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Abstract—A new method to classify aerosol particles according to their mass-to-charge ratio is
proposed. This method works by balancing the electrostatic and centrifugal forces which act on
particles introduced into a thin annular space formed between rotating cylindrical electrodes.
Particles having a mass-to-charge ratio lying in a certain narrow range are taken out continuously
as an aerosol suspension. A theoretical framework has been developed to calculate the transfer
function which is defined as the ratio of the exiting particle flux to the entering particle flux.
A similarity rule has been derived which states that a single nondimensional constant determines the
shape of the transfer function. To examine the feasibility of the proposed principle, a prototype
classifier was constructed, and the mass distribution of monodisperse particles nominally 0.309 um
in diameter was measured. The peak structures corresponding to singly, doubly, and triply charged
particles were identified in the experimental spectra. The difference between theory and experiment
in the peak location for the singly charged particles was about 6.5% in terms of mass, or 2.3% in

terms of diameter.

INTRODUCTION

Various kinds of aerosol classification devices have been developed so far. The basic
principle for classification employed in most of these devices involves the balancing of the
drag force exerted by the surrounding air on the particles with some constant external force.
Examples of such external forces include: the electrostatic force for the electrical aerosol
analyzer (Whitby, 1976; Liu et al., 1979) and the differential mobility analyzer (Hewitt, 1957;
Knutson and Whitby, 1975); gravity for the horizontal elutriator (Stober and Flachsbart,
1971) and the sedimentation cell (Allen and Raabe, 1985; Kousaka et al., 1987); the
centrifugal force for the cyclone (Beeckmans, 1979) and various types of aerosol centrifuges
such as the conifuge (Tillery, 1979), the cylindrical aerosol spectrometer (Hochrainer, 1971;
Abed-Navavdi et al., 1976; Tillery, 1979), the Goetz aerosol spectrometer (Stevenson and
Preining, 1960; Gerber, 1979), and the Stober centrifuge (Stober, 1976; Tally et al., 1979).
Although inertia and the diffusion force are not strictly regarded as external forces, various
types of impactors (Marple and Willeke, 1979; Masuda et al., 1979; Prodi et al., 1979) and
diffusion batteries (Sinclair et al., 1979) can also be viewed as balancing the drag force with
these forces. Since the drag force, which may be described by the Stokes formula modified
by the slip correction factor, is determined by the particle diameter, the properties according
to which particles are classified with these devices are functions of the particle diameter. The
particle properties utilized for this purpose include the electrical mobility, the mechanical
mobility, the relaxation time, and the diffusion coefficient.

These properties are important in that they directly govern the particle motion resulting
from the relevant external forces. However, being dependent on the particle interaction with
the surrounding air, these properties are not purely intrinsic to the particles. Besides, when
the particles are not spherical, these properties depend on the particle orientation relative to
their movement, and the interpretation and use of these properties often become somewhat
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complicated. In some situations, therefore, it would be more desirable if one could classify
aerosol particles according to their intrinsic properties which do not depend on the particle
shapes or orientation, or the properties of the surrounding air. At present, however, only
a few such methods are known.

The balance method using a Millikan-type cell, which is actually not for classification but
for measurement, can be used to measure the mass-to-charge ratio of an individual aerosol
particle. It provides a method for accurate particle size measurement if the particle density is
known, and has been applied successfully to the measurement of particle size standards
(Kousaka et al., 1987). However, since it is a slow method and deals with only one particle at
a time, it is not appropriate for real polydisperse aerosol particles. Also, it is difficult to
measure particles smaller than about 0.5 um because of Brownian motion. The device
developed by Masuda and his group (Masuda et al, 1993) who studied the charge
distribution of aerosol particles, is essentially a mass-to-charge classifier. The essential part
of their device is the vertically oriented planar electrodes. Aerosol particles released at the
central line of the top of the electrodes undergo sedimentation in mutually orthogonal
electrostatic and gravitational fields, and are collected on slide glasses placed at the bottom
of the device and on the electrodes’ surfaces. The spatial distribution of the particles
deposited onto the slides is measured with a microscope, and from this the distribution of
the mass-to-charge ratio is derived. This method is more efficient than the balance method
using a Millikan-type cell, but is less precise. The application of this method is restricted to
particles larger than about 1 ym due to Brownian motion.

