of the effective pair interactions 
(section 2.2) and calculated the structure factors based on these effective pair interactions 
from the theory of liquids. The agreement between the MD simulations with the full EAM 
and the reference-hypernetted-chain-equation results with the effective pair potentials was 
quite good, reiterating the relationship between the EAM and the effective-interaction 
concept. 

4.3. Thermal expansion, melting, and thermodynamic functions 

Some of the thermodynamic properties predicted by the EAM have been computed for the 
metals Ni, Pd, Pt, Cu, Ag, and Au [11,12]. In particular, the thermal expansion, free energies 
as a function of temperature for both the liquid and solid states, and the melting point have 
been computed. These properties are interesting in part as a test of the interactions. In 
particular the thermal expansion is a test of the anharmonic part of the interactions. (Recall 
that totally harmonic interactions yield zero thermal expansion so the thermal expansion 
reflects the higher derivatives of the interactions.) The results for the melting point, aside 
from being an important test, are useful in simulation studies of the thermal behavior of these 
metals at high temperatures. 

The determination of the thermodynamic functions over the whole temperature range and 
for both liquid and solid phases requires a variety of types of calculations. Monte Carlo 
simulations performed at constant pressure and temperature can be used to determine the 
density (lattice constant) and enthalpy of either the solid or liquid phase. It should be 
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recalled, though, that the Monte Carlo simulations evaluate the classical partition function 
and so do not include quantum-mechanical contributions to the thermodynamics such as 
zero-point motion and the freezing-out of modes at low temperatures. Thus the Monte Carlo 
simulations can only be used at temperatures comparable to or above the Debye temperatures 
for these materials. In addition, the simplest Monte Carlo techniques do not determine the 
free energy directly, only the enthalpy. If the free energy is known at some point, the enthalpy 
values can be used to determine the free energy at other temperatures by the thermodynamic 
expression: 

H 

dT -T N,P T 2" (8) 

For low-temperature solids, the free energy and thermodynamic functions can be com- 
puted using quasi-harmonic calculations [87]. These calculations correctly include the quan- 
tum-mechanical effects that are important at low temperatures and can be used to directly 
calculate all the thermodynamic functions including the free energy. This approach cannot be 
used at high temperatures because the amplitude of the thermal vibrations may be large 
enough that the harmonic approximation is no longer sufficiently accurate. Thus for the solid 
phase, the free energy can be computed at low temperatures using the quasi-harmonic 
approximation. At higher temperatures, the free energy can be determined using eq. (8), and 
the enthalpies determined from the Monte Carlo simulations. 

For the liquid state, the free energy is needed at some temperature before eq. (8) can be 
used to extend it to all temperatures using enthalpies from isobaric Monte Carlo simulations. 
This can be done by performing Monte Carlo simulations at constant temperature, volume 
and chemical potential (i.e. in the grand canonical ensemble). The free energy is then just the 
chemical potential. The chemical potential is adjusted to produce zero pressure. In practice 
this procedure can only be performed at high temperatures (about twice the melting point) so 
that one can obtain reasonable statistics. Eq. (8) in conjunction with isobaric Monte Carlo 
simulations determines the free energy near the melting point. 

The quasi-harmonic calculations were used to determine the linear coefficient of thermal 
expansion at room temperature [11]. This was motivated by the observation that the coeffi- 
cient of thermal expansion predicted by the Finnis-Sinclair interactions for the bcc metals 
was very poor and in some cases negative [92]. The resulting values are presented in table 3 
along with the experimental values. The agreement between the calculations and theory is 
generally quite good. The thermal expansion has also been computed over the entire 

Table 3 
Comparison of the linear coefficient of thermal expansion at room temperature computed using the EAM and 
experimental values [93] in units of 10-6/K. From Foiles and Daw [11] 

Element a(EAM) a(exp) 

Cu 16.4 16.7 
Ag 21.1 19.2 
Au 12.9 14.1 
Ni 14.1 12.7 
Pd 10.9 11.5 
Pt 7.8 8.95 



The embedded-atom method 267 

-10 - 

-16 - 

o 

>,  -20  - 

g 
- 2 5  - 

~_ - 3 0 -  

-36- 

o-~. (a)l 
- 6 -  

- 4 0  - " ,  

-45  I I I I r I 
250 500 750 1000 1250 1500 1750 2000 

Temperature (K) 

- B -  

-10 - 
-15 - 

O 
E 

"~  -20  - 

a e  -25- 
~ -30- 

- 3 5 -  

, ~  - 4 0  - 

~5 -45- 

- 6 0  - 

-55  - 

\ 
\ 

\ 

-6O 
I I 

0 500 1000 

(b) 

" ' " ~  

1500 2000 2500 ~mperature (K) 
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and Adams [12].) 

temperature range [12] and in all cases the results are reasonable with somewhat larger errors 
in the density at high temperatures than at room temperature. 

The free energies of both the solid and liquid phases are presented in fig. 6. For the case of 
Cu and Ag, one sees that the agreement between the calculations and experiment is extremely 
good. For Au, Pd, and Pt the agreement is poorer but still reasonable. The agreement is worst 
for Ni. The intersection of the solid and liquid free energies determines the melting points. 
These are shown in table 4 along with the experimental values. The agreement is reasonable. 
Note that the agreement for Ni is very good. However, the free energy results for Ni were in 
poor agreement with experiment, suggesting that the good result for the melting point of Ni is 
fortuitous. In evaluating the degree of agreement between theory and experiment for the 
melting point, it is important to realize the sensitivity of the predicted melting point to errors 
in the free energies. The difference in the slopes of the solid and liquid free energies at the 
melting point is given by AH/Tm, where AH is the latent heat of melting. For the elements 

Table 4 
Comparison of theoretical and experimental melting points (K). From Foiles and Adams [12] 

Element EAM Exp. 

Cu 1340 1358 
Ag 1170 1234 
Au 1090 1338 
Ni 1740 1726 
Pd 1390 1825 
Pt 1480 2045 
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considered here this has a value of about 10 - 4  eV/atom K. This implies that an error of 0.01 
eV in the free energy difference can lead to an error of 100 K in the melting point. 

Noticing the entries in table 1, it is gratifying that we can obtain reasonable values for the 
ratio of cohesive energy to melting point for the fcc metals. The prediction of this ratio is 
particularly encouraging and implies that the model correctly accounts for anharmonic and 
many-atom interactions in both the liquid and solid phases. 

4.4. Point defects 

The EAM has been used to compute some of the basic properties of point defects in the 
fcc metals Cu, Ag, Au, Ni, Pd and Pt [3,95], and these are shown in table 5. These defect 
properties include vacancy formation and migration energies, divacancy binding energies and 
self-interstitial geometry, formation energy and migration energies. It should be recalled that 
the vacancy formation energies are used in the determination of the functions. (Recall that 
the ability to reproduce vacancy formation energy is one of the practical advantages of the 
EAM over strictly pair interaction models as discussed in section 1.) The binding energy of 
divacancies was computed to be 0.1 to 0.2 eV for these metals, which is in accord with the 
available experimental information. The structure of self-interstitials was also examined. In 
fcc metals, a self-interstitial atom pairs with a lattice atom to form a "dumbbell" with its 
center on a lattice site. The energies of dumbbells oriented along the [100], [110] and [111] 
directions were computed and the results show that the [100] orientation is preferred for all of 
these metals. The migration energy of the self-interstitials was also computed and found to be 
small (~  0. 1 eV) for all of these metals. Both of these results are consistent with the 
experimental observations of self-interstitial properties. 

Adams, Foiles and Wolfer [24,25] have performed a detailed comparison of the vacancy 
self-diffusion and impurity diffusion predicted by the EAM and experiment. In this study, 
slightly modified versions of the functions developed by Foiles et al. [3] were used. In 
determining these new functions, more current experimental values of the vacancy formation 

Table 5 
Calculated point-defect properties: vacancy migration energy, E m, vacancy formation volume, AV J,  divacancy binding 
energy, Ebv, divacancy migration energy, E2mv, self-interstitial formation energy, E f- self-interstitial formation volume, S l ,  

AVs~, and self-interstitial migration energy, Em. 12 is the equilibrium atomic volume. The  upper  values are the 
theoretical results and the lower values are experimental  where available. All energies are in eV. From Foiles et al. 
[3,4] (see these papers for the references to the experimental  work) 

Cu Ag Au Ni Pd Pt 

Ev m 0.67 0.78 0.64 1.06 0.74 0.82 
0.71 0.66 0.83 1.3 1.43 

A v f / ~ 2  - 0.27 - 0.18 - 0.41 - 0.12 - 0.39 - 0.45 
- 0.22 - 0.06 - 0.55 

E2bv 0.16 0.13 0.09 0.23 0.14 0.14 
0.12 0.38 0.2-0.6 0.33 0.1-0.2 

E2mv 0.38 0.55 0.49 0.66 0.47 0.56 
0.71 0.57 0.70 0.83 1.1 

Eli 3.30 3.26 2.46 4.52 3.05 3.24 
hVs~ / g2 1.74 2.05 1.47 2.11 1.52 1.40 

1.45 
E m 0.09 0.09 0.06 0.14 0.08 0.07 

0.12 0.14 0.063 
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Table 6 
Comparison of the activation energies (in eV) for self-diffusion by a monovaeancy mechanism. The "Exp." numbers 
were a composite of theoretical analyses based on several sets of experimental data (for more details, see Adams et 
al. [24]) 

Metal EAM "Exp." 

Cu 2.02 2.07 
Ag 1.74 1.78 
Au 1.69 1.74 
Ni 2.81 2.88 
Pd 2.41 < 2.76 
Pt 2.63 2.66 

energies were used in the fitting process. The activation energy for vacancy self-diffusion in 
these metals was computed and found to be in excellent agreement  with experiment. The 
comparison is shown in table 6. The activation energy for diffusion, Q, is the sum of the 
vacancy formation energy and the vacancy migration energy. Because the vacancy formation 
energies agree with experiment (by construction) and the activation energies, Q, also agree, 
one deduces that the vacancy migration energies computed using the EAM are reasonable. 

Effective activation energies for the diffusion of substitutional impurities by a vacancy 
mechanism were also computed for all combinations of the above elements. The diffusion 
rates of substitutional impurities can be determined from the "five-frequency formula" as 
described in a review by LeClaire [96]. This expression relates the overall diffusion rate of the 
impurities to the rate of the five different types of vacancy jumps in the vicinity of a 
substitutional impurity. The activation energies of these various vacancy jumps were com- 
puted using the EAM. This allowed the impurity diffusion to be computed as a function of 
tempera ture  and the results were fitted to an Arrhenius form. This yielded the effective 
activation energy for impurity diffusion. The computed activation energies are compared with 
experiment in table 7 for those combinations for which experimental data are available. The 
agreement  is typically within 0.1 to 0.2 eV with the worst case being 0.3 eV. The agreement  
between experiment and theory is best for combinations of noble metals. 

5. Grain boundaries 

Numerous  investigators have computed the atomic structure of grain boundaries using the 
EAM. In this paper  we will briefly describe some of this work. The calculations will address a 
number  of questions: 
(1) How do the structures computed with the E A M  compare with experimental  determina- 

tions of the structure? 
(2) Do the many-body effects present  in the EAM make a significant contribution to the 

computed structure and propert ies? 
(3) What  are the elastic propert ies  of grain boundaries? 
(4) What  are the effects of finite tempera ture  on grain boundaries? 

The structure of grain boundaries can be calculated by the usual energy-minimization 
techniques. There  are some subtleties, though, that must be considered [14,15]. First, there 
are usually several metastable  structures of the boundary that correspond to different relative 
translation of the two crystals. Because energy-minimization techniques only find local 



270 M.S. Daw et al. 

Table 7 
Comparison of theoretical and experimental values of the activation energies for impurity diffusion, Q, in eV. The 
experimental references are cited in Adams et al. [24] 

System EAM Exp. 

Ag in Cu 2.05 2.02 
Au in Cu 1.88 1.98 
Ni in Cu 2.37 2.46 
Pd in Cu 2.06 2.36 
Pt in Cu 2.20 2.42 
Cu in Ag 1.92 2.00 
Au in Ag 2.04 2.06 
Pd in Ag 2.19 2.46 
Pt in Ag 2.33 2.44 
Ag in Au 1.80 1.75 
Cu in Au 1.82 1.76 
Ni in Au 1.90 1.95 
Pt in Au 2.07 2.09 
Pd in Au 1.93 2.02 
Ag in Ni 2.68 2.89 
Cu in Ni 2.76 2.64 
Au in Pt 2.49 2.61 
Ag in Pt 2.71 2.68 

minima, several different initial translation states must be tested to find the lowest-energy 
configuration. In addition, it is sometimes possible to obtain lower-energy states by adding or 
removing atoms from the boundary. (This corresponds to the physical process of trapping 
self-interstitials and vacancies at the boundary.) Finally, it is possible that the period of the 
lowest-energy structure of the boundary may be larger than the minimum period required by 
the geometry of the two adjoining crystals. For example, in a study of ,V,5(210)/[001] 
symmetric tilt boundary in Au, Foiles [14] found three different metastable structures that 
were very close in energy. The three structures had different periods along the tilt axis and 
were formed by removing atoms from the initial assumed structure. This example demon- 
strates that care must be taken when computing the structure of boundaries. 

5.1. S t r u c t u r e  

We have per formed detailed comparisons between the computed atomic structures of grain 
boundaries and that obtained from experiment - either from high-resolution electron mi- 
croscopy or from X-ray diffraction. A great deal of work has been done on both twist and tilt 
boundaries in Au and AI. 

