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Abstract-A new method to classify aerosol particles according to their mass-to-charge ratio is 
proposed. This method works by balancing the electrostatic and centrifugal forces which act on 
particles introduced into a thin annular space formed between rotating cylindrical electrodes. 
Particles having a mass-to-charge ratio lying in a certain narrow range are taken out continuously 
as an aerosol suspension. A theoretical framework has been developed to calculate the transfer 
function which is defined as the ratio of the exiting particle flux to the entering particle flux. 
A similarity rule has been derived which states that a single nondimensional constant determines the 
shape of the transfer function. To examine the feasibility of the proposed principle, a prototype 
classifier was constructed, and the mass distribution of monodisperse particles nominally 0.309 nm 
in diameter was measured. The peak structures corresponding to singly, doubly, and triply charged 
particles were identified in the experimental spectra. The difference between theory and experiment 
in the peak location for the singly charged particles was about 6.5% in terms of mass, or 2.3% in 
terms of diameter. 

INTRODUCTION 

Various kinds of aerosol classification devices have been developed so far. The basic 
principle for classification employed in most of these devices involves the balancing of the 
drag force exerted by the surrounding air on the particles with some constant external force. 
Examples of such external forces include: the electrostatic force for the electrical aerosol 
analyzer (Whitby, 1976; Liu et al., 1979) and the differential mobility analyzer (Hewitt, 1957; 
Knutson and Whitby, 1975); gravity for the horizontal elutriator (Stiiber and Flachsbart, 
1971) and the sedimentation cell (Allen and Raabe, 1985; Kousaka et al., 1987); the 
centrifugal force for the cyclone (Beeckmans, 1979) and various types of aerosol centrifuges 
such as the conifuge (Tillery, 1979) the cylindrical aerosol spectrometer (Hochrainer, 1971; 
Abed-Navavdi et al., 1976; Tillery, 1979), the Goetz aerosol spectrometer (Stevenson and 
Preining, 1960; Gerber, 1979), and the Stober centrifuge (Stober, 1976; Tally et al., 1979). 
Although inertia and the diffusion force are not strictly regarded as external forces, various 
types of impactors (Marple and Willeke, 1979; Masuda et al., 1979; Prodi et al., 1979) and 
diffusion batteries (Sinclair et al., 1979) can also be viewed as balancing the drag force with 
these forces. Since the drag force, which may be described by the Stokes formula modified 
by the slip correction factor, is determined by the particle diameter, the properties according 
to which particles are classified with these devices are functions of the particle diameter. The 
particle properties utilized for this purpose include the electrical mobility, the mechanical 
mobility, the relaxation time, and the diffusion coefficient. 

These properties are important in that they directly govern the particle motion resulting 
from the relevant external forces. However, being dependent on the particle interaction with 
the surrounding air, these properties are not purely intrinsic to the particles. Besides, when 
the particles are not spherical, these properties depend on the particle orientation relative to 
their movement, and the interpretation and use of these properties often become somewhat 
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complicated. In some situations, therefore, it would be more desirable if one could classify 
aerosol particles according to their intrinsic properties which do not depend on the particle 
shapes or orientation, or the properties of the surrounding air. At present, however, only 
a few such methods are known. 

The balance method using a Millikan-type cell, which is actually not for classification but 
for measurement, can be used to measure the mass-to-charge ratio of an individual aerosol 
particle. It provides a method for accurate particle size measurement if the particle density is 
known, and has been applied successfully to the measurement of particle size standards 
(Kousaka et al., 1987). However, since it is a slow method and deals with only one particle at 
a time, it is not appropriate for real polydisperse aerosol particles. Also, it is difficult to 
measure particles smaller than about 0.5 pm because of Brownian motion. The device 
developed by Masuda and his group (Masuda et al., 1993) who studied the charge 
distribution of aerosol particles, is essentially a mass-to-charge classifier. The essential part 
of their device is the vertically oriented planar electrodes. Aerosol particles released at the 
central line of the top of the electrodes undergo sedimentation in mutually orthogonal 
electrostatic and gravitational fields, and are collected on slide glasses placed at the bottom 
of the device and on the electrodes’ surfaces. The spatial distribution of the particles 
deposited onto the slides is measured with a microscope, and from this the distribution of 
the mass-to-charge ratio is derived. This method is more efficient than the balance method 
using a Millikan-type cell, but is less precise. The application of this method is restricted to 
particles larger than about 1 pm due to Brownian motion. 