In the present paper, we propose a new method to classify aerosol particles according to
their mass-to-charge ratio. This method works by balancing electrostatic and centrifugal
forces; the drag force plays only a secondary role. Though the resolution in classification
still depends on the particle shape and orientation and the properties of the surrounding air,
the location of the center of the classification band is determined solely by the intrinsic
particle property. The most notable difference from the methods described above is that in
this method the classified particles are obtained as an aerosol suspension. Hence, this
method can be used either to generate monodisperse particles, or to measure the mass-to-
charge distribution by counting the classified particles by some means such as the conden-
sation nucleus counter or the optical particle counter.

In the following sections, we first develop a theoretical framework to calculate the
transfer function. Characteristic features in the classification scheme are analyzed in terms
of two different theoretical models of the aerosol velocity distribution in the classifier. On
the basis of the principle proposed, we have constructed a prototype classifier. Experimental
data collected with this classifier are compared with theory. Though the effects of Brownian
motion will be neglected throughout this paper, they are expected to be important for
particles smaller than 0.1 um. A stochastic modelling of the classifier which accounts for
Brownian motion will be presented in a separate paper (Hagwood et al., 1996).

THEORY

Equation describing the particle trajectory

We begin by considering rotating coaxial cylindrical electrodes. Figure 1 is a schematic
drawing of such a device. The inner and outer electrodes rotate at the same angular velocity,
w. The narrow annular space between the clectrodes constitutes the space where classifica-
tion occurs; we will call it the operating space. We will assume that the device is so
constructed that when the aerosol is introduced into the operating space, it rotates at the
same angular velocity as the electrodes. To ensure this, one may, for example, partition the
operating space into some segments perpendicular to the cylinder axis. Voltage V is applied
between the electrodes. Let r and z denote the radial and axial coordinates in a cylindrical
coordinate system which rotates at the same angular velocity as the electrodes. The origin
of the coordinate system is taken in the inlet plane of the operating space. We neglect
particle inertia, Brownian motion, the interaction between aerosol particles, and the image
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Fig. 1. Schematic diagram of the cylindrical electrodes which classify aerosol particles according to
their specific mass given by equation (4).

potential. The equations of motion for a particle having mass m and charge g in the
operating space are

mdr qV

T dt - rin(ry/ry) )
m| dz
7 [E; — v(r)] =0, 2

where 7 is the particle relaxation time, and r; and r, are the inner and outer radii of the
operating space. In equations (1) and (2), the air flow velocity in the operating space is
assumed to have only a z-component, v(r), which has no t- or z-dependence. The left-hand
sides of these equations represent the drag force which is described by the Stokes formula
modified by the slip correction factor, and the first and second terms on the right-hand side
of equation (1) represent the centrifugal and electrostatic forces, respectively. We can neglect
the Coriolis force, because the primary motion of the particle, which is its axial motion in
tandem with the surrounding air, is parallel to the axis of rotation. We consider the case
where the product gV is positive and hence the electrostatic and centrifugal forces act in
opposite directions. From equation (1), the net external force vanishes when the radial
coordinate of the particle is equal to r{s), where

vV
r(s) = /m . (3)

Here s denotes the mass-to-charge ratio given by
s =mjq, (4)

which we hereafter call the specific mass. In the analysis which follows, we assume that the
spacing between the electrodes is much smaller than their radii. This assumption not only
simplifies the theoretical analysis, but it is also a condition to be met if we require the
resolution in classification to be reasonably high, as will be shown later. This is expressed as

ofr. €1, (%)
where
re= (rl + 7'2)/2, (6)

0 =(ry —ry)/2. N
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Under this assumption, we expand the right-hand side of equation (1) in a Taylor series with
respect to (r — r(s)). The zeroth-order term vanishes by the definition of r(s). Substituting
equation (3) into the coefficient of the first-order term and neglecting higher-order terms, we
obtain

dr
= 21w (r — r(s)). (8)