The structure of  twist boundaries in Au has received a great deal of attention [15,97,98]. 
Fitzsimmons and Sass [97] experimentally determined the atomic positions at a ~f13[001] 
symmetric twist boundary by inverting X-ray diffraction intensities from the grain boundary. 
The resulting positions were compared with calculations using the EAM by Foiles [15] and it 
was found that the calculations and experiment were in very good agreement.  The typical 
difference in the positions was 0.05 .~ with the largest difference being 0.11 ,~. This error is to 
be compared  with the experimental  uncertainty that was estimated to be about 0.06 ,~ by 
Fitzsimmons and Sass. 
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In addition to the atomic positions, the amplitudes of the atomic vibrations were extracted 
from the Monte Carlo simulations to compare with the assumptions made about the 
Debye-Waller factor in the experimental analysis. It was found that the vibrational ampli- 
tudes at the boundary are larger than in the bulk. Depending on the specific atomic 
environment and the direction of the vibration, the square of the amplitudes could be as 
much as a factor of 1.9 larger in the boundary than in the bulk. This result compares favorably 
with the experimental assumption of a factor of 1.5. 

Majid et al. [98] have performed a joint experimental and theoretical study of a series of 
twist boundaries in Au. They computed the atomic structure using the EAM and from this 
structure computed the X-ray diffraction expected from the boundary. These diffraction 
intensities were then compared with experimental X-ray diffraction intensities. In all cases 
they found reasonable agreement between the computed and measured intensities - suggest- 
ing that the EAM provides a good description of the grain boundary structure. 

Structure determination using high-resolution transmission electron microscopy (HRTEM) 
is less direct. In this case, one takes a candidate structure (such as a minimum-energy 
configuration produced by an EAM calculation) and simulates the image that one would see 
in the microscope. This simulated image is compared to the experimental image. Note that in 
the bulk and for certain microscope conditions, one sees bright spots which correspond to the 
atomic columns. At a boundary, though, intensity maxima can occur which do not correspond 
to a column of atoms, but rather to a channel. Without the detailed atomistic simulations, this 
bright spot might be misinterpreted as a column of atoms and an incorrect boundary structure 
might be deduced. These results also indicate the need to perform the atomistic simulations 
in conjunction with the image simulation to interpret the high-resolution microscopy. 

As an example, consider the work done of the ,~9 tilt boundary in AI. Experimentally, this 
boundary was observed in HRTEM [16,18] to be composed of atomically flat micro-facets. 
Two distinct, symmetric structures with (221) boundary planes were identified with individual 
micro-facets - one with glide-plane symmetry and the other with mirror-plane symmetry. The 
lowest-energy structures calculated using the EAM were found to be in excellent agreement 
with the observed micro-facet structures. The only relaxed configuration consistent with the 
mirror-plane symmetric structure was a reconstructed one in which the periodicity is doubled 
along the tilt axis. The micrograph of this structure is compared to the theoretical image in 
fig. 7. 

Similarly, HRTEM images of the ,~99(557) (110) symmetric tilt have been compared [17] 
to the structure predicted by the EAM. The theoretical structure closely matches the 
experimental results. 

The structures of several tilt boundaries in Au have been computed and compared to the 
results of HRTEM by Merkle [99] and by Cosandey et al. [100]. They find that the qualitative 
structure computed by the EAM is in good agreement with the observations but that the 
EAM typically underestimates the overall expansion of the boundary compared to the 
high-resolution electron microscopy results. 

5.2. Role of  many-body interactions 

One point should be made about these various calculations of grain boundary structure 
using the EAM. It appears that in most cases very similar results are obtained using a 
pair-potential treatment of the energetics. Thus the many-body interactions inherent in the 
EAM do not appear to dominate these properties even though grairi boundaries are a region 
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Fig. 7. Comparison of theory and experiment for a grain boundary in AI. The grain boundary is the ~9(221)[110138.9 ° 
tilt boundary. The experiment uses HRTEM (high-resolution transmission electron microscopy), and the micrograph 
occupies most of the figure. The inset is the simulated image of the structure predicted using the EAM. The inset and 
the experimental image agree well. The marks (+) indicate the centroids of the spots predicted by the EAM. (From 

Mills et al. [19].) 

of lower overall density so that one might expect these effects to play a role. That the EAM 
results are so similar to pair-potential results suggests that the overall density at the boundary 
is close enough to bulk values that pair potentials still provide a reasonable treatment of the 
structure and energetics. 

Along these lines, Foiles [15] investigated the role that the many-body interactions played 
in the computed structure of the 2~13[001] symmetric twist boundary in Au (discussed in 
section 5.1). He did this by constructing the effective pair potential that best approximates the 
EAM interactions and then recomputing the positions. The positions computed by the two 
methods were very similar suggesting that the many-body contributions do not play a crucial 
role in the structure of this boundary. The main difference between the results is that the 
expansion normal to the boundary is somewhat greater for the case of the pair interactions 
than for the full EAM interactions suggesting that the EAM allows for a somewhat greater 
overall density at the boundary. 

The EAM predictions for the structures of the ,Y,99, ,~9, and 211 tilt boundaries in Al 
were also compared to the structure predicted from a first-principles pair potential [16-18]. 
The match between the experimental and calculated images was good for both the EAM and 
pair-potential structures, with the EAM being in better  agreement with experiment. The small 
differences in the structure of grain boundaries between the many-atom EAM calculation and 
the pair potentials indicate that, for grain boundary structure, the many-atom interactions are 
important but not overwhelmingly so. 
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5.3. Elastic properties of  grain boundaries 

Some investigations of the elastic properties of grain boundaries have also been carried out 
by Wolf et al. [101,102] and by Adams et al. [103]. In these calculations the bi-axial Young 
modulus (response to tension or compression applied normal to the boundary) and the shear 
modulus for shear in the plane of the boundary were computed. The results indicate that the 
shear moduli of grain boundaries are substantially smaller than for the bulk material. In 
contrast, the Young modulus for stresses normal to the boundary was found to be larger than 
the bulk. 

These results were compared by Adams et al. to the changes in the elastic constants of the 
bulk crystal under strain. This comparison is based on the observation that a common 
structural feature of grain boundaries is an overall expansion of the material normal to the 
boundary. Thus the grain boundary may be related to a region under tensile strain but with no 
Poisson contraction in the plane of the boundary. These elastic constants are not available 
from experiment since the experimental results always include the Poisson contraction. The 
EAM was used to compute the change in the elastic constants with strain both for the 
experimental conditions and without Poisson contraction. It was found that for experimentally 
accessible strains the EAM reliably predicted the change in elastic constants with strain. For 
the case of no Poisson contraction, which is the case that should parallel what happens at a 
grain boundary, it was found that tensile strain increased the Young modulus but decreased 
the shear moduli. This is exactly the same trend found for the change in the elastic constants 
of the grain boundaries. 

It should be noted that while this analogy predicts the sign of the changes in the elastic 
constants at a grain boundary, it is not very successful in quantitatively predicting the 
magnitude of the change. It should also be noted that the work by Wolf et al. [102] showed 
that these general conclusions did not depend on the use of the EAM energy expressions: the 
same qualitative results were obtained using simple pair interactions. 

5. 4. Thermal effects at grain boundaries 

Foiles [104] has used the EAM to investigate the possibility of a thermal roughening 
transition occurring at a high-angle grain boundary. In particular, the finite-temperature 
equilibrium properties of the ,~5[001] twist boundary in Au were computed. In this boundary, 
the transition between the two crystals corresponds to a rotation of a quartet of atoms in the 
unit cell. It was found from energy-minimization calculations that it costs relatively little 
energy to displace the boundary plane by a plane in a single unit cell of the boundary thus 
producing a non-planar interface. Further, the interaction between the unit cells is weak as 
long as the position of the boundary does not vary by more than one plane between adjacent 
boundaries. It is possible to map the energetics of the distribution of boundary positions onto 
a model that is identical to the solid-on-solid models used to study surface roughening [105]. 
The parameters entering this model could then be determined by fitting the energetics of a 
variety of structures containing different distributions of boundary positions and the roughen- 
ing transition temperature for the grain boundary can be computed from the known solution 
of the solid-on-solid model. Unfortunately, the quantitative values of the parameters de- 
pended strongly on the particular EAM functions used for gold so that the transition 
temperature is predicted to occur at either 100 or 500 K depending on the interactions used. 
In either case, the results show the possibility of such a roughening transition occurring at 
experimentally accessible temperatures. Finally, the effect of such a'roughening transition on 
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the X-ray diffraction from the boundary was estimated and it was found that it would 
correspond to the extinction of certain grain boundary reflections. This would provide a 
possible means of detecting this transition. A better means of observing this transition would 
be grazing-angle diffraction since this is sensitive to the position of the boundary normal to 
the overall boundary plane. 

6. Surfaces 

Metal surfaces have provided a convenierrt proving ground for the EAM. Enough accurate 
measurements are available for some fundamental properties (e.g., surface relaxations) that 
close comparison to experiment is available. At the same time, there exist enough unusual 
phenomena, such as reconstructions and phase transitions, that the EAM has provided a 
useful tool for investigating new physics. 

The EAM is seen to be capable of describing metal surfaces adequately; the key here is the 
role of the many-body interactions incorporated in the model. The reader is reminded of the 
discussion in section 2.2, where it is demonstrated how the effective interatomic interactions 
are influenced by the environment. 

With this in mind, we discuss here the following topics: (1) energies and relaxations of 
unreconstructed surfaces; (2) surface phonons; (3) ordering and phase transition of H/Pd(111); 
(4) structural phase transition of Au and Pt(ll0); and (5) adatom clusters on Pt(100). In all of 
these examples, it is possible to view the predicted trends in terms of many-atom interactions, 
or in terms of coordination effects, or in terms of embedding functions. Within the EAM, the 
different pictures are all closely related. 

Most of the calculations reported in this section were done using the functions from Foiles 
et al. [3]. 

6.1. Surface energies and relaxations 

The energy and structure of the (1 x 1) low-index surfaces of Cu, Ag, Au, Ni, Pd, and Pt 
were obtained. The calculations were performed by minimizing the total energy of thick slabs 
with (100), (110), and (111) surfaces. 

The results for the surface energies are presented in table 8. Generally, the surface 
energies are systematically too low, though the ordering with respect to face is correct. The 
error in the absolute surface energy can be traced back to neglecting the slope of the 
background density experienced by the surface atoms [5]. 

Table 8 
Calculated surface energies of the low-index faces and the experimental average surface energy [106] in units of 
erg/cm 2. The theoretical results are from Foiles et al. [3] 

Face Cu Ag Au Ni Pd Pt 

(100) 1280 705 918 1580 1370 1650 
(110) 1400 770 980 1730 1490 1750 
(111) 1170 620 790 1450 1220 1440 
experimental 1790 1240 1500 2380 2000 2490 

(average face) 
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Table 9 

Relaxation of the top-layer spacing Az12, and of the second-layer spacing Az23, for the low-index faces. For the sake 
of comparison, these values are calculated for unreconstructed geometries. Distances are expressed in ,~. From Foiles 
et al. [3] 

Face Cu Ag Au Ni Pd Pt 

(100) A z12 -- 0.03 -- 0.04 -- 0.13 -- 0.00 -- 0.09 -- 0.14 

AZ23 -- 0.01 - 0.00 0.01 - 0.00 - 0.00 0.01 

(110) Az12 --0.06 --0.07 --0.22 --0.03 --0.16 --0.24 

A Z23 0.00 0.01 0.03 0.00 0.02 0.04 

(111) AZ12 --0.03 --0.03 --0.10 --0.01 --0.07 --0.11 

AZ23 -- 0.00 0.00 0.02 0.00 0.01 0.02 

The change in the interlayer spacings, Az, computed for the relaxed surface geometries 
relative to the spacings for the truncated bulk geometries are presented in table 9. Note that 
all the top-layer spacings show a small contraction. Further, the rougher (110) surfaces show 
larger relaxations than do the smoother (100) and (111) faces. Both of these general features 
agree with the trends found in the experimental data. The relaxations are of the correct sign 
but generally smaller in magnitude than experiment [3]. 

Some other parameterizations of the EAM have given better quantitative agreement with 
experiment. For example, similar work, using different parameterizations of the EAM 
functions, was performed by Voter et al. [77,107,108]. Their work also investigated the 
multilayer relaxations. The agreement with experiment is encouraging. Work on Ni, Pd, Pt, 
and Au has been performed by Ning et al. [109]. Impressive results on the relaxations of these 
surfaces were obtained using the "equivalent-crystal" method [80,81], which is mathematically 
equivalent to the EAM. It would seem, therefore, that while qualitative agreement is possible 
within the general framework of the EAM, quantitative agreement depends somewhat on the 
details of the semi-empirical fitting. 

For comparison to the results obtained by the related corrected effective-medium theory, 
the reader is referred to the paper by Racker and DePristo [66], to the paper by Sinnott et al. 
[68], and to the review by Racker and DePristo [67]. 

6.2. Surface phonons 

Surface phonons are sensitive to the interactions between atoms at the surface. We have 
shown previously how well the EAM reproduces the bulk phonon spectrum. In this section we 
see how the change in coordination modifies the surface phonons. 

Referring to section 4.1, the tensor Aij represents the contribution to the force-constant 
tensor Kij from the environment-dependent effective pair potential ~ij- The other terms in 
Kij include explicit many-atom contributions, which depend on the environment through the 
quantities gi. Just as the change in the effective interactions leads to shorter bond lengths and 
deeper potential wells at the surface, so will the charge density and its gradient modify the 
vibrational frequencies at the surface. The force-constant tensor predicted by the EAM is 
qualitatively different from that of a central-potential model. The structure of this tensor is 
made considerably richer by the inclusion of the many-body terms [49]. 