In the present paper, we propose a new method to classify aerosol particles according to 
their mass-to-charge ratio. This method works by balancing electrostatic and centrifugal 
forces; the drag force plays only a secondary role. Though the resolution in classification 
still depends on the particle shape and orientation and the properties of the surrounding air, 
the location of the center of the classification band is determined solely by the intrinsic 
particle property. The most notable difference from the methods described above is that in 
this method the classified particles are obtained as an aerosol suspension. Hence, this 
method can be used either to generate monodisperse particles, or to measure the mass-to- 
charge distribution by counting the classified particles by some means such as the conden- 
sation nucleus counter or the optical particle counter. 

In the following sections, we first develop a theoretical framework to calculate the 
transfer function. Characteristic features in the classification scheme are analyzed in terms 
of two different theoretical models of the aerosol velocity distribution in the classifier. On 
the basis of the principle proposed, we have constructed a prototype classifier. Experimental 
data collected with this classifier are compared with theory. Though the effects of Brownian 
motion will be neglected throughout this paper, they are expected to be important for 
particles smaller than 0.1 pm. A stochastic modelling of the classifier which accounts for 
Brownian motion will be presented in a separate paper (Hagwood et al., 1996). 

THEORY 

Equation describing the particle trajectory 

We begin by considering rotating coaxial cylindrical electrodes. Figure 1 is a schematic 
drawing of such a device. The inner and outer electrodes rotate at the same angular velocity, 
cu. The narrow annular space between the electrodes constitutes the space where classifica- 
tion occurs; we will call it the operating space. We will assume that the device is so 
constructed that when the aerosol is introduced into the operating space, it rotates at the 
same angular velocity as the electrodes. To ensure this, one may, for example, partition the 
operating space into some segments perpendicular to the cylinder axis. Voltage I/ is applied 
between the electrodes. Let r and z denote the radial and axial coordinates in a cylindrical 
coordinate system which rotates at the same angular velocity as the electrodes. The origin 
of the coordinate system is taken in the inlet plane of the operating space. We neglect 
particle inertia, Brownian motion, the interaction between aerosol particles, and the image 
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Fig. 1. Schematic diagram of the cylindrical electrodes which classify aerosol particles according to 
their specific mass given by equation (4). 

potential. The equations of motion for a particle having 
operating space are 

m dr 
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z dt rW-2/rd' 

m dz ; dt [ 1 --v(r) =o, 

mass m and charge q in the 

(1) 

(2) 

where r is the particle relaxation time, and rl and r2 are the inner and outer radii of the 
operating space. In equations (1) and (2), the air flow velocity in the operating space is 
assumed to have only a z-component, v(r), which has no t- or z-dependence. The left-hand 
sides of these equations represent the drag force which is described by the Stokes formula 
modified by the slip correction factor, and the first and second terms on the right-hand side 
of equation (1) represent the centrifugal and electrostatic forces, respectively. We can neglect 
the Coriolis force, because the primary motion of the particle, which is its axial motion in 
tandem with the surrounding air, is parallel to the axis of rotation. We consider the case 
where the product qV is positive and hence the electrostatic and centrifugal forces act in 
opposite directions. From equation (l), the net external force vanishes when the radial 
coordinate of the particle is equal to r(s), where 

r(s) = J V 

s 0.1’ ln(r2/rI) ’ 

Here s denotes the mass-to-charge ratio given by 

s = mlq, (4) 

which we hereafter call the specific mass. In the analysis which follows, we assume that the 
spacing between the electrodes is much smaller than their radii. This assumption not only 
simplifies the theoretical analysis, but it is also a condition to be met if we require the 
resolution in classification to be reasonably high, as will be shown later. This is expressed as 