This approximation is valid when analyzing the transfer function which will be introduced
shortly, because only those particles for which |r — r(s)] is less than or of the order of
J contribute to the transfer function. Eliminating t from equations (2) and (8) leads to the
equation of particle trajectories:

dz v(r)

& " 2ol -1 ®)

To express equation (9) in a nondimensional form, we introduce the dimensionless coordi-
nates p and { given by

p=(—r)o, (10)
{=z/L, (11)

and velocity distribution of the air flow
w(p) = v(r)/v. (12)

Here L is the axial length of the operating space, and

V= jrzv(r)rdr/Zérc (13)

r

is the average flow velocity. Equation (9) can now be rewritten as

i w(p)

Ao~ ip— o7 (149

with
pls) = [r(s) — r.1/o, (15)
A =2tw?L/v. (16)

The dimensionless constant A is an important parameter that characterizes the classification
performance. It depends on s via 7. From equation (8), 1/(2t®?) can be regarded as
a representative time for a particle to traverse the operating space in the radial direction. On
the other hand, L/v is the average time for an aerosol to pass through the operating space.
Accordingly, 4 can be interpreted as the ratio of the axial and radial traversal times.

Transfer function

Suppose that particles having a specific mass s enter the operating space in a spatially
uniform concentration ng. The total particle flux at the entrance is given by

F,= 27:an v(r)rdr

= 4qr . dngv. (17)

Let r{ and r} denote, respectively, the initial radial coordinates of the innermost and
outermost trajectories of particles which pass through the operating space. The total
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particle flux at the exit is given by

Fou= 2nf v(r)n(r, L)rdr

= ZnJ v(r)n(r, O)rdr

[

r 2nrcnoj v(r)dr, (18)

(]

where n(r, z) is the particle concentration at a point (r, z). The last line in this equation is an
approximate expression valid under condition (5). In analogy to the theoretical analysis of
the differential mobility analyzer by Knutson and Whitby (1975), we introduce the transfer
function which in our case is defined as F,,,/F;,. Its explicit form is derived from equations
(17) and (18) to be

b

Po

1
t(S)=§L w(p)dp, (19)

where ph, and p} are the nondimensional coordinates corresponding to rh and r§, respectively.

MODEL CALCULATIONS

Unlike the differential mobility analyzer, the transfer function for the present classifier
depends on the structure of the flow field, as equation (19) shows. This dependence comes
from the fact that the field of the centrifugal force is not divergent-free, and, therefore, the
function analogous to the stream function for the flow field, or to the electric flux function as
termed by Knutson and Whitby (1975) for the electrostatic field, cannot be defined for the
centrifugal force field.

We consider two models for w(p) below. One is so simple that we can obtain an
approximate analytical solution for the transfer function. This model may not be satisfac-
tory for the detailed analysis of the classifier performance, but it is useful for obtaining an
intuitive understanding of the classification mechanism. The other model contains the
essential features of a real classifier, and is expected to provide theoretical predictions that
can be compared directly with the experiment. Calculation of the transfer function in the
latter model requires numerical computation.

Uniform flow model

In this model, we assume that w(p) is uniform over p, namely that

wu(p) = 1. (20)
Using equation (20), we can solve equation (14) easily to get
p = p(s) = [po — p(s)]exp(il), @y

where pp is the initial value of p. The parameter p(s) indicates the point of unstable
equilibrium in the p-direction motion. As shown in Fig. 2, we can identify five regions of p(s)
each of which corresponds to a different trajectory pattern. In Regions (B), (C), and (D)
shown in Fig. 2, particles in the hatched areas pass through the operating space. Particles
outside these areas will be deposited onto the surfaces of the electrodes. In Region (C), p(s) is
located between the electrode surfaces; that is

—1<p(s)<1 [Region (C)]. (22)
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Fig. 2. Various cases of the trajectory patterns. Particles in the hatched areas pass through the
operating space.