The bulk phonons of fcc metals were discussed in section 4.1, where good agreement 
between theory and experiment was found. Using the same procedure and the same func- 
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Fig. 8. Comparison of experimental and theoretical phonon frequencies on Cu(100). Only modes of even symmetry 
are shown. The experimental points are from Wuttig et al. [110,111]. The theoretical curves are from Nelson et al. 

[50]. 

tions, the normal modes of a 28-layer slab of Cu(100) were calculated [50]. Both ideal and 
relaxed (1 × 1) surfaces were considered. The calculated phonon modes for the relaxed 
surfaces are compared with experiment [110,111] in fig. 8. The Rayleigh modes S 1 along FM, 
and $4 along FX have been measured, and are in excellent agreement with the calculated 
surface modes. It is worth noting that calculated splitting of the surface modes from the edge 
of the bulk modes is in better agreement with experiment than are the absolute values of the 
surface-mode frequencies. 

The modifications of the force constants at the surface can be viewed in a two-step process. 
First, the bulk is truncated to create the unrelaxed (100) surface. Second, the bulk terminated 
surface is allowed to relax. The overall changes in the constants due to both processes result 
in a 15% softening of the intralayer force constants and a 15% stiffening of the interlayer 
force constants. 

Calculations have also been performed on the (111) surfaces of Cu and Ag [49]. Over the 
past several years there has been considerable interest in the force-constant changes on (111) 
noble-metal surfaces. Measurements of the surface phonon dispersions have been performed 
with He-scattering and EELS experiments. The main point of controversy is the amount of 
softening of the intralayer force constants necessary to account for the observed position of 
the longitudinal-resonance mode. Values of the softening which range from 15 to 70% have 
been proposed. In their study of the Ag(l l l )  surface, Bortolani et al. [112-115] used a 
force-constant model with central and angular interactions including up to second neighbors. 
The surface force constants were determined by fitting the measured inelastic-He-scattering 
cross sections. This procedure produced a 48% softening of the surface nearest-neighbor 
radial intralayer force constant for Ag and Cu. On the other hand, using a much simpler 
nearest-neighbor central-potential model, Hall et al. [116,117] reproduced the observed 
Cu( l l l )  surface phonon spectrum and the inelastic-electron-scattering intensities with only a 
15% reduction: this is a value similar to the one we found for Cu(100). 

Detailed analysis of the EAM results for the (111) surfaces of Cu and Ag have been 
presented by Nelson et al. [49]. The results show that the force constants are modified at the 
surface by 10-15%. Also, features in the dispersion curves due to avoided crossings of surface 
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modes were observed. The existence of these avoided crossings may have contributed to the 
confusion when some of the experimental  results were analyzed. 

Similar work on surface phonons using the E A M  has been carried out by Luo et al. 
[89,90,118]. Also, surface phonon lifetimes have been studied using molecular dynamics and 
the E A M  [119]. Surface vibrational anisotropy and anharmonicity are discussed in Yang et al. 
[120]. 

6.3. H/Pd(111) 

A joint experimental  and theoretical effort [39] led to the discovery of two ordered phases 
for H adsorbed on P d ( l l l )  near  100 K, the lowest critical tempera ture  known for H on a 
transition-metal surface. Low-energy electron diffraction (LEED)  experiments showed the 
existence of (vC3 - x v~)R30 ° diffraction spots for a hydrogen coverage (O) near  1 /3  and 2 / 3  
ML. The system exhibits an o rder -d i sorder  transition: the critical tempera ture  at O = 1 /3  
ML is 85 K, and for t9 = 2 / 3  ML is 105 K. 

The E A M  was applied to the theoretical investigation of this system [40]. Remarkable  
agreement  was found in that the E A M  (without fitting to surface data) predicted not only the 
correct ordered structures for H / P d ( l l l )  but also the critical temperatures  to within bet ter  
than 50 K. 

An important  conclusion of the joint theoretical and experimental  work was that the 
hydrogen atoms are adsorbing on surface and subsurface three-fold sites. The term "sub- 
surface" is here reserved for sites between the top two metal planes. It was shown that the 
subsurface octahedral  sites are close in energy to the surface adsorption sites. The theory 
predicted that at very low temperatures  the ordered structures are hexagonal arrays consisting 
entirely of hydrogen occupying subsurface octahedral sites, giving the (v~- × v~-)R30 ° symme- 
try at both coverages. 

Monte Carlo simulations were performed for the relevant range of coverages and tempera-  
tures. The results of the simulations are compared to experiment in fig. 9. The agreement  
between the theoretical and experimental  phase diagrams was extremely encouraging, espe- 
cially considering that no adjustment of the theory was made to fit to surface properties. 

The source of the H - H  interaction in the f ramework of the EAM is easily understood. We 
can turn directly to the effective interactions calculated in eqs. (6). However, to illuminate the 
nature of the interaction, we will re-derive the effective interactions in a slightly different way. 

150 

1 0 0  - 

5 0 -  

0 

0 

theory T H / P d ( l l l )  

experiment 

P g 

0.25 0.50 0.75 

Fig. 9. Calculated and exper!mental phase diagrams for H/Pd(Ill). The "p" denotes the "primitive" (~/3 × ~/3-)R30 °- 
1H structure (i.e. 61 = 1/3 ML), and the "g" denotes the "graphite-like" (¢3-x ¢~-)R30°-2H structure (i.e. 61 = 2/3 

ML). The experimental results are from Felter et al. [39]. The theoretical results are from Daw and Foiles [40]. 
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For simplicity, consider the interaction of hydrogen atoms occupying only the surface sites. 
On the clean surface, each Pd atom has an embedding energy of Grd(Ps), where Ps is the 
electron density "seen" by a surface Pd atom. An adsorbed H atom contributes a density PH 
to three neighbors on the Pd surface, each of which now has an embedding energy of 
Gpo(Ps + PH)" Nearest-neighbor hydrogen atoms share two atoms in the Pd substrate, each of 
which has an embedding energy of Gpa(ps + p~) + p~)) where the superscripts denote the two 
different hydrogen atoms. Expanding this last embedding'energy in a Taylor series, assuming 
the PH to be small compared to Ps, and subtracting out the single-atom adsorption energies, 
gives a nearest-neighbor interaction energy of 9~,, ¢, a,~(1),~(2) where the factor of 2 comes ~ "~--" pd ' , / J  S J/-" H/-" H ,  

from the number of substrate atoms that have two H nearest neighbors. This interaction is 
simply part of the effective trio interaction in eq. (6b). Because G'~a > 0 and PH > 0, this 
interaction is repulsive. Repeating the argument for second-nearest-neighbor hydrogen atoms 
gives an interaction of G" (-),(1),~(a) because in this case only one substrate atom has two H Pd t / S  F ' H / / H  

neighbors. This argument roughly accounts for the ratio of first- to second-nearest-neighbor 
interactions. Further, since second- and third-nearest neighbors share the same number of Pd 
atoms, their pair energies should be, and are, similar. Thus, the EAM naturally leads to the 
prediction of a substrate-mediated H - H  interaction. The nature of this interaction is different 
from that investigated by other workers [121-124]. In the EAM, the significant H - H  
interactions are short-ranged, being most significant when two hydrogen atoms neighbor the 
same substrate atom. 

More recent work [41] investigated the interactions between H atoms on Ni( l l l )  and on 
Pd(100). For H / N i ( l l l )  the binding-energy difference between the two three-fold sites was 
very small. As expected due to the very small separation, at nearest-neighbor sites there was 
an extreme repulsion. Hydrogen pairs at second- and third-neighbor separations have repul- 
sive interactions on the order of a few meV. The energies for the ordered patterns were 
consistent with the isolated pairs (i.e. multi-site effects were not significant). The interactions 
are smaller than expected from experiment, and the (2 × 1) ordering is predicted instead of 
the observed [125] graphitic (2 × 2). For H/Pd(100), the interactions have realistic signs and 
orders of magnitude, but (2 × 1) ordering is predicted rather than the observed c(2 × 2) [126]. 

6.4. Au and Pt(110)-(1 × 2) 

Theoretical and experimental results (see references in Daw and Foiles [36] and Foiles 
[33]) agree that the (110) surfaces of Au and Pt both reconstruct to a structure with (1 × 2) 
symmetry. Moreover, the (1 x 2) structure has been observed experimentally to undergo a 
reversible transformation to a "(1 × 1)" structure. Careful LEED measurements on Au and 
Pt(ll0) have shown that the transformation is due to a disordering of the missing-row 
structure. The critical temperatures for Au [127] and Pt [128] have been measured at 650 and 
960 K, respectively. 

Before it was clear that the (1 × 2) surface had a missing-row structure, several other 
candidate structures were proposed. Calculations with the EAM demonstrated that the 
missing-row structure is indeed lower in energy than the (1 × 1) structure for both Pt and 
Au(ll0) surfaces [33,36]. The other candidate structures were calculated to be much higher in 
energy. At about the same time the experimental analyses seemed to converge on the same 
conclusion. 

The energy difference between the (1 × 1) and (1 × 2) (missing-row) structures was com- 
puted for Cu, Ag, Ni, and Pd as well, and is presented in table 10. Note that the energy 
differences are only slightly changed by the relaxation of the atomic positions. This result is 
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Table 10 
Surface energy difference, A E =  E ( ( 1 x 2 ) ) - E ( ( 1 X 1 ) ) ,  between the reconstructed missing-row surface and the 
unreconstructed (110) surface computed  both with the atoms in the bulk positions (unrelaxed) and for the fully 
relaxed geometries.  The  energies are in m e V / A  2 (1 m e V / , ~  2 = 16 erg/cmZ).  From Foiles [33] 

Metal AE (unrelaxed) AE (relaxed) 

Cu 1.2 1.1 
Ag - 0 . 5  - 0 . 4  
Au - 2.3 - 1.8 
Ni 1.4 1.3 
Pd - 0.6 - 0.4 
Pt - 2 . 9  - 2 . 1  

rather surprising since the energy gained by relaxing the atomic positions ranged from 1 to 13 
meV/~,  2 - larger than the energy differences between the reconstructed and unreconstructed 
surfaces. These energy differences correctly predict that Au and Pt should reconstruct and 
that Ni and Cu should not. However, they also predict that Pd and Ag should reconstruct, in 
contradiction with experiment, though the computed energy differences are small. 

The reconstruction of the (110) surfaces raises the interesting and important question of 
why only certain of the fcc metals undergo the reconstruction. The EAM provides a simple 
framework within which that question can be addressed. Recall that the calculated energy 
differences between the unreconstructed and missing-row surfaces are the same for the fully 
relaxed atomic geometry as for the case where the atoms are on ideal lattice sites. Thus it will 
suffice in this case to compare the energetics of the surfaces with the atoms on ideal sites. 
This ability to ignore the relaxations simplifies the analysis. 

Ignoring the relaxations, it is a simple matter now to apply the concepts of the effective 
pair and trio interactions at the surface. This allows a simple qualitative comparison of the 
energetics of the missing-row and unreconstructed surfaces by simply comparing the relative 
number of different pair and trio interactions. The number of nearest-neighbor pairs per unit 
area is the same for both of these surface geometries. Since the bulk of the energy comes 
from the nearest-neighbor pair interactions, this explains why the two structures have similar 
energies. The differences between the two structures result from more distant neighbors and 
trio interactions. There are fewer second-nearest-neighbor pairs for the missing-row surface. 
Since the effective pair-interaction term is attractive, this favors the unreconstructed surface. 
(For this reason any pair-interaction model with purely attractive interactions will always 
favor the unreconstructed surface.) On the other hand, the number of nearest-neighbor 
triples per unit area is less for the missing-row surface. (A nearest-neighbor triple is a group 
of three atoms such that two of the atoms are both nearest neighbors of the third atom.) Since 
the effective three-body interactions are repulsive, the trio interactions favor the missing-row 
structure. To first order, the determination of the preferred structure is thus a competition 
between the attractive pair interactions at second-neighbor distance and the repulsive 
three-body interactions at nearest-neighbor distances. 

The importance of the three-body interactions suggests a correlation between the tendency 
to undergo the (1 x 2) missing-row reconstruction and the curvature of the embedding 
function (see eq. (6b)). The curvature of the embedding function is indeed stronger as one 
moves down the column (Ni, Pd, Pt, for example). Thus, we conclude that three-body 
interactions are more important for Pt than for Ni (as was concluded also from table 1). This 
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Table 11 
Geometrical parameters describing the relaxed surface geometries of Au(ll0)-(1 x2 )  (missing row). Comparison is 
made between EAM, LEED, and MEIS. h d  is the change in interlayer spacing, Ap is the row pairing, and b is the 
buckling (see Foiles [33] for precise definitions). All distances are in ,~ 

Adl2 Ad23 Ad34 Ap 2 Ap 4 b 3 

EAM [33] - 0.21 - 0.07 - 0.01 - 0.07 0.08 0. l l  
LEED [132] - 0.29 0.03 0.03 0.14 0.24 
MEIS [133] -0 .26  0.06 ( < 0.1) 0.20 

shows up in the environmental dependence of the effective pair interaction: from fig. 3 we can 
see that this is much stronger for Pt than for Ni. 

The (1 x 2) missing-row surface can also be viewed as a series of small (111) faces, 
suggesting the possibility of forming similar structures with larger (111) facets. In particular, a 
series of such structures can be envisioned that have (1 x n) periodicities where the troughs in 
the missing-row structure are simply made deeper by creating larger (111) facets. In the limit 
of large n, the energy of this surface is X/r3/2 larger than that of the (111) surface. (The factor 
of V/3/2 accounts for the angle between the (111) micro-facets and the average (100) surface 
orientation.) Using the computed energy of the (111) surfaces, the energy of large-n surfaces 
is found to be greater than that of the (1 x 2) for both Au and Pt. For moderate n, the energy 
of the surfaces must be computed explicitly. For Pt, the lowest energy is obtained for n = 2, 
the missing-row structure. For Au, however, the n = 3 and n = 4 surfaces have slightly lower 
energy than the n = 2. "Glue-model" calculations [129] place the (1 x 2) slightly more favored 
than the (1 x 3) or (1 X 4). Experimentally, it is possible to create ordered surfaces with the 
(1 X 3) reconstruction [130,131]. 