6/r, 4 1, (5) 
where 

I, = (rr + r2)/2, (6) 

6 = (r2 - r,)/2. (7) 
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Under this assumption, we expand the right-hand side of equation (1) in a Taylor series with 
respect to (r - r(s)). The zeroth-order term vanishes by the definition of r(s). Substituting 
equation (3) into the coefficient of the first-order term and neglecting higher-order terms, we 
obtain 

dr 
Z = 2z02(r - r(s)). 

This approximation is valid when analyzing the transfer function which will be introduced 
shortly, because only those particles for which Ir - r(s)1 is less than or of the order of 
6 contribute to the transfer function. Eliminating t from equations (2) and (8) leads to the 
equation of particle trajectories: 

dz v(r) 
Z = 2rw2[r - r(s)] (9) 

To express equation (9) in a nondimensional form, we introduce the dimensionless coordi- 
nates p and < given by 

p = (r - r,)P, (10) 

i = a, (11) 

and velocity distribution of the air flow 

w(p) = v(r)/i. 

Here L is the axial length of the operating space, and 

s 

r2 
i= v(r)r dr/26r, 

*i 

is the average flow velocity. Equation (9) can now be rewritten as 

di W(P) -= 
dp ~CP - ~(41’ 

(12) 

(13) 

(14) 

with 

p(s) = [r(s) - r,l/d, 
I = 2r02L/V. 

(15) 

(16) 

The dimensionless constant 1 is an important parameter that characterizes the classification 
performance. It depends on s via z. From equation (8), l/(2r02) can be regarded as 
a representative time for a particle to traverse the operating space in the radial direction. On 
the other hand, L/V is the average time for an aerosol to pass through the operating space. 
Accordingly, 1. can be interpreted as the ratio of the axial and radial traversal times. 

Transfer function 

Suppose that particles having a specific mass s enter the operating space in a spatially 
uniform concentration n,. The total particle flux at the entrance is given by 

s 

I* 
Fin = 2m0 v(r)r dr 

*I 

= 4nr, 6 nOi (17) 

Let r; and r”, denote, respectively, the initial radial coordinates of the innermost and 
outermost trajectories of particles which pass through the operating space. The total 
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particle flux at the exit is given by 

s 

rl 
F,,, = 271 v(r) n(r, L)r dr 

I, 

s 

rt 
= 271 v(r)n(r, 0)rdr 

rd 

s 

*6 
= 27cr,n0 v(r)dr, (18) 

rd 

where n(r, z) is the particle concentration at a point (r, z). The last line in this equation is an 
approximate expression valid under condition (5). In analogy to the theoretical analysis of 
the differential mobility analyzer by Knutson and Whitby (1975) we introduce the transfer 
function which in our case is defined as F,,,IFi,. Its explicit form is derived from equations 
(17) and (18) to be 

t(s) = ; 
s 

P: 
w(p) dp 2 (19) 

Pb 

where p; and pk are the nondimensional coordinates corresponding to rb and rk, respectively. 

MODEL CALCULATIONS 

Unlike the differential mobility analyzer, the transfer function for the present classifier 
depends on the structure of the flow field, as equation (19) shows. This dependence comes 
from the fact that the field of the centrifugal force is not divergent-free, and, therefore, the 
function analogous to the stream function for the flow field, or to the electric flux function as 
termed by Knutson and Whitby (1975) for the electrostatic field, cannot be defined for the 
centrifugal force field. 

We consider two models for w(p) below. One is so simple that we can obtain an 
approximate analytical solution for the transfer function. This model may not be satisfac- 
tory for the detailed analysis of the classifier performance, but it is useful for obtaining an 
intuitive understanding of the classification mechanism. The other model contains the 
essential features of a real classifier, and is expected to provide theoretical predictions that 
can be compared directly with the experiment. Calculation of the transfer function in the 
latter model requires numerical computation. 