In this region, p} and p}) are the initial values of p of the particles which pass the points (p, {)
given by (—1, 1) and (1, 1), respectively. From equation (21), these are

po=(1—e™")pls) —e ", (23)

b =(1 —e ) pls)+e 7, (24)
Substituting these expressions into equation (19), we obtain

t(s) = ¢+ [Region (O)]. (25)

In Region (B), the inward electrostatic force is sllghtly larger in magnitude than the outward
centrifugal force. As is obvious from Fig. 2, p§ is equal to unity, and as for ph, equation (23)
still applies. Hence, we have

t(s) = {[1 = p(s)] + [1 + p(s)]e”"}/2 [Region (B)]. (26)

The condition that p} should be located inside the outer electrode surface imposes the
upper limit to p(s), yielding

1 < p(s) < coth(4/2) [Region (B}] 27)
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Similarly, for Region (D) we have

—coth(4/2) < p(s) < —1 [Region (D}] (28)
and the transfer function is calculated to be
t(s)={[1+ p(s)] +[1 — p(s)]e"*}/2 [Region (D)]. (29)

When p(s) is larger than coth(4/2) [Region (A)], or smaller than —coth(4/2) [Region (E)], it
is obvious that #(s) vanishes.

Let s, denote the specific mass corresponding to the center of Region (C), thatis p(s.) = 0.
The solution obtained from equations (3) and (15) is

vV

Se =—5—5—.
¢ "fwzln("z/"x)

(30)
To determine the transfer function, we have to solve inequalities (22), (27), and (28) for s. Let
s, st,S5,and s3 denote the values of s for which p(s) is equal to coth(4/2), —coth(4/2), 1,
and — 1, respectively. The solutions for s; and sj are easily obtained to be

SC
(1 F3/r*
On the other hand, s; and s{ cannot be solved for analytically, because 4 depends on s in
a rather complicated manner through z. If the range from sy to s; is so narrow that we can
neglect the variation of coth(4/2) in this range, we may replace A with its value at s = s,
which will be denoted by A.. With this approximation, s; and s; are obtained analytically
to be

+ _
S; =

(1)

S¢
"1 T (&/r)coth(A/2)]7”

Also, we replace 4 in equations (25), (26), and (29) with A, in the same manner. Under
condition (5), the expressions (30), (31), and (32) can be further simplified to yield

st

(32)

sex V /(2r. 80?), (33)
st sl + 20/r), (34)
sit e[l + 2(3/r)coth(A/2)] . (35)

For equation (35) to be valid, it is required in addition that coth(4./2) is at most of the order
of unity. This requirement is equivalent to insisting that the resolution in the classification
be reasonably high, as seen in equation (36) below. The transfer function thus determined is
shown in Fig. 3. It has the shape of a symmetric trapezoid whose center is located at s.. The
base width relative to s., which is a measure of the resolution in the classification, is given by

E = 4—6 coth <&) , (36)

Se Fe 2

and its height is exp(— A.). In the following, we will refer to /. as the resolution parameter,
and the range from s; to s; as the specific mass band.

Although it is also possible to take the s-dependence of A within the specific mass band
fully into consideration by means of numerical calculation, we will not do so in the present
model. It will be taken into consideration in the subsequent model.

Parabolic flow model

The steady-state solution for the axisymmetric velocity distribution of an incompressible
viscous fluid flowing between two coaxial cylinders is well-known (Landau and Lifshitz,
1963). Under condition (5), it can be written to a good approximation as

wp(p) = 3(1 — p?)/2. (37)
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Fig. 4. Velocity distributions of the air flow between the electrodes in the uniform and parabolic
flow models.