The relaxed geometries computed with the EAM for the missing-row structure of Au and 
Pt(110) are compared to the LEED and medium-energy ion scattering (MEIS) results in 
tables 11 and 12 with good agreement. Many of the features of the computed structure agree 
with that determined experimentally. The top-layer atoms are relaxed into the surface and the 
atoms in the third layer are buckled. There is some disagreement between the two types of 
experiments as to the row-pairing. Generally, the theory agrees about as well with experiment 
as the two types of experiments agree with each other. 

The experimental evidence indicates that the missing-row reconstruction undergoes a 
phase transition at higher temperatures. To understand the thermal properties of this 
reconstruction, equilibrium Monte Carlo simulations were performed on a (110) slab [34]. The 
simulation included both small jumps representing vibration/relaxation and larger jumps to 
unoccupied sites. The results indicate the existence of an order-disorder phase transition. 
The resulting structure factor for the Au (0, ½) peak is plotted in fig. 10, and shows the 
transition temperature to be around 570 K. This is in excellent agreement with the experi- 

Table 12 
Same as table 11, but for Pt(ll0)-(1 × 2) (missing row) 

Adl2 Ad23 Ad34 Ap 2 AP 4 b 3 

EAM [33] - 0.25 - 0.07 - 0.02 - 0.05 0.08 0.11 
LEED [134] - 0.26 - 0.18 - 0.12 0.13 0.24 0.32 
MEIS [135] - 0.35 + 0.08 0.0 0.10 
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Fig. 10. The theoretical structure factor at (0, ½) as a function of temperature for Au(110). The theoretical critical 

temperature is 570 K, in excellent agreement with the experimental value of 650 K. (From Daw and Foiles [34].) 

mental value [127] of 650 K, especially considering that only bulk data were used in determining 
the semi-empirical functions. In this sense, these calculations represent the first quantitatively 
realistic prediction of the order-disorder transformation of a surface reconstruction. 

The calculations for Pt(110) show a behavior similar to Au, except that the predicted 
transition temperature was about 750 K. These calculations stimulated experiments on Pt, and 
the recently published results [128] show a critical temperature of 960 K. As one would expect 
from semi-empirical methods like the EAM, the general trend of increasing critical tempera- 
ture from Au to Pt agrees with experiment. 

We have also calculated the (0, 1) spot width for Au(110), parallel and perpendicular to 
the rows, as a function of the temperature. The temperature dependence is similar to that for 
the experimental LEED spot width, which is fairly constant below T c and then increases 
rapidly with increasing temperature. The current theory shows, additionally, that the spot is 
not circular above Tc: the disorder perpendicular to the rows is stronger than that parallel. 

Fig. 11. Snapshot of a randomly chosen configuration from the Monte Carlo simulation of the Au(ll0) surface 
showing structure typical at a temperature slightly above the critical temperature. All atoms are Au atoms, with the 

"adatoms" darkened for illustration• (From Daw and Foiles [34]•) 
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The picture that emerges is as follows. Below the critical temperature, the rows are 
generally long and coordinated but with some defects present. Well above the critical 
temperature, short-range order persists in the form of short chains of atoms along the [110] 
direction but with little coordination among the rows. This is confirmed by snapshots of the 
Monte Carlo simulations, an example of which is shown in fig. 11. 

The persistence of the chains (indeed even the existence of the missing-row reconstruction) 
suggests that the "adatoms" (i.e. the atoms forming the reconstructed layer) experience 
attraction for each other along the rows and effective repulsion across the rows. Again, this 
can be visualized in terms of effective pair and trio interactions. Along the row direction, 
neighboring atoms are at nearest-neighbor distance. The direct nearest-neighbor pair interac- 
tion is strongly attractive. There is also a substrate-mediated interaction, where the adatoms 
form a trio with a substrate atom. For every nearest-neighbor pair of adatoms, there are two 
trios formed with substrate atoms. Across the rows, the atoms interact at second-nearest- 
neighbor distance, so the direct pair interaction is much weaker. However, the trios are still 
present. The competition between the pair and trio interactions makes the net nearest- 
neighbor interaction attractive and the net second-nearest-neighbor interaction weakly repul- 
sive [34]. 

As an additional note, the Monte Carlo simulations showed that relaxations and vibrations 
were significant. In fact, inclusion of the relaxations and vibrations was essential for the 
accurate calculation of the critical temperature. (Calculations that inhibited these effects 
yielded transition temperatures twice those found in the simulations.) This result has two 
major implications. First, the effective interaction between atoms is strongly modified by 
relaxations, which was studied in detail by calculating the energetics of adatom pairs with and 
without relaxations. Second, lattice gas calculations [127] traditionally neglect the effects of 
relaxations and vibrations. Therefore, lattice gas simulations must be carefully interpreted. 

6.5. Adatom clusters on Pt(O01) 

The interactions of metal adatoms can be studied systematically by depositing adatoms 
onto the tip of a field ion microscope. The stability of various cluster geometries can then be 
studied as a function of the number of atoms in the cluster. In a joint experimental and 
theoretical effort, the stability of Ni, Pd, and Pt clusters on a Pt(100) substrate was examined 
[51,52]. 

The EAM was used to calculate the energy of various structures of Pt clusters on Pt(100). 
Two geometries were found to be important; a linear chain of atoms arranged along a [011] 
direction and close-packed-island arrangements. Table 13 shows the preferred geometry for 
clusters of up to six atoms. For clusters larger than six atoms, an island configuration was 

Table 13 
Preferred structure of  the various small clusters of  Pt adatoms on Pt(100). The  competing structures are a linear 
cluster and an island cluster of  specified size. The  energy difference is between the preferred structure and the 
high-energy structure computed with and without relaxations. The  energies are in meV. From Schwoebel et al. [51] 

Size Stable geometry AE  (relaxed) AE  (unrelaxed) 

3 linear 159 - 1 
4 island 52 438 
5 linear 32 - 462 
6 island 240 915 
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always preferred. Note that the calculations predict an alternation between the linear and 
island structures as the size of the cluster increases. Such an oscillation had not been seen 
before. Table 13 also lists the computed energy difference between the two alternate 
geometries including all relaxations. (The unrelaxed values will be discussed below.) In 
addition, the seven-atom cluster was studied. The preferred structure is the six-atom rectangle 
with the seventh atom in any of the sites next to one of the corner atoms of the rectangle and 
not next to the center atom of the long side of the rectangle. 

The experimental observations of the cluster geometries confirm the calculated results 
shown in table 13. Clusters of three and five atoms always take a linear shape after annealing 
and clusters of four and six atoms always form a close-packed island after annealing. In 
addition, the seven-atom cluster has also been observed. The seventh atom of the cluster was 
always found next to one of the corner atoms and never next to the central atom of a side, in 
accord with the theoretical predictions. 

One of the interesting features of the theoretical calculations of the cluster energies is the 
importance of relaxations. The last column of table 13 shows the energy differences between 
the two cluster structures computed with the atoms on ideal lattice sites. Without relaxations, 
the close-packed-island geometry is always preferred over the linear arrangement. Further, 
the contribution of relaxations to the energy difference is larger than the actual energy 
difference. Thus the inclusion of relaxation is crucial to the accurate calculation of the 
energetics of clusters. 

The adatom energetics have sometimes been modeled by pair-interaction lattice models. 
The energetics obtained from the EAM including relaxations were used to determine two-, 
three-, and four-body interaction parameters. It was found that the three- and four-body 
interaction terms are not negligible in this case. In particular, the four-body interaction was 
found to be attractive by 163 meV. Therefore, it is important to consider more than pair 
interactions when modeling the energetics of the adatoms. Generally, however, the nearest- 
neighbor pair interaction is attractive, while the second-neighbor interaction is repulsive. This 
result is due to substrate-mediated interactions similar to the interactions on the (110) surface 
as discussed in section 6.4. 

Wright et al. [52] continued this work by considering clusters of Pd and Ni adatoms on 
Pt(001). For Pd/Pt(001), the results were very similar to those for Pt/Pt(001): the stable 
configurations were predicted to be close-packed islands except for three adatoms, for which 
a linear chain was the predicted stable configuration. These results again agreed very well 
with FIM observations. For Ni/Pt(001), the results were quite different from Pt or Pd/Pt(001). 
For Ni, the stable configurations were predicted to be linear chains for all numbers of 
adatoms. The origin of this difference can be traced to the different bond lengths between the 
metals, as reflected in the different lattice constants. The importance of substrate relaxations 
was also investigated, and it was found that substrate relaxations play a significant role in 
determining the relative stability of linear versus close-packed structures. 

7. ~ l ~ s  

The EAM has been applied to the study of compositional variations that can occur near 
defects in alloys. The advantages of the EAM over other approaches for these calculations are 
two-fold. First, the formulation of the EAM in terms of the local electron density makes the 
extension of these ideas to the case of alloys straightforward. The interaction of the atom with 
the electron gas does not depend on the origin of the electron gas (i.e. the specific chemical 
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identity of the various neighbors); rather it is assumed to depend only on the local electron 
density. The effect of changing the chemical identity of the neighbors only enters this part of 
the problem through the change in the electron densities. The advantage of this assumption is 
that the embedding function that is used for the case of pure metals should still be valid for 
the case of alloys. This makes the application of this method to alloys relatively simple. 

The other advantage of using the EAM relates to the computational simplicity of the 
method that allows one to perform atomistic simulations. There are many factors that enter 
into the energetics of alloys near a defect. One of these is sometimes referred to as the 
chemical effect, which represents the difference in the bond strengths between different 
chemical species. This effect is what bond-breaking models of the energetics focus on. There 
are other contributions to the free energy that can also be important that require the explicit 
consideration of the atomic positions. One is the interaction of the chemical species with the 
local stress fields at the interface (sometimes referred to as the "size effect"). This contribu- 
tion is hard to incorporate in lattice models, but is incorporated naturally in atomistic models. 
Vibrational contributions to the free energy can also be important. Again these are included 
naturally in finite-temperature atomistic simulations such as Monte Carlo. Finally, at finite 
concentrations, the interactions between the chemical species can lead to ordering effects. 
These can be treated directly by using Monte Carlo simulations. 

One should also be aware of the possible errors in treating certain alloys with the EAM. In 
addition to the restrictions mentioned in previous sections for elemental metals, the addi- 
tional complexity added by alloying additions must be treated with caution. Large charge 
transfer in an alloy will not be treated well in the EAM. And, as before, any effects arising 
because of subtleties in the Fermi surface have been completely ignored in the EAM. These 
caveats must always be kept in mind. However, we believe that for the situations presented in 
this review these restrictions are obeyed. 

A variety of examples of applying the EAM to alloys will be presented: (1) surface 
segregation in the dilute limit; (2) surface segregation in Ni-Cu; (3) surface segregation and 
ordering effects at finite concentration; and (4) segregation at grain boundaries. 

The first is the case of surface segregation in the dilute limit. This calculation allows the 
characterization of the EAM results without the complication of concentration effects. Even 
in the dilute limit, it is possible to see the presence of interesting concentration oscillations in 
some systems. Moving away from the dilute limit, the Ni-Cu system is expected to be 
dominated by the bond-strength effects and so this work provides a test of the ability of this 
method to treat this aspect of the problem. We then consider some examples of ordering 
effects at finite concentration. These include the short-range compositional order in Pd-no- 
ble-metal surfaces, the formation of ordered surface alloys in the Cu-Au system, and the 
reduction of order that occurs at grain boundaries in the ordered intermetallic compound 
Ni3A1. Finally, we explore the relationship between the segregation at grain boundaries in 
two systems (Ni-Cu and Pt-AU) and the effects of local strain fields at the boundary. 

7.1. Dilute surface segregation 

Taking the dilute limit simplifies the study of segregation in alloys. Frequently the dilute 
results point t o  interesting results that should be present at higher concentrations. With that 
in mind, we first present the results of the EAM for dilute alloys. 

~Foiles, Baskes, and Daw [3] studied dilute surface segregation in the binary alloys 
composed of the fcc metals Cu, Ag, Au, Ni, Pd, and Pt. To test the ability of the EAM 
functions to correctly predict segregation, the zero-temperature energetics of an impurity 
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Table 14 
The energy of a single impurity in the first and second atomic layers of a (100) surface relative to the energy of the 
impurity in the bulk of the host material. The energies are given in eV, and include relaxations. The first line is the 
energy in the first atomic layer and the second line is the energy in the second atomic layer. From Foiles et al. [3] 

Host 

Cu Ag Au Ni Pd Pt 

Cu 0.10 0.15 -0.18 0.03 -0.04 
- 0.01 - 0.07 0.02 - 0.12 - 0.09 

Ag - 0.46 - 0.07 - 0.75 - 0.25 - 0.44 
- 0.04 - 0.03 - 0.03 - 0.15 - 0.06 

Au - 0.40 0.11 - 0.94 - 0.18 - 0.49 
- 0.01 0.01 - 0.03 - 0.08 0.04 

Ni 0.11 0.11 0.15 0.02 -0.01 
- 0.03 - 0.03 - 0.13 - 0.19 - 0.20 

Pd - 0.13 0.24 0.21 - 0.62 - 0.23 
0,04 0.02 0.04 0.02 0.12 

Pt 0.15 0.42 0.38 - 0.32 0.22 
0.01 - 0.01 - 0.05 0.00 - O. 10 

a t o m  n e a r  a (100) sur face  were  compu ted .  Tab le  14 p re sen t s  the  energy  of  a subs t i tu t iona l  
impur i ty  a tom in e i the r  the  first  or  second  a tomic  layer  of  a (100) face  of  a pu re  me ta l  slab 
c o m p u t e d  re la t ive  to the  energy  o f  tha t  subs t i tu t iona l  impur i ty  in the  bulk.  A nega t ive  va lue  of  
this  energy  thus  impl ies  tha t  the  impur i ty  in ques t ion  will be  en r i ched  in tha t  a tomic  layer.  Of  
course ,  these  ene rg ies  a re  c o m p u t e d  in the  d i lu te  l imit  and  can change  subs tant ia l ly  if t he re  is 
a s ignif icant  concen t r a t i on  of  the  impur i ty  n e a r  the  surface.  The  uti l i ty of  these  numbe r s  is 
tha t  they  ind ica te  the  segrega t ing  spec ies  and  suggest  the  m a g n i t u d e  of  the  segrega t ion .  