Uniform flow model 

In this model, we assume that w(p) is uniform over p, namely that 

W”(P) = 1. (20) 

Using equation (20), we can solve equation (14) easily to get 

P - P(s) = Ch - p(s)lexp(X), (21) 

where p. is the initial value of p. The parameter p(s) indicates the point of unstable 
equilibrium in the p-direction motion. As shown in Fig. 2, we can identify five regions of p(s) 
each of which corresponds to a different trajectory pattern. In Regions (B), (C), and (D) 
shown in Fig. 2, particles in the hatched areas pass through the operating space. Particles 
outside these areas will be deposited onto the surfaces of the electrodes. In Region (C), p(s) is 
located between the electrode surfaces; that is 

- 1 < p(s) < 1 [Region (C)l. (22) 
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Fig. 2. Various cases of the trajectory patterns. Particles in the hatched areas pass through the 
operating space. 

In this region, & and pk are the initial values of p of the particles which pass the points (y, Q 
given by (- 1, 1) and (1, l), respectively. From equation (21) these are 

pb = (1 - e-‘) p(s) ~ ee’ , (23) 

pi = (1 - e-‘)fj(s) + e-j, (24) 

Substituting these expressions into equation (19) we obtain 

t(s) = e-j [Region (C)‘j. (25) 

In Region(B), the inward electrostatic force is slightly larger in magnitude than the outward 
centrifugal force. As is obvious from Fig. 2, pg is equal to unity, and as for ~b, equation (23) 
still applies. Hence, we have 

t(s) = {[l - p(s)] + [l + p(s)] e-/1/2 [Region (B)]. (26) 

The condition that ~b should be located inside the outer electrode surface imposes the 
upper limit to p(s), yielding 

1 < p(s) < coth(/l/2) [Region (B)] (27) 
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Similarly, for Region (D) we have 

-coth(;l/2) < p(s) < - 1 [Region (D)] (28) 

and the transfer function is calculated to be 

t(s) = {Cl + p(s)] + [l - p(s)] e-‘j/2 [Region (D)]. (29) 

When p(s) is larger than coth(1_/2) [Region (A)], or smaller than -coth(1/2) [Region (E)], it 
is obvious that t(s) vanishes. 

Let s, denote the specific mass corresponding to the center of Region (C), that is p(sJ = 0. 
The solution obtained from equations (3) and (15) is 

V 
SC = r,’ co2 ln(r,/rr) (30) 

To determine the transfer function, we have to solve inequalities (22), (27), and (28) for s. Let 
s;, s12 + s;, and s: denote the values of s for which p(s) is equal to coth(A/2), -coth(1/2), 1, 
and - 1, respectively. The solutions for s; and s: are easily obtained to be 

On the other hand, s; and s: cannot be solved for analytically, because I depends on s in 
a rather complicated manner through 5. If the range from s; to s: is so narrow that we can 
neglect the variation of coth(A/2) in this range, we may replace A with its value at s = so 
which will be denoted by /2,. With this approximation, s; and s: are obtained analytically 
to be 

*= SC 
Sl 

Cl T (6/r,) coth(&/2)12 ’ 
(32) 

Also, we replace 2 in equations (25) (26), and (29) with 1, in the same manner. Under 
condition (5), the expressions (30), (31), and (32) can be further simplified to yield 

s, Z V/(2r, 150~)) (33) 

SF Zs,(l f 26/r,), (34) 

SE ~s,[l f 2(6/r,)coth(&/2)]. (35) 

For equation (35) to be valid, it is required in addition that coth(&/2) is at most of the order 
of unity. This requirement is equivalent to insisting that the resolution in the classification 
be reasonably high, as seen in equation (36) below. The transfer function thus determined is 
shown in Fig. 3. It has the shape of a symmetric trapezoid whose center is located at s,. The 
base width relative to s,, which is a measure of the resolution in the classification, is given by 

As 4S _=_ 
SC rc 

(36) 

and its height is exp( - A,). In the following, we will refer to ;1, as the resolution parameter, 
and the range from s; to s: as the specific mass band. 