This is similar in form to the equation describing the flow between two parallel plates. The
factor of 3/2 ensures that w,(p) gives the same total flow rate as w,(p). Figure 4 compares
wa(p) and w,(p). In a real device, it is expected that there is a transition region near the inlet
where the aerosol flow is not described by w,(p). The length of such a region is known to be
about 0.086Re (Schlichting, 1962), where Re is the Reynolds number referred to the width of
the operating space. For the parameter values given later in Table I and an aerosol flow rate
of 11/min, the Reynolds number is of the order of unity. Accordingly, the length of the
transition region is expected to be much shorter than L, so that its effect on the classification
performance can be neglected.
In this model, the solution to equation (14) is given by

. 3 5 — pl: 3 2 2
(=5 [1—p*s)]n [ﬁ—/’) _’;(?J — Al + PO = [po+ pOT}. (8)

Whenever the explicit expression for the s-dependence of 4 is required in the subsequent
analysis, we will assume that the particle is a sphere of density 1 gcm™* and that it carries
unit elementary charge, unless otherwise stated. This enables us to relate s with the particle
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diameter, d,, which appears in the expression for the relaxation time given by

_ mC(d,)

= 3nnd, (39)

Here 7 is the viscosity coefficient of air, and C(d,,) is the slip correction factor. In this paper,
we use 7 = 1.87 x 107> Pas and the expression for C (d,) given by Allen and Raabe (1985)
which is

21

cd) =1+ 3—[1.142 +0.558 exp <;(-)§—199—d—">] (40)
P

assumption, particle trajectories were calculated from equation (38) for various values of
p(s). The results are shown in Fig. 5. In this calculation, the device parameters given in
Table 1 and a total aerosol flow rate of 1.0 [/min were used, and it was assumed that
V' =1000 V and & = 3000 RPM. This choice of the parameter values results in 4, equal to
1.12.

A distinct difference in the trajectory patterns between the uniform and the parabolic flow
models, which is not directly evident in Figs 2 and 5, is found when we consider the distance
a particle starting at either surface of the electrodes moves in the {-direction until it reaches
the other surface. Figures 6 and 7 compare this distance yielded by the two models, where
Mp=—1; po=1)and A{(p = 1; po = — 1) calculated from equations (21) and (38) for
various values of V are shown. Since the outlet of the operating space correspondsto { = 1,
the intersection point of 4 and A{(p = — 1; po = 1) in these figures determines the value of
s; for each value of V. Similarly, the intersection point of 4 and A{(p = 1; pp = —1) yields
si for each value of V. A remarkable feature in Fig. 7 is that Al((p = —1; po = 1) and
Al(p = 1; po = —1) never exceed 3.0 in the parabolic flow model. This feature can be
confirmed using equation (38) by examining A{ in the limit that p(s) approaches the
electrode surfaces from outside of the operating space. Consequently, for relatively large
values of V, the curves for A{(p = —1; po = 1) and AL(p = 1; py = — 1) do not intersect the
curve for 4, and hence s; and s{ do not exist. In such situations, Regions (B) and (D) in
Fig. 5 do not occur, and the transfer function vanishes whenever p(s) is located outside of
the operating space.

The threshold, sy, if it exists, should satisfy equation (38) with substitution py = 1 and
{p, ) = (—1, 1), which implies that

3 - plsi) +1
Asi) = 5[1 —p*(s1)] ln[———p(sl_) 3

Here the s-dependence of 1 is emphasized by writing A(s). Similarly, s{ satisfies equation (38)
with po = —1 and (p, {) = (1, 1), which implies that

} + 3p(s7). (41)

plsi)—1

o6 T 1]-3p(51+)- (42)

3
As{) = Sl = p*(s1)] ln[
These equations can only be solved numerically. On the other hand, s; and si are
independent of the flow model, and equations (31) and (34) still apply in the parabolic flow
model.
From equations (19) and (37), the transfer function in the parabolic flow model is

t(s) = (p5 — po) [3 — (p3)* — PG po — (po)*1/4. (43)

To obtain p}, and pf in Region (C), we substitute (p, {) = (— 1, 1) and (1, 1), respectively, in
equation (36), and solve for p, numerically. This procedure applies also to pg in Region (B)
and p} in Region (D), if these regions exist. On the other hand, the values of p} in Region (B)
and p} in Region (D) are 1 and — 1, respectively, as is obvious from Fig. 5.
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Fig. 5. Particle trajectories for various values of p(s) in the parabolic flow model. The resolution
parameter, 4., was assumed to be 1.12 throughout.