The  segrega t ing  spec ies  is known exper imen ta l ly  for  18 o f  the  cases  examined  he re  
[136-138].  In  all o f  these  cases,  the  ca lcu la t ions  p red i c t  tha t  the  expe r imen ta l ly  obse rved  
segrega t ing  spec ies  will be  en r i ched  in e i the r  the  first  or  second  a tomic  layer.  T h e r e  are  two 
in te res t ing  f ea tu re s  in these  results .  Firs t ,  in many  cases  the  sign of  the  segrega t ion  energy  
differs  for  the  two p lanes .  This  reversa l  of  sign suggests  tha t  the  compos i t ion  prof i le  may  
osci l la te  in these  cases.  Such behav io r  was found  in the  s tudy of  the  N i - C u  system as 
d iscussed  in sec t ion  7.2. Second ,  for  Cu o r  Ni  in Pd  or  Pt  hosts,  the  segrega t ion  energy  is 
l a rge r  for  the  second  layer  than  for  the  first. This  suggests  r a the r  in te res t ing  compos i t ion  
prof i les  for  these  cases,  which  is exp lo red  in the  following. 

7.2. Bond breaking (surface segregation in Ni-Cu) 

The  N i - C u  al loy was s tud ied  th rough  the  full range  of  compos i t ions  by Foi les  [42]. The  
funct ions  used  in these  s tudies  were  t a i lo red  specif ical ly  for the  bu lk  N i - C u  system (as 
o p p o s e d  to  the  funct ions  of  Foi les  et  al. [3,4], which were  for  severa l  e l emen t s  and  the i r  alloys 
- see  t ab le  2). T h e  bu lk  p r o p e r t i e s  of  this al loy were  s tud ied  by M o n t e  Car lo  s imulat ions .  
T h e s e  s imula t ions  showed tha t  the  excess en tha lpy  agrees  well  with the  t h e r m o d y n a m i c  data .  
T h e  dev ia t ions  of  the  la t t ice  cons tan t  f rom V e g a r d ' s  law o b t a i n e d  f rom the  E A M  have a small  
posi t ive va lue  whi le  expe r imen t s  show a small  negat ive  deviat ion.  However ,  it should  be  no ted  
tha t  the  la t t ice  cons tan t s  a re  cor rec t  to wi th in  0.03 A over  the  en t i re  compos i t ion  range.  
Final ly ,  the  sho r t - r ange  o r d e r  in the  al loy was c o m p u t e d  and  found  to be  in good  accord  with 
the  diffuse neu t ron  sca t te r ing  data .  
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To obtain a qualitative idea of the segregation, we examine the heat of segregation in the 
dilute limit. As expected, the segregation energy for Cu in Ni surfaces is negative and that for 
Ni in the first layer of Cu is positive. This result is in accord with the known segregation of Cu 
to the surface of these alloys. The segregation energy for Cu in the first layer of the Ni(100) 
surface has been determined experimentally by Egelhoff [139] using X-ray photoemission 
spectroscopy. His value for the heat of segregation is -0 .43 + 0.04 eV. 

The EAM value was calculated with both sets of functions available. With the functions 
from Foiles et al. [3,4], this value is -0 .18 eV (see table 14). With the functions from Foiles 
[42], which were tailored for the Ni-Cu system, the value is -0 .43 eV. It is fair to say then 
that the EAM estimates the heat of segregation at about -0 .3  eV, in reasonable agreement 
with experiment. 

The surprising feature of the results is the heats of segregation to the planes just below the 
surface. Here the energies show that Ni is attracted to the second or third atomic plane, or 
equivalently that Cu is repelled from these planes. This oscillation of the heat of segregation 
suggests that the composition profile should not be monotonic. This prediction agrees with 
the experimental results of Ng et al. [140] using field ion microscopy. They observed a 
depletion of Cu from the near-surface atomic planes for a NiCu(5%) sample at T = 800 K. 

The above heats of segregation are for the extreme dilute limits. Since these energies are 
fairly large, one expects that the surface layer will be strongly enriched in Cu for all bulk 
compositions. This change in local composition will affect the energetics of the atoms near the 
surface. Therefore, the above heats of segregation cannot be used to estimate surface 
compositions. To address this issue, Monte Carlo simulations have been performed at a 
temperature of 800 K. This temperature is in the range of the temperatures for the various 
experimental studies of this system and high enough so that equilibrium in the experiments is 
expected. Simulations have been performed for the three low-index faces for a variety of bulk 
compositions spanning the entire concentration range. 

The layer-by-layer compositions computed from the simulations are presented in table 15, 
and the concentration of the first three layers of the (111) surfaces is plotted as a function of 
bulk concentration in fig. 12. The trends suggested by the segregation energies in the dilute 
limit are retained in these results. The first layer is almost pure Cu for all the compositions 
and crystal faces studied here. Further, there is a noticeable enrichment of Ni in the 
near-surface atomic layers. 

Table 15 
The calculated composition profile in % Cu for Ni-Cu alloys at T = 800 K. The subscripts refer to the atomic layers. 
From Foiles [42] 

Face Xbulk X 1 X 2 X 3 X4 X 5 

(111) 4.8 89.4 3.0 4.0 5.0 4.8 
29.2 95.0 11.0 19.1 27.1 29.0 
55.2 96.2 21.3 43.2 56.9 57.0 
71.9 97.5 39.0 70.2 76.8 71.3 
93.3 99.1 79.3 93.8 93.6 92.8 

(100) 25.0 97.5 11.7 11.6 18.6 23.5 
57.0 98.1 22.7 36.6 57.7 60.3 
73.9 98.7 38.6 60.9 78.1 75.8 

(110) 29.1 99.1 36.8 14.1 19.8 27.0 
55.1 99.4 43.9 25.4 , 40.3 54.0 
72.0 99.7 55.8 44.3 64.8 76.3 
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Fig. 12. The calculated Cu layer concentrations as a function of bulk composition at 800 K for the (111) surface of 
Ni-Cu alloys. The solid curve is the top layer, the long dashed curve is the second layer and the short dashed curve is 
the third layer. The points are the experimental values for the top layer from Webber et al. [141] (+), Brongersma et 

al. [142] (x), Brongersma et al. [143] (®), Ng et al. [140] (zx), and Sakurai et al. [144] (v). (From Foiles [42].) 

There  have been several experimental studies of the surface composition of Ni -Cu  alloys 
including five studies appropriate to single-crystal (111) face [140-144]. The results of these 
experiments for the top-layer composition are compared with the theoretical predictions in 
fig. 12. In four of the five cases the agreement is good. The experimental situation is 
controversial for the case of alloys with high Cu content. Sakurai et al. [144] recently 
measured the segregation for Cu-rich alloys using FIM. They find lower levels of segregation 
than in previous studies for alloys with around 50% Cu. They also find a reversal of the 
segregation with Cu depleted from the surface for bulk composition of more than 90% Cu. 
Subsequent to these experiments, Brongersma et al. [142,143] measured the segregation of 
Cu-rich alloys using LEIS. They find surfaces that are enhanced in Cu in accord with our 
calculations and in disagreement with the work of Sakurai et al. 

7.3. Compositional ordering 

In addition to compositional variations with depth from the surface, segregating compo- 
nents may exhibit ordering (or clustering) within the plane of the interface. In the following 
sections, we will discuss work relating to: short-range order in the segregating species; 
long-range order in the segregating species; and loss of long-range order at an interface in an 
ordered alloy. 

7.3.1. Example of short-range order: surface segregation in Pd-noble-metal alloys 
The segregation behavior predicted using the functions of Foiles, Baskes and Daw [3] has 

been studied in some detail for a few of the binary systems. Foiles [45] studied the segregation 
and the surface short-range order of the alloys of Pd with the noble metals. These alloys are 
catalytically interesting because they combine a catalytically active element, Pd, with catalyti- 
cally inactive elements, the noble metals. Such binary alloys are known to exhibit chemical 
selectivity in their catalytic behavior. 
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Fig. 13. The composition in at.% of the first (X) and second (+) atomic layers of the (111) surface of Pd-Au as 
computed by Monte Carlo simulations at 800 K. The triangles (z~) represent ion scattering results for the surface 
composition of a polycrystalline sample at 873 K [145] and the circles (o) are ion scattering results for a 

polycrystalline sample at 773 K [146]. The lines are a guide to the eye. (From Foiles [45,46].) 

In this study the composition profiles are computed at finite concentrations and at finite 
temperatures for the (111) surfaces. The results for the composition of the first two atomic 
planes of the (111) surface of the P d - A u  alloys at a temperature of 800 K are presented in fig. 
13. The first atomic plane is seen to be enhanced in Au compared to the bulk while the 
second and deeper  planes have compositions close to the bulk value. The first-layer composi- 
tions are compared to two different ion scattering measurements of the surface composition 
by Swartzfager et al. [147] for a polycrystalline surface at 873 K and by Hetzendorf  and Varga 
[148] for a polycrystalline surface equilibrated at 773 K. While the experimental results are for 
a polycrystalline sample rather than the single-crystal (111) face of the calculations, the results 
indicate that the magnitude of the Au segregation predicted by the calculations is reasonable. 
It is also important to note that the segregation is found to be confined to a single monolayer 
at the surface. This result is in accord with the results of Hetzendorf  and Varga [148] where it 
was found that significant segregation was observed with ion scattering (which is sensitive to 
just the surface layer) whereas with Auger spectroscopy (which samples several atomic layers) 
only slight segregation was observed. This experimental result implies that the segregation 
occurs in a very thin layer at the surface, in agreement with the calculations. 

In addition to determining the composition profile of the surface, the simulations can be 
used to study the short-range order  of the alloy surface. This study is of interest both for 
fundamental reasons and because the short-range order  determines the relative abundance of 
compositionally different adsorption sites on a surface. It is thought that the presence of 
compositionally different adsorption sites is a factor that leads to the chemical selectivity of 
binary alloy catalysts. An important adsorption site on (111) surfaces is the three-fold hollow 
site located at the center of the triangle of nearest neighbors. For a binary alloy, four different 
configurations of these triangles of surface atoms are possible depending on how many atoms 
of each type are present. 

The relative abundance of local clusters of different composition depends both on the 
overall composition of the surface as well as on the short-range order of the alloys in the 
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surface layer. Since the excess enthalpies of all the alloys considered here are negative, these 
alloys are ordering alloys. That  is, the short-range order favors placing atoms of different 
types on adjacent lattice sites. Thus one would expect that the abundance of triangles 
containing three atoms of the same element would be suppressed while the abundance of 
triangles containing a mixture of elements would be enhanced. 

The computer  simulations contain information on the short-range order of the alloy in 
addition to the average composition on each plane. The relative abundance of the different 
types of triangles has been studied quantitatively by counting the number of nearest-neighbor 
triangles with 0, 1, 2, or 3 noble-metal atoms that occur in the surface layer of the simulations. 
These values are then compared with the number that would be present if the noble metal 
atoms were distributed randomly in the top layer. In particular, if P~ is the probability of 
finding an N-atom cluster with i noble-metal atoms, then we can define a correlation 
function, g~v, by the relation 

i _ e~v- { [ N ! / ( N - i ) ! i ! ] x i (  1 ,N-J1 i --X) ~gN, (9) 

where x is the fraction of noble-metal atoms in the surface layer. The quantity in curly 
brackets is the probability expected for a random distribution so that g equals one if there is 
no correlation. 

Fig. 14 presents the correlation function, g, for the abundance of each type of nearest- 
neighbor triangle found on the (111) surfaces of the P d - A u  alloy. The behavior found for the 
P d - A g  and P d - C u  alloys is very similar. For all compositions, the presence of trios containing 
either 0 or 3 noble-metal atoms is reduced as expected based on the bulk thermodynamics. 
The presence of triangles containing either 1 or 2 noble-metal atoms is enhanced. The 
behavior of these trio correlations can be understood based on the pair correlations as has 
been discussed by Foiles [45]. 

7.3.2. Example of long-range order: surface segregation in Cu-Au alloys 
Besides short-range order, it is also possible for a surface layer to contain long-range order, 

as demonstrated by Foiles [47]. This work was motivated by experimental studies of the 
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deposition of Au on the Cu(100) surface. These studies showed the existence of a c(2 x 2) 
ordered structure after the deposition of 1/2 ML of Au [149-151]. The analysis of the LEED 
data shows that rather than an ordered overlayer of Au adatoms, the surface consists of a 
surface plane containing both Au and Cu with the Au atoms arranged in a c(2 × 2) pattern 
[151]. The second atomic plane was found to contain solely Cu. The surface layer was also 
found to be rippled with the Au atoms in the top layer positioned 0.1 ,~ higher than the Cu 
atoms. The separation of the first and second Cu layers was found to be expanded by 0.08 ,~ 
compared to the bulk spacing. These results are interesting because they suggest the existence 
of a stable ordered surface alloy. In this work, theoretical calculations are presented which 
support the results of the experimental studies of the (100) surface and determine the 
ordering on two other low-index surfaces, the (111) and (110). 