The transfer functions calculated in this way are shown in Fig. 8. For comparison, the
transfer functions in the uniform flow model are shown, too. As will be verified in the
following section, the shape of the transfer function is determined mainly by 4., and does
not depend significantly on the individual design and operation parameters. In Fig. 8(a)
where 4. is much smaller than unity, the transfer function looks like a skewed trapezoid. As
A, becomes larger, the symmetry of the trapezoid tends towards being restored, and the two
models result in similar shapes as is seen in Figs 8(b), (c), (¢), and (f). When A, exceeds unity,
the parabolic flow model gives narrower transfer functions with higher peak height than the
uniform flow model. This occurs, because in the parabolic flow model the axial motion of
particles in the neighborhood of the electrode surfaces is inert, which in effect narrows the
width of the operating space. As 4. increases further, the transfer function eventually
assumes a Gaussian-like shape as is observed in Fig. 8(h).

When the transfer function is noticeably asymmetric, the meaning of s, is not so clear. In
most cases shown in Fig, 8, however, it is fairly symmetric, and we can think of s, as
representing the center of the specific mass band. In Fig. 9, s, is calculated as a function of
the applied voltage. The device parameters given in Table 1 were used in this calculation.
The particle mass and diameter derived from s, are also shown as separate scales in Fig. 9.
The calculated relative width, As/s, = (s{ — s7{)/s., is given in Fig. 10. When s; and s; do
not exist, s; and s, were used instead. Note that the relative width by diameter, Ad,/d,,., is
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Fig. 6. Values of A{(p = 1; po = — 1) and A{(p = — 1; po = 1) as functions of specific mass for
various voltage settings calculated in the uniform flow model. The device parameters given in
Table 1 were used in the calculation. For each voltage setting, the leftmost curve is for Al(p = ~1;

po = 1) and the rightmost curve is for A{(p = 1; po = — 1).

about one-third of As/s..» Hence, a magnitude of As/s, as large as 1.0 would still give an
acceptable resolution in terms of particle diameter. Figures 9 and 10 demonstrate that the
present method can be applied to particles whose sizes are in practically important ranges,
subject to a feasible choice of design and operation parameters.

Similarity rule

Figure 8 suggests that the shapes of transfer functions for similar values of 1. resemble
one another. In this section, we examine such a similarity with respect to A..

Parabolic flow model
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Fig. 7. Values of A{(p = 1; po = —1) and A{(p = —1; po = 1) as functions of specific mass for
various voltage settings calculated in the parabolic flow model. For details, see Fig. 6.

*Since d,, is proportional to 5173, the logarithmic derivative yields Ad,/d,. = 1/3(As/s.) for infinitesimally small Ad,
and As. When Ad, and As are finite, this relationship is approximate.
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Fig. 8. Transfer functions in the parabolic (solid lines) and uniform (broken lines) flow models for

various voltage settings and rotational velocities. The device parameters given in Table 1 were used

in the calculation. Figures from (a) to (d) are for 1000 RPM and (e} to (h) are for 3000 RPM. Note
that the vertical scales are not identical.

Equation (14) indicates that for any situation where both A(s) and p(s) are equal, the
trajectory patterns are identical. For any two values of s, it is always possible to realize this
similarity by choosing appropriate values for the parameter set {w, V, L, ¥, ... }. However,
for the transfer functions in two different instances to be similar, it is required that both A(s)
and p(s) behave identically for both instances.

The function p(s) can be rewritten as

p(s)=%°<\/s—g——1>, (44)
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Fig. 9. Center of the specific mass, s., as a function of the applied voltage for various rotational
velocities. The scales for the particle mass and the diameter for the corresponding s, are also given
under the assumption that the particle carries unit elementary charge and is a sphere of density
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Fig. 10. The specific mass band relative width As/s, as a function of the applied voltage. The device
parameters given in Table 1 and a total aerosol flow rate of 0.5 min~! were assumed.

and hence it is a function of s/s., with r./d being a scaling factor. To examine how A(s)
behaves as a function of s/s., we calculate A(s) for three different values of s,, with the
parameter set being chosen to give the same value of A, for each value of s.. The result is
shown in Fig. 11, where A, was chosen arbitrarily to be 1.0. We notice that A(s) as a function
of s/s. changes little for three widely different values of s.. This suggests that the transfer
functions for the same value of 4. are approximately equal when expressed as functions of
5/s.. That this is in fact true is seen in Fig. 12, where we find that the transfer functions in the
parabolic flow model for the three values of s, coincide within the thickness of the plotted
lines for constant A.. For values of 4, larger than those shown in Fig. 12, this observation is
even more accurate, because the width of the specific mass band is narrower.