During the initial stages of the deposition of Au on a clean Cu(100) surface, Au atoms will 
be placed as adatoms on the Cu surface. One must then determine whether the Au will prefer 
to form a layer on top of the Cu surface, mix with the Cu in a region localized to the surface, 
or simply diffuse into the bulk. To address this question the energy of a Cu(100) surface with 
a single Au adatom was computed and compared to the energy for a Cu surface with a Cu 
adatom and a Au substitutional atom in the surface layer. This energy difference corresponds 
to a process where the deposited Au atom exchanges with a Cu atom in the surface. It is 
found that the incorporation of the Au adatom into the surface is energetically favored by 
0.14 eV. Thus the energetics favor the initial incorporation of the deposited Au into the 
surface layer. The energy of the Au atom in the surface layer is 0.40 eV below that of the 
substitutional in the bulk and the energy of the substitutional in the second atomic layer is 
0.01 eV below its energy in the bulk (see table 14). Therefore, the initial Au atoms will be 
energetically bound to the surface atomic layer in accord with the experimentally deduced 
structure. 

In order to determine the ordering, if any, of the Au atoms in the surface layer, Monte 
Carlo simulations were performed for slabs exposing the (100), (110), and (111) surfaces at a 
temperature of 300 K. The chemical potentials for the calculations were chosen so that there 
is only dilute Au content in the bulk of the slab. (The relative composition of the bulk 
material and the surface will be discussed below.) To avoid prejudicing the simulation results 
by the initial distribution of Au atoms, the slab initially contains only Cu and Au atoms are 
then created by the simulation. Figs. 15-17 show snapshots of randomly selected atomic 
configurations generated during the simulations for the (100), (111) and (110) surfaces 
respectively. For all three surfaces, the Au atoms are essentially confined to the surface 
atomic plane. For the (100) surface (see fig. 15) a clear c(2 x 2) arrangement of the atoms with 
a half monolayer of Au is seen. This agrees with the symmetry and coverage found in the 
experiments. For the (111) surface (see fig. 16), the ordered structure occurs with 1/3 of a 
monolayer of Au and a primitive (v~-X vC3)R30 ° structure. (The particular configuration 
shown contains a defect - namely, a Au site occupied by a Cu atom near the center of the 
figure.) The snapshots in fig. 17 of the (110) surface is from a simulation containing 4 times 
the surface area that was usually used. The majority of the surface shows a c(2 x 2) ordering 
of the Au atoms at a half monolayer but also contains a defected row. This kind of defect is 
seen in several snapshots of this surface. 

The calculations also determine the relative compositions of the surface layers and the bulk 
material corresponding to thermal equilibrium at room temperature. For the (100) and (111) 
surfaces, there is a wide range of bulk compositions for which the surface composition is 
approximately 1/2 or 1/3 respectively. This indicates that these surface phases are particu- 
larly stable with respect to changes in stoichiometry. In addition, the composition of the 



The embedded-atom method 291 

Fig. 15. A snapshot  of  a randomly chosen configuration 
from the Monte  Carlo simulation of the (100) surface 
of Cu containing dilute amounts  of Au  showing the 
c(2 x 2) ordered structure. The  filled circles are Au 
atoms and the empty circles are Cu atoms. The  simula- 
tions are for a temperature  of  300 K and a bulk Au 

content  of 0.1 at.%. (From Foiles [47].) 

Fig. 16. As in fig. 15 except showing the a r rangement  
of  Au on the (110) surface for a bulk composition of 

0.01 at.% Au. (From Foiles [47].) 

second layer was found to be similar to that of the bulk for both of these surfaces. For the 
(110) surface, there is not a significant plateau at 1//2 ML - suggesting that the appearance of 
this ordered structure depends somewhat on bulk composition. 

The calculations also give information about the detailed atomic positions at the surface. 
For all three of the surfaces studied here, the calculations show a rippled surface with the Au 
atoms sitting somewhat above the Cu atoms in the surface plane. For the (100) surface, the 
separation of the second and third atomic planes is within 0.005 A of the bulk spacing. The 
spacing from the second atomic layer to the Cu atoms in the surface is 0.02 .~ less than the 
bulk interplanar spacing and the spacing to the Au atoms is 0.16 A greater than the 
interplanar spacing. This gives a rippling of 0.18 .~ in the surface layer. The second atomic 
plane has no rippling. Wang et al. [151] find in their LEED analysis that the spacing from the 
second plane to the Cu atoms in the surface is expanded by 0.08 .~ from the bulk spacing and 

Fig. 17. As in fig. 15 except showing the a r rangement  of  Au  atoms on the (111) surface for a bulk composition of 
0.1 at.% Au. (From Foiles [47].) 
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that the spacing from the second plane to the Au atoms is expanded by 0.18 ,~ from the bulk 
spacing. This gives a rippling of 0.1 A in the surface plane. The theory and LEED analysis 
agree on the position of the Au atoms with respect to the bulk but the calculations place the 
Cu atoms in the surface plane 0.1 A closer to the bulk. 

These calculations have shown that the deposition of Au onto the (100) surface of Cu 
should result in the incorporation of the Au atoms into the surface atomic layer with the Au 
atoms arranged in a c(2 x 2) pattern. In addition, the surface should be rippled with the Au 
atoms residing above the Cu atoms. These results agree with recent LEED experiments. Also, 
the ordering of Au deposited on the (111) and (110) surfaces has been predicted. More 
generally, the calculations show that compositionally ordered surface layers of Au and Cu 
exist in equilibrium with a compositionally disordered bulk Cu containing dilute amounts of 
Au. 

7.3.3. Loss of long-range order: segregation to grain boundaries in Ni3AI 
As a rather different example, we consider in this section the segregation of anti-site 

defects to grain boundaries. In this case, the bulk phase is an ordered alloy (Ni3AI). The 
introduction of a different stoichiometry in the bulk causes anti-site defects to segregate to 
the boundary which in turn causes a loss of long-range order at the boundary. 

Three different boundary geometries were considered in this study [21], a X5(001) twist 
boundary, a ,~13(001) twist boundary, and a ~5(210) symmetric tilt boundary. The simulations 
were performed both at 500 K and at 1000 K. Simulations were performed for three sets of 
chemical-potential differences corresponding to a Ni-rich bulk, an Al-rich bulk and an ideal 
stoichiometric bulk. 

The compositional structure determined by the simulations for the twist boundaries at 
ideal stoichiometry is very simple. The (100) planes of the Ni3A1 structure alternate between 
pure Ni and an equal mix of Ni and A1. At the two [100] twist grain boundaries, this 
alternating pattern of the (100) planes parallel to the boundary continues uninterrupted 
through the boundary. Thus the compositional ordering is the same that would be obtained by 
taking an ideal Ni3AI crystal and rotating the two halves to form the boundary. This result is 
not surprising since the interactions favor the presence of Ni-A1 nearest-neighbor pairs and 
this structure accomplishes that. The structure of the tilt boundary is more complicated. The 
atoms originally in the (210) plane on each side of the boundary combine to form one dense 
plane with little compositional order. The atoms in the next (210) plane on each side of the 
boundary have positions close to those in the bulk crystal. 

The overall composition of the boundary region was studied as a function of the bulk 
composition. At the ideal 3:1 bulk composition, the average composition of the grain 
boundaries was also 3 : 1. For Ni-rich samples, the grain boundary region is found to have a 
further enhanced Ni concentration relative to the bulk and for the Al-rich samples, the 
boundary is enhanced in Al. This effect can be quantified in terms of the interfacial excess of 
one of the two components. The interfacial excess of Ni is defined as the difference per unit 
area of the boundary between the total number of Ni atoms in the sample (including the 
interface) and the number that would be present if the bulk composition is assumed 
throughout. The Ni excess computed at 1000 K was similar for the different boundaries 
studied and is approximately - 0.015/.~ 2 for a bulk composition of 74 at.% Ni, 0 for 75 at.% 
Ni and 0.012/A 2 for 76 at.% Ni. This behavior can be qualitatively understood by considering 
the energy to create anti-site defects near the boundary. (An anti-site defect corresponds to 
placing a Ni atom in a lattice site normally occupied by an Al atom or vice versa.) The 
anti-site formation energies for sites near the boundary are reduced by 0.2 to 0.4 eV for both 
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types of anti-site defects. Thus it is energetically favorable to create either kind of anti-site 
defect at the boundary rather than in the bulk material. Therefore, the change in composition 
of the boundary region can be thought of as being due to the binding of anti-site defects to 
the boundary region. 

In addition to the overall composition of the boundary region, the compositional order of 
the boundary is also affected by the bulk composition. This is most easily seen for the twist 
boundaries. For boundaries that are Al-rich, the excess AI could either be placed in the Ni 
plane or in the Ni sites of the mixed composition plane. The simulations show that most of 
the A1 goes to the Ni plane. For the Ni-rich case, one would simply expect to replace the A1 
atoms in the mixed composition plane with Ni atoms. However, the simulations indicate a 
reduction in the ordering within the mixed composition plane. For the ,~13 boundary at a 
bulk composition of 24.5 at.%, there are three times more anti-site defects in the mixed 
composition plane than are required by the reduced A1 concentration in that plane. In 
addition, the Ni plane in this boundary is found to contain 4 at.% A1 atoms even though the 
system is deficient in A1. Thus the compositional ordering is reduced near the boundary in the 
case of Ni-rich alloys. It is important to note that this disordering effect is very localized. Only 
the planes immediately adjacent to the boundary are affected. 

There is significant interest in whether the grain boundaries in this alloy are composition- 
ally ordered or disordered. King and Yoo [152] have pointed out that compositional disorder- 
ing at a boundary may affect the plastic deformation, in which dislocations impinge on a 
boundary. High-resolution electron microscopy has been used to search for such a disordered 
region in boron-doped nickel aluminide alloys. The results are inconclusive. Mackenzie and 
Sass [153] reported a large (~ 40 .~ thick) region of compositional disorder at the grain 
boundaries. Mills [154] does not find a large region of disorder. His observations indicate that 
if there is compositional disorder at the boundary, it is confined to one or two planes on 
either side of the boundary. This conclusion is consistent with the very localized disordering 
seen in the above simulations (in boron-free material). 

7. 4. Segregation in strain fields 

An interesting facet of segregation at grain boundaries is the role of strain. It is possible to 
view some boundaries as arrays of dislocations. In that case, it may be possible that the 
segregating species interact with the grain boundary dislocations. As examples of this effect, 
we consider segregation to: an edge dislocation; a twist grain boundary in Ni-Cu; and a twist 
grain boundary in Pt-Au. 

7.4.1. Segregation to a sessile edge dislocation 
In this section we examine the calculation of segregation at an edge dislocation in the 

Ni-Cu alloy system [44]. The particular dislocation studied has a Burgers vector of (a/2)[l10] 
and the dislocation line is along the [112] direction. In a fcc lattice this dislocation separates 
into two partials with Burgers vectors (a/6)(112). Free surfaces are used in the remaining 
two directions. The chemical-potential difference was chosen to correspond to Ni with 10 
at.% Cu and the temperature used in the simulations was 800 K. 

The average composition as a function of position within the plane perpendicular to the 
dislocation line is presented in fig. 18. The most dramatic and important features of these 
results are the two peaks in the composition. The peaks are located at the centers of the two 
partial dislocations and have compositions of around 40 at.% Cu. This is a significant 
enhancement over the bulk Cu content of 10 at.%. The cliff on the front side of the peaks (as 
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Fig. 18. Calculated Cu concentration of an (a/2)[110] edge dislocation in Ni-10 at.% Cu at 800 K as a function of 
position perpendicular to the dislocation core. The length of the [111] axis is 50 .~ and the length of the [110] axis is 
62.5 .~. The Cu enrichment occurs predominantly at the partial dislocation cores on the expansive side of the slip 

plane. (From Foiles [44].) 

shown in the figure) is located at the slip plane of the dislocation. On the other side of the slip 
plane, there is a small depletion of Cu. The Cu enhancement occurs on the expanded side of 
the slip plane and the depletion on the compressed side. Note that the details of the 
composition profile away from the cores are not reliable in these calculations since the 
boundary conditions do not reflect the correct long-range strain field. It is important to note 
that there is significant segregation to the core of the dislocation. This is the region where 
treatments based on elasticity theory, such as the concept of a Cottrell atmosphere [155], 
cannot be applied. The ability to study the core region is the main power of this approach. 