In Fig. 13, the relative width of the transfer function, As/s,, is plotted as a function of A..
The three curves in Fig. 10 are not distinguishable in Fig. 13. They approach 44/r,
asymptotically as /. increases. Note that since As is the base width, little difference is
observed between the uniform and parabolic flow models in Fig. 13. The maximum transfer

AS 27/2.€
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Fig. 12. Transfer functions in the parabolic flow model for the three sets of parameters which give
the same values of A, for three different values of s.. The three transfer functions nearly coincide both
in (a) and (b).

function height, t(s.), as a function of 4, is shown in Fig. 14. The parabolic flow model gives
a larger t(s.;) than the uniform flow model especially for large /..

Figures 13 and 14 give an indication of an appropriate choice for A, in real applications. If
one requires Ad,/d,; to be smaller than 0.4, for example, which is equivalent to As/s. being
smaller than about 1.2, then A, should be larger than 0.1. On the other hand, if A, is too
large, only a small fraction of entering particles will come out, which will usually be
undesirable. If one requires ¢(s.) to be larger than 0.1, /. should be smaller than about 3 by
Fig. 14. Consequently, 0.1 < 4. < 3 would be an appropriate choice for A, in typical
applications.

EXPERIMENTAL VERIFICATION

We have constructed a prototype classifier based on the principles described above. As is
shown schematically in Fig. 15, the coaxial cylindrical electrodes constitute the operating
space whose dimensions are summarized in Table 1. An aerosol drawn through the inlet
tube flows outwardly into the thin topmost space, and enters the operating space. Four thin

Table 1. Summary of the device parameters of the prototype
aerosol particle mass analyzer

ry (outer radius of the inner electrode) 100 mm
r, (inner radius of the outer electrode) 103 mm
L (vertical length of the electrodes) 200 mm
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Fig. 13. The transfer function relative width As/s. as a function of the resolution parameter A..
Results for the parabolic and uniform flow models nearly coincide.

plastic partitions parallel to the axis, not shown in Fig. 15, are inserted between the
electrodes to ensure that the aerosol rotates at the same velocity as the electrodes. The
aerosol exiting the operating space flows inwardly at the bottommost space, and is finally
taken out via the outlet tube located at the rotation axis. The high voltage is applied
through the brushes which make electrical contact between the rotating and stationary
parts. For the device parameters given in Table 1, §/r. is equal to about 0.015, and hence
condition (5} is safely satisfied. '

To examine the performance of the prototype, we have measured the mass distribution of
monodisperse polystyrene latex (PSL) spheres nominally 0.309 um in diameter, produced
by JSR Co. Figure 16 shows schematically the setup used for this experiment. An aerosol
generated by atomizing a PSL suspension was passed through a charge neutralizer utilizing
241 Am prior to classification. The particle concentration in the aerosol leaving the classifier
was measured with a laser particle counter (KC-18, Rion Co., Tokyo) for various voltage
settings. Two measurements were made: one with the charge neutralizer and one without.
The rotational velocity was fixed at 1000 RPM. The temporal stability of the particle
concentration in the entering aerosols was also monitored with the particle counter. The
results of our measurements are given in Fig. 17. Each experimental spectrum is normalized
to the maximum in the region of 300 V. The arrows labelled g = 1, 2 and 3 in Fig. 17
indicate the theoretically predicted peak locations corresponding to singly, doubly, and
triply charged particles, respectively. A particle density of 1.054 gcm ~3, the value provided