7.4.2. Segregation to (001) twist boundaries in Ni-Cu 
The segregation to three different (001) twist boundaries in Ni-Cu has also been computed 

[22]. In particular, the E5 (36.9°), ,~13 (22.6°), and ~61 (10.4 °) twist boundaries are simulated 
for bulk Cu concentrations of 10, 50 and 90 at.%. The simulations were performed at 800 K. 
The results for the overall composition of each of the three planes adjacent to the boundary 
are presented in table 16. In all cases the grain boundary region is enriched in Cu relative to 

Table 16 
Composition of the first three planes adjacent to the grain boundary computed by Monte Carlo simulations using the 
embedded-atom method. The net expansion (in .~) of the grain boundary normal to the interface is also listed. The 
statistical uncertainty in the compositions is + 1%. From Foiles [22] 

First plane Second plane Third plane Net expansion 

NiCu(10%)E5 74% Cu 22% Cu 11% Cu 0.60 
NiCu(10%)E13 62% Cu 24% Cu 11% Cu 0.35 
NiCu(10%).~61 41% Cu 27% Cu 15% Cu 0.44 
NiCu(50%)E5 78% Cu 48% Cu 42% Cu 0.42 
NiCu(50%)E13 74% Cu 52% Cu 44% Cu 0.29 
NiCu(50%)E61 66% Cu 57% Cu 51% Cu 0.30 
NiCu(90%)E5 95% Cu 90% Cu 90% Cu 0.32 
NiCu(90%)E13 95% Cu 90% Cu 89% Cu 0.27 
NiCu(90%).~61 92% Cu 91% Cu 90% Cu 0.20 
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the bulk Cu concentration and the change in composition is confined to the region within 3 to 
4 atomic planes of the boundary. In addition, table 16 lists the net expansion normal to the 
boundary. This expansion is defined as the difference in the distance between two planes on 
opposite sides of the boundary for the system with the grain boundary and the distance for 
the same number of interlayer spacings at the bulk lattice constant. In all cases, there is an 
expansion of the boundary region and the amount of expansion is greater than can be 
accounted for by the increased concentration of Cu at the boundary. (Cu has a somewhat 
larger (3%) lattice constant than Ni.) This expansion is a general feature of grain boundaries. 

There are two trends that are apparent from the results in table 16. First, the segregation is 
strongest for the higher-angle (lower-,~) boundaries. A similar trend is found for the Pt-Au 
twist boundaries discussed in section 7.4.3. Second, the segregation is strongest for the Ni-rich 
alloy and weakest for the Cu-rich alloys. This latter observation is consistent with calculations 
of the dilute segregation energies performed for the ,~5 boundaries. The dilute segregation 
energy is computed by comparing the energy of a single substitutional impurity located at a 
position at the grain boundary compared to its energy in the bulk material. For the case of a 
Cu impurity in Ni, the Cu is bound by 0.22 eV to the coincident sites of the boundary that 
comprise 1/5 of the boundary sites and is bound by 0.13 eV to the four equivalent 
non-coincident sites that comprise the remaining 4 /5  of the boundary sites. For the case of a 
Ni impurity in Cu, the Ni is repelled from the boundary plane by 0.07 eV for both the 
coincident and non-coincident sites. These energies indicate that the segregation of Cu to the 
boundary is stronger for the case of pure Ni than for the case of pure Cu consistent with the 
trend observed for the concentrated alloys. 

The segregation at the boundary in the concentrated alloys, though, cannot be determined 
simply by these dilute segregation energies. If one ignores interactions between the sites at 
the grain boundary, the above energies predict an average concentration of 48% Cu in the 
boundary plane for the case of the ,~5 NiCu(10%) boundary at 800 K using the segregation 
expression derived for this case by McLane [156]. This is substantially smaller than the value 
of 74% Cu obtained in the simulation. The sense of this difference is consistent with the fact 
that the Ni-Cu alloy system is a clustering alloy. Thus the enhancement of the Cu concentra- 
tion due to the presence of the boundary is complemented by the tendency of the Cu atoms to 
cluster together. 

In addition to the average composition of each plane, the simulations determine the 
composition variations within each plane. This has been studied in detail for the case of the 
NiCu(10%) ,~61 boundary. This low-angle boundary can be viewed as a square array of screw 
dislocations in the plane of the boundary [155]. In fig. 19, the projected atomic positions of 
the two planes on either side of the boundary are shown for a randomly chosen configuration 
from the simulation. The filled circles are Ni and the open circles are Cu atoms. The 
boundary clearly breaks up into regions of good match separated by a square array of poor 
match. These areas of poor match are the screw dislocations. 

In fig. 20, the average compositions of the first three planes on one side of the boundary 
are shown as a function of position. The plots in fig. 20 correspond to the central unit cell of 
fig. 19. In particular, the screw dislocations are located along the diagonal lines that connect 
the midpoints of adjacent sides of this cell. For the planes two and three layers away from the 
boundary, the Cu concentration is highest in the center and at the corners. These regions 
correspond to the areas furthest away from the screw dislocations - i.e. the areas of good 
match between the crystals. This segregation pattern can be understood qualitatively as 
follows. There is a net expansion of the lattice near the boundary as discussed above. 
However, in the areas of good match, one would expect that the bulk lattice spacing would be 
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Fig. 19. Atomic positions projected onto the boundary plane for the ~61 twist boundary in the Ni-10 at.% Cu alloy. 
The first two atomic layers on either side of the boundary are shown. The open circles are Ni and the solid circles are 
Cu. The screw dislocation network is located in the regions of poor match between the two crystals. (From Foiles 

[22].) 

preferred.  Thus, these areas are in effect under  tensile strain and Cu is enhanced in regions 
of tensile strain. The composition variation in the plane next to the boundary is different and 
more  complicated. There  the Cu concentration has minima at the center, corners and along 
the outside of the dislocations. The Cu concentration is largest at regions that are offset 
towards the center of the cell f rom the intersections of the screw dislocations. 

7.4.3. Segregation to (001) twist boundaries in P t - 1  at. % A u  alloys 
A series of twist boundaries with 0 in the range 0 ° to 45 ° [23] has been studied to 

determine the relationship between dislocation density and segregation. The particular values 
of 0 chosen are 5.0 °, 10.4 °, 16.3 °, 22.6 °, 28.1 °, 33.9 °, 36.9 °, 41.1 ° and 43.6 °. These angles 
correspond to the ~ = 265, 61, 25, 13, 17, 289, 5, 73 and 29 coincident site lattice (CSL) 
orientations. The alloy studied is a single-phase P t -1  at.% Au alloy in the temperature  range 
850-1900 K. 

Fig. 21 exhibits the Au concentration for each (002) plane for Monte Carlo simulations 
per formed at 850 K. The positions of the interface are indicated by arrows - multiple 
interfaces are a result of the periodic boundary conditions. This figure demonstrates  that Au 
segregation occurs at all the twist boundaries studied; mainly the two planes that adjoin each 
interface are enriched in Au atoms. The segregating Au atoms sit at substitutional sites in 
these planes. 

An average segregation enhancement  factor (Say) is defined to be the ratio of the solute 
concentration in the two planes that adjoin the interface, divided by the solute concentration 
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(o) 

(b) 

(c) 

Fig. 20. Contour plots of the Cu concentration as a function of the position in the plane of the boundary for the 261 
twist boundary in the Ni-10 at.% Cu alloy. The first (a), second (b), and third (c) atomic layers from the boundary are 

shown. (From Foiles [22].) 

in the bulk. Plots of Sav versus sin(0/2) at 850, 900, 1000, 1300, 1500 and 1900 K - sin(0/2) is 
proportional to the dislocation density - were calculated. At fixed temperature the value of 
Say increases monotonically, as # increases up to sin(0/2) = 0.3, while at fixed 0 the value of 
Sav decreases exponentially as temperature increases. 

An Arrhenius plot of Sav yields straight lines for all the twist boundaries. A classical 
thermodynamic analysis of the Arrhenius plots yields a binding enthalpy (Ah~_g b) and a 
binding e n t r o p y  (ASsbgb) of a solute atom at a twist boundary. The range of  Ahsbgb is from 
0.011 _+ 0.009 to 0.121 __ 0.009 eV/a tom,  as 0 is increased from 5.0 to 36.9 °. The largest value 

b of Ahs_g b is for the ,~ = 5 twist boundary. The range of  ASsbgb is from 0.07 4-0 .10  k for 
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Fig. 21. The concentration of Au (at.%) in the (002) planes versus the distance normal to the interface for 0 = 10.4 ° 
(~f = 61), 0 = 16.3 ° (,~ = 25), 0 = 22.6 ° (,~ = 13), 0 = 28.1 ° (,~ = 17), 0 = 36.9 ° (,~ = 9), and 0 = 43.6 ° (,~ = 29)[001] twist 
boundaries. The interfaces are indicated by arrows. There is more than one interface present because of the periodic 
boundary conditions employed. The concentrations are averaged over (3 -5 )×  106 Monte Carlo steps and the error 

bars have a total length equal to four standard deviations. (From Seki et al. [23].) 

0 = 16.3 ° to 0.46 + 0.09 k for 0 = 36.9 ° (,~ 5). The values o f  ASb_gb for 0 = 5.0 ° to 16.3 ° are 
essentially the same, 0.1 k, when the uncertainty (+0 .1  k)  is taken into account. That  all 
values of ASb_gb ar e POsitive - with the eXception o f  the 5 ° boundary - implies that within the 
context of an Einstein solid [t57] the vibrational frequencies associated with a Au atom at a 
grain boundary are higher than those of a Au atom in the bulk. This result is qualitatively 
consistent with the idea that Au is an oversized substitutional atom in the cores of the 
dislocations. 

An analysis of the two-dimensional spatial distribution of Au atoms reveals that they sit 
mainly in the cores of  the primary grain boundary dislocations. (No evidence was found for 
the formation of a tmospheres  - due to the elastic inhomogeneity interaction - around 
individual screw dislocations as envisaged in the linear elasticity theory model of solute-atom 
segregation at dislocations [155].) These observations are the basis of a model for the Monte  
Carlo simulation results. We divide the grain boundary interface into two regions. The first 
region contains the cores of the dislocations and the second one is a region of good atomic fit. 
The structure of the core region is taken to be the same for all 0 values studied since the b of 
the primary grain boundary dislocations is identical for all values of 0. The average Au 
concentration at an interface is the sum of the Au concentrations in the region of good atomic 
fit plus the concentration in the cores of the dislocations. This model leads to a linear 
equation for Say, as a function of 0. The linear dependence holds up to 0 = 35 ° since beyond 
this value Sav is approximately independent  of 0; i.e. all material  at the interface is at core 
sites, and it is not possible to increase the fraction of sites in the cores. For this model the 
segregation factor for the core (Score) has a single value for all twist boundaries. An Arrhenius 
plot of Score has a single value of the binding enthalpy of a Au atom to the core, 0.095 +-0.01 
e V / a t o m ,  and a single value of the binding entropy, 0.49 + 0.10 k; these values are for a core 
radius equal to 0.8 I b l. 

The physical picture that emerges from the Monte Carlo simulations is that Au segregation 
occurs primarily at the cores nf the primary grain boundary dislocations, and therefore the Au 
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concentration at the interface depends on the fraction of atoms in a bicrystal that is located in 
the cores. This explains why the value of Say is a function of 0, and why it saturates when the 
cores of the primary dislocations overlap. When the cores overlap all atoms at the interface 
are in the cores of the dislocations, and increasing 0 does not significantly change the fraction 
of sites in the bicrystal at the cores. It is noteworthy that Wolf has shown that the energy of 
grain boundaries, including high-angle boundaries, can also be described in terms of a 
dislocation model [158]. 

8. Mechanical properties 

This section will review the results of EAM calculations as directly related to the 
investigation of mechanical properties of metals. We focus on two areas of fundamental 
interest. The first area is the motion of dislocations in metals. We consider both free 
acceleration from rest and also the interaction of a dislocation with a pinning point. The 
second area considers the classic problem of a sharp crack in a ductile metal. Here  we 
examine the propensity for dislocation emission as a function of loading mode, and also the 
effects of hydrogen on the fracture. A more detailed discussion of the results in this section 
may be found in Baskes and Daw [29]. 

8.1. Dislocations 

The goal of the following calculations is to learn about dislocation motion in fcc materials 
and how it is affected by stress, temperature,  and impurities. As a specific example we present 
calculations of the motion of an edge dislocation in Ni and how the dislocation interacts with 
small pinning points. 

The boundary conditions on any present-day atomistic computer simulation prohibit us 
from doing an accurate simulation of a dislocation moving in an infinite medium, Generally 
we have used a mixture of periodic boundaries, free surfaces, and modified surfaces (see the 
following) and attempt to extract conclusions which are not strongly affected by these 
boundaries. 

A typical geometry is shown in fig. 22 (see, for example, Daw et al. [27]). The size of this 
region is about 58 A in the x direction, 28 ,~ in the y direction, and 5 .~ in the z direction. 
This size corresponds to 706 atoms. An edge dislocation can be created by inserting two 
half-planes. The boundaries are periodic in the x and z directions, and the periodic lengths 
are held fixed during the calculation. 

For some calculations, the surface in the y direction was allowed to be free. To eliminate 
unphysical wave motion caused by having the free surfaces in the y direction, we also 
experimented with another type of boundary condition, where each atom on the free surface 
was given an additional force (and corresponding energy) to simulate the absent bulk 
material. In this case, the force in a direction normal to the surface is given by - k ( y  -Y0) 
where Y0 is the initial (perfect lattice) position of the atom and k ( =  5.2 e V / , ~  2) is 
determined by making the second derivative of the energy with respect to displacement of an 
atom equal for a bulk atom and for an atom on the surface. 

To initialize the calculations, the atoms are first relaxed by minimizing the energyowith no 
applied stress at 0 K. The two half-planes (partial dislocations) separate to about 15 A, which 
is near the separation expected from continuum theory. 
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Fig. 22. The geometry which was used for some edge dislocation calculations. Two half-planes (shaded) are added to 
produce an edge dislocation in nickel. The boundary conditions in the x and z directions are periodic, forming an 
infinite array of straight dislocations. The cell is terminated by modified free surfaces in the y direction (see text for 

details). Approximate dimensions are shown. 

To investigate the effects of stress and temperature we perform standard molecular-dy- 
namics calculations. The temperature  is attained by giving each atom an initial random 
velocity chosen from a Boltzmann distribution. Equipartition of kinetic and potential energy 
occurs in ~ 0.1 ps. The temperature is maintained by exponential relaxation at each time step 
(2 fs) of the average kinetic energy to the desired kinetic energy using a time constant of 0.1 
ps. For example, using this method, the temperature (after the initial 0.1 ps transient) is kept 
to within 3 K for a desired temperature of 50 K. Similar fractional temperature deviations are 
found for the other  temperatures considered. The stresses are introduced by applying external 
forces to the boundary (free surface) atoms. 