1
- S Parabolic flow
08F EN model
L ‘\
.
LY

. .
| Uniform flow %
model N

| YTl ] PR |

sl s
01 03 1 3 10
Resolution parameter Ac

Fig. 14. Maximum height of the transfer function in the uniform and parabolic flow models as
functions of A..
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Fig. 15. Schematic diagram of the prototype aerosol particle mass analyzer.
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Fig. 16. Experimental setup for measuring the mass distribution of monodisperse polystyrene latex
spheres.

by the manufacturer of the PSL spheres, was used in the calculation. Although the maxima
for doubly and triply charged particles in the absence of the charge neutralizer are not well
resolved, the other peak positions agree fairly well with the theoretical predictions.

The concentration of the exiting particles as a function of voltage, n(V'), is given by

nV) = J‘f(s)t(s) ds. (45)

Here, f(s) is the specific mass distribution of the aerosol particles before classification, and is
assumed to be proportional to the -function, for simplicity. As a result of air leaks probably
through the bearings, the exact aerosol flow rate in the operating space could not be
determined. For instance, when the flow rate of the entering aerosol was 1.1 1min~", the
flow rate measured at the outlet was around 0.7 lmin~'. So we took the average of
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Fig. 17. Experimental spectra for 0.309 um PSL spheres. The arrows indicate the theoretical
predictions of the peak positions and the solid line is for a theoretically calculated spectrum.

0.9 Imin~? to obtain a rough estimate of the flow rate in the operating space, and we used
this value to calculate n(V') for singly charged particles. The solid curve in Fig. 17 shows the
result of this calculation which used t(s) in the parabolic flow model. We note that the
theory predicts a slightly larger mass distribution than is observed in the experiment.
According to equation (30), the experimental peak position, 318 V, corresponds to
m =153 x10"'7 kg, or d, = 0.302 um. So the relative disagreement between theory and
experiment is about 6.5% in terms of mass, or 2.3% in terms of diameter.

Due to the four partitions in the operating space, the velocity of the acrosol flow is
expected to depend on the azimuthal angle, ¢. If the ¢-dependence of the average velocity,
v (@), were known, it could be accounted for by considering a local transfer function (s, ¢),
and integrating it over ¢ to obtain the total transfer function. Although the inhomogeneity
of ¥ may lead to a variation in the width of the transfer function with ¢, its center, s, will
not be affected. Thus, this inhomogeneity is expected to have only a minor effect on n(V). It
should also be noted that the prediction of the maxima’s positions is not affected by the
absence of an exact value for the total aerosol flow rate.

CONCLUSIONS

A method to classify aerosol particles according to their specific mass has been proposed.
Since classified particles are obtained as an aerosol suspension, the classification device
based on this method may be regarded as the mass-to-charge counterpart of the differential
mobility analyzer; the latter is essentially a classifier of the diameter-to-charge ratio. Unlike
the differential mobility analyzer, the transfer function for this method depends on the
detailed form of the velocity distribution of the aerosol flow in the operating space. We
considered two models for the velocity distribution. The uniform flow model leads to an
analytical expression for the transfer function which has the shape of a symmetric trapezoid.
The transfer function in the parabolic flow model was calculated numerically, and was
found to be somewhat narrower than the uniform flow model, especially when the resolu-
tion parameter A is larger than unity.

A similarity rule has been derived which states that the transfer function is determined
solely by A.. This rule is mathematically inexact, but is expected to be valid to good
accuracy in practical situations. In applications, this similarity rule will be useful in
choosing the operating parameters for optimal performance.

A prototype classifier was constructed and the mass distribution of 0.309 ym monodis-
perse particles was measured with this device. The locations of maxima in the experimental
spectra were found to agree fairly well with the theory, which has verified the feasibility of
this method.
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One of the favorable features of this method is that the classification performance is
insensitive to the instability and inhomogeneity of the aerosol flow in the operating space.
The shape of the transfer function will be distorted to some extent by these imperfections of
the flow filed, but its center, s, will not be shifted in principle. This feature will facilitate
designing and constructing this type of classifier.
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