We have investigated the range of stress from 15 to 60 MPa and the range of temperatures 
from 10 to 1000 K. Fig. 23 shows the results of calculations at 15 MPa. We show here the 
dislocation position as a function of time in the molecular-dynamics run. At low temperature 
the average position of the two partials (determined using the algorithm of Daw et al. [27]) 
increases smoothly to a constant velocity, but at the higher temperatures it oscillates 
somewhat randomly. In fact, we see in fig. 24 that, due to the strong dislocation-phonon 
interaction, the dislocation position at higher temperatures depends strongly on the random, 
initial velocities given to the atoms. We leave the higher-temperature analysis to future study 
and concentrate here on the runs at temperatures below 1 0 0 K  where the motion is largely 
independent of initial random velocities. 

Our results can be understood by considering the motion of a dislocation under stress in an 
isotropic medium [15~]. From continuum theory, it can be argued that the dislocation velocity, 
v, is given by the following differential equation: 

d mv  3 k T  v / c  
-- ( t r -  tro)b - t ~ - -  (10) 

d t i l  _ ( v l c )  2 lOb 2 i l  _ ( v l c )  2 ' 
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Fig. 23. Atomistic calculation of the motion of an edge dislocation in nickel. The dislocation position is given as a 
function of t ime due to an applied shear  stress of 15 MPa at various temperatures ,  T(K). For T >_ 100 K, the position 
increases monotonically and saturates  at a constant  slope (velocity). At  higher temperatures ,  the  statistical fluctua- 

tions due to phonon interactions dominate the motion. 

where m is the dislocation mass per unit length, c is a limiting velocity, o- is the applied 
stress, tr 0 a friction stress, b the Burgers vector of  the dislocation, and a is a dimensionless 
constant. The left-hand side is simply the time rate of  change of  the dislocation momentum.  
The first term on the right-hand side is the driving force for motion; the second term is due to 

300 

200 

o~ 100 

C 
0 

0 0 13.. 

-100 

. . . , . . . . ._~'~" ~ -  --- - - , ' f  

0 10 20 30 410 510 6~0 
Time (ps) 

Fig. 24. Dislocation motion depends  upon thermal  fluctuations. The  position of an edge dislocation in nickel is 
plotted as a function of time for an applied shear  stress of  60 MPa at a temperature  of 500 K. Shown are two 
trajectories for different initial random velocities. The  variation in behavior is due to the large phonon-dis locat ion 

interaction at high temperature.  
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Table 17 
Dislocation-dynamics constants for Ni 
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c (.~/ps) 20 
m (atoms/Burgers distance) 0.2 
a 0.98 
go (MPa) 4 

the dislocation-phonon drag which limits the dislocation motion. We have added a scaling 
factor, a, and a saturation factor to the classical expression by Leibfried [159] to facilitate 
comparison with the atomistic calculations. We may solve the equation of motion analytically 
for the dislocation velocity and then numerically for the dislocation position in terms of four 
unknown material constants m, c, a, and tr 0. By fitting these constants to the atomistic data, 
we obtain both a confirmation of the validity of the form of the continuum model and the 
values of the material constants. The results of this fit are given in table 17. 

The limiting velocity of 20 ,~/ps is quite close to the lower transverse velocity (23 ,~/ps) in 
the coordinate system used here. (These results are for the "modified" surface boundary 
conditions; for a free surface in the y direction, the limiting velocity is somewhat less, 
consistent with what one expects from a finite slab [27].) The values of the dislocation mass 
and friction stress appear quite reasonable while the scaling factor for the drag term is 
amazingly close to unity. The fit, while not perfect, certainly shows that the continuum model 
contains the correct basic physics of dislocation motion. 

We now proceed to investigate the interaction of dislocations with obstacles. In order to 
perform these calculations, we use the same geometry as in fig. 22, but increase the z 
dimension of our region to simulate experimentally observed obstacle separations. As a first 
example we remove an atom on the dislocation slip plane and its 12 neighbors, creating a 
13-atom void (~  6.4 ,~ diameter). We now apply a shear stress and observe the dislocation 
motion. The results at 300 K are shown in fig. 25 where we see that at a stress of 90 MPa 
(~  1.5 times the °experimental yield stress of pure annealed nickel), these small voids 
separated by 35 A provide a barrier for dislocation motion. At a stress of 120 MPa, the 
dislocation is able to penetrate this barrier. 

We now place 19 He atoms in the void and repeat the calculations. This ratio of 19 He/13 
V is representative of the ratio found in samples which have undergone prolonged exposure 
to tritium. The results of the pinning stress are shown in fig. 26 as a function of inverse defect 
spacing. Here the error bars on the symbols denote the stress range where we go from pinning 
to not pinning. We expect a linear relationship from continuum models. Note that as we 
would expect, the HeI9V13 is more of an obstacle to dislocation motion than the Via, and 
second that the pinning stress varies linearly with the inverse defect spacing. Also shown in 
fig. 26 are the results of calculations of a He19V13 bubble with the 13 nickel atoms (from the 
void) placed in a loop around the bubble. This configuration is representative of the expected 
arrangement that would occur from the self-trapping of helium where the punched-out nickel 
atoms would remain trapped to the small bubble. The pinning stress for this configuration is 
extremely high (900 MPa). We find that as the dislocation moves past this obstacle, it 
"collects" the interstitial atoms, leaving the bubble without a loop and the dislocation with a 
segment that has climbed. We see this effect in the atomistic calculations where the 13 atoms 
from the loop appear along part of the dislocation line and the loop disappears from around 
the bubble. Of course, it is not the same 13 nickel atoms moving along with the dislocation 
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Fig. 26. Effect of  defect character  on obstacle strength. The critical stress for dislocation pinning versus inverse defect 
spacing along the dislocation core is shown. The  stress is scaled by the yield stress in annealed nickel (60 MPa). The  
lower stress level of each error bar indicates the maximum stress where pinning occurs while the upper  level indicates 
the min imum stress where lack of pinning is observed. Shown in the figure are three cases, a small void (V13), a small 

hel ium bubble (He19V13), and a small bubble with an at tached dislocation loop. 



304 M.S. Daw et aL 

that were originally in the loop. The loop atoms simply take normal lattice positions as the 
dislocation moves away from the He bubble. It is interesting to note that in contrast to this 
effect, the dislocation does not "collect" either vacancies from the void or helium atoms from 
the bubble. In both of these cases the defect remains intact. 

8.2. Fracture 

In this section, we discuss the effects of loading mode on the details of fracture at an 
atomistic crack tip. First we consider these effects in pure nickel and then contrast the 
behavior with stoichiometric nickel hydride. Other detailed work on the nature of fracture 
using the EAM has been carried out [31,32] and the interested worker is referred to those 
papers. 

The geometry we use is shown in fig. 27. The initial atom positions are determined by 
displacement of a perfect lattice using the continuum anisotropic theory of Sih and Liebowitz 
[160]. The origin of the continuum crack was chosen exactly between two planes of atoms in 
both the x and y directions. A small number of calculations showed that the choice of origin 
was of little importance. The elastic constants used in determining the continuum displace- 
ments were those of the atomistic model. 

The calculations were performed by relaxing the atoms at 0 K in region I while holding the 
atoms in region II fixed at their positions given by continuum t.heory. Region I consists of 
~ 1700 atoms (~  35 .~ diameter) while region II is a shell of 12 A thickness, large enough to 
include all interactions of region I atoms. A few calculations were performed to investigate 
the effect of the size of the regions. Increasing the size to 40 ~k in region I did not affect the 
fracture mode for the cases tested. 

The calculations for Ni are summarized in fig. 28a. Four different events occurred at the 
crack tip depending on the K I and Kn (stress intensity factors [161]): crack closure; brittle 
fracture; ductile fracture; and slip along the crack plane. The most obvious result is that for 
small values of K~ and K u the crack healed itself. We were able to ascertain crack tip closure 
by looking at the relative displacement of the atoms near the crack tip. These atoms moved 
from their initial positions determined from continuum theory toward the free volume of the 
crack. Opposite to this behavior, we find for strictly K I loading above a critical value, motion 
of these atoms directly away from the open space of the crack. This mode of failure we call 

i t  

[Toll 

f K  I 

• [101l 

Kil ~ ~ Ki 

Fig. 27. Geometry for the loading-mode calculations. Atoms in region I are movable while atoms in region II are 
fixed. Initial atom positions are taken from anisotropic continuum theory for applied loading conditions K I (tensile) 

and KII (shear). 
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Fig. 28. Crack-tip response to loading mode, for (a) Ni and (b) NiH. The two loading modes are I (tensile) and II 
(shear). The response to various mixed loading conditions is of four types: crack closure, [101] slip, dislocation 
emission, and brittle fracture. It is seen that nickel is much more ductile than NiH and the addition of mode II 

loading enhances ductility in both materials• The solid curve denotes the Griffith condition. 

brittle fracture as it represents a simple separation of the crack planes. The third event and 
most common mode of failure is a ductile mode characterized by motion of atoms in the [121] 
direction in the (1]1) plane. This motion represents the emission of a partial dislocation and 
the concomitant blunting of the crack tip. Our region was not large enough t o  see the 
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Table 18 
Energy factors and surface energies for Ni and NiH 

Ni NiH 

A I (~'3/eV) 0.674 0.734 

AII ( '~3/ev) 0.584 0.692 
7100 (erg/cm2) 732 387 

emission of the second partial dislocation; the back stress of the fixed region II opposes this 
emission. The fourth event occurs with predominantly mode II loading and represents slip 
along the crack plane in the [101] direction. This mode is sometimes seen in combination with 
the partial dislocation emission. We note (fig. 28a) that as expected, the failure in Ni is 
predominantly ductile with dislocation emission and slip occurring over most of the K I / K  n 
space. 

In contrast to these results for pure Ni we see in fig. 28b for fully stoichiometric NiH that 
over a large range of (KI, K u) the fracture mode is brittle. Also the [101] slip regime is 
extended as the dislocation emission regime is decreased. A general conclusion for both Ni 
and NiH is that as the amount of mode II loading increases, the failure mode goes from 
brittle to dislocation emission to slip. 

We can compare our atomistic results to the Griffith criterion. For an anisotropic material 
the total energy rate, G, is given by 

G = A I K  2 +AIIKI2I, (11) 

where A t, A u are dependent on material properties and crack orientation. For our case the 
values of AI, Air are given in table 18. 

The Griffith condition for brittle fracture is that the total energy rate, G, be equal to two 
times the surface energy, in our case 3'100. This criterion is also shown in fig. 28 as the full 
line. The surface energies used in fig. 28 are those predicted by the EAM for Ni and NiH 
(table 18). The value we predict for Ni is considerably lower than the measured value for 
polycrystalline nickel of over 2000 e rg /cm 2. We expect a (100) surface to be lower than 
polycrystalline, but not this low. This disagreement, which was discussed in section 6.1, would 
lead to a consistent underestimate of the Griffith K. 

We note that in Ni for pure mode I loading the Griffith criterion divides the region of 
crack closure exactly. What is even more interesting is that this condition seems to work quite 
well even as mode II loading is added and the failure becomes ductile. In no case is there 
failure with (K~, K n) less than the Griffith criterion. A similar conclusion may be drawn for 
NiH, but in this case the Griffith criterion is somewhat more conservative. 

9. Summary 

The embedded-atom method is a semi-empirical method for performing calculations of 
defects in metals. The EAM incorporates a picture of metallic bonding, for which there is 
some fundamental basis. The limitations of the EAM are fairly well characterized: it works 
best for purely metallic systems with no directional bonding; it does not treat covalency or 
significant charge transfer; and it does not handle Fermi-surface effects. The main physical 
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p r o p e r t y  i n c o r p o r a t e d  in the  E A M  is the  m o d e r a t i o n  of  b o n d  s t reng th  by o the r  bonds  
( c o o r d i n a t i o n - d e p e n d e n t  b o n d  strength) .  Wi th in  these  const ra in ts ,  the  E A M  prov ides  a very 
useful  and  robus t  m e a n s  of  ca lcu la t ing  a p p r o x i m a t e  s t ruc ture  and  energet ics ,  f rom which 
many  in te res t ing  p r o p e r t i e s  of  me ta l s  can be  ob ta ined .  

W e  be l i eve  tha t  a tomis t ic  ca lcu la t ions  will con t inue  to p lay  an  impor t an t  role  in the  
d e v e l o p m e n t  of  ma te r i a l s  theory.  W h e r e  the  E A M  can be  useful ,  t he re  is a t r e m e n d o u s  
n u m b e r  of  in te res t ing  pro jec t s  tha t  have ye t  to be  ca r r i ed  out.  T h e  u n d e r s t a n d i n g  of  
mechan ica l  p r o p e r t i e s  on  an a tomis t i c  level has only jus t  begun.  F o r  ma te r i a l s  whe re  the  
E A M  is not  expec ted  to  work  well,  t he re  a re  r ecen t  de ve lopme n t s  which may  al low calcula-  
t ions s imi lar  to  those  p r e s e n t e d  here .  W e  have m e n t i o n e d  a l r eady  the p r o b l e m  of  t r ea t ing  
d i rec t iona l  b o n d i n g  in semiconduc to r s  and  e l emen t s  f rom the  t rans i t ion  series.  O n e  a p p r o a c h  
which  p romises  to be  useful  for  t r ea t ing  d i rec t iona l  bond ing  is rev iewed  by Car lsson  [70]; the  
in t e re s t ed  r e a d e r  is e n c o u r a g e d  to s tar t  there .  
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