Although it is also possible to take the s-dependence of I within the specific mass band 
fully into consideration by means of numerical calculation, we will not do so in the present 
model. It will be taken into consideration in the subsequent model. 

Parabolic JEow model 

The steady-state solution for the axisymmetric velocity distribution of an incompressible 
viscous fluid flowing between two coaxial cylinders is well-known (Landau and Lifshitz, 
1963). Under condition (5), it can be written to a good approximation as 

W,(P) = 3(1 - P2)/2. (37) 
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Normalized specific mass (s&) 

Fig. 3. Transfer function, J(S), in the uniform flow model. 

c 
Parabolic flow 

Fig. 4. Velocity distributions of the air flow between the electrodes in the uniform and parabolic 
flow models. 

This is similar in form to the equation describing the flow between two parallel plates. The 
factor of 3/2 ensures that NJ,(~) gives the same total flow rate as \~,(p). Figure 4 compares 
w,(p) and w,(p). In a real device. it is expected that there is a transition region near the inlet 
where the aerosol flow is not described by w,(p). The length of such a region is known to be 
about 0.086Re (Schlichting, 1962) where Re is the Reynolds number referred to the width of 
the operating space. For the parameter values given later in Table 1 and an aerosol flow rate 
of 1 l/min, the Reynolds number is of the order of unity. Accordingly, the length of the 
transition region is expected to be much shorter than L, so that its effect on the classification 
performance can be neglected. 

In this model, the solution to equation (14) is given by 

(=$[l -$(s)]In 
/, - O(.~) 

i 1 [‘o - P(S) 
- & (CP + ml2 - CP” + P(m (38) 

Whenever the explicit expression for the s-dependence of i. is required in the subsequent 
analysis, we will assume that the particle is a sphere of density 1 gcmm3 and that it carries 
unit elementary charge, unless otherwise stated. This enables us to relate s with the particle 
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diameter, d,, which appears in the expression for the relaxation time given by 

mWp) 
5=G&-. (39) 

Here q is the viscosity coefficient of air, and C(d,) is the slip correction factor. In this paper, 
we use u = 1.87 x lo-’ Pas and the expression for C(d,) given by Allen and Raabe (1985) 
which is 

C(d,)= 1 +$.l42+0.558exp( -“;;9’p)], (40) 

where 1 is the mean free path of air molecules for which we take 1 = 0.0664 pm. Under this 
assumption, particle trajectories were calculated from equation (38) for various values of 
p(s). The results are shown in Fig. 5. In this calculation, the device parameters given in 
Table 1 and a total aerosol flow rate of 1.0 l/min were used, and it was assumed that 
I/ = 1000 V and o = 3000 RPM. This choice of the parameter values results in AC equal to 
1.12. 

A distinct difference in the trajectory patterns between the uniform and the parabolic flow 
models, which is not directly evident in Figs 2 and 5, is found when we consider the distance 
a particle starting at either surface of the electrodes moves in the i-direction until it reaches 
the other surface. Figures 6 and 7 compare this distance yielded by the two models, where 
/l[(p = - 1; p,, = 1) and ,%[(p = 1; p0 = - 1) calculated from equations (21) and (38) for 
various values of I/ are shown. Since the outlet of the operating space corresponds to [ = 1, 
the intersection point of ,? and I[(p = - 1; p. = 1) in these figures determines the value of 
s; for each value of I/. Similarly, the intersection point of ,! and n[(p = 1; p. = - 1) yields 
s: for each value of T/. A remarkable feature in Fig. 7 is that /l[((p = - 1; p. = 1) and 
/lc(p = 1; p. = - 1) never exceed 3.0 in the parabolic flow model. This feature can be 
confirmed using equation (38) by examining ii in the limit that p(s) approaches the 
electrode surfaces from outside of the operating space. Consequently, for relatively large 
values of I/, the curves for n[(~ = - 1; p. = 1) and Ji(p = 1; p. = - 1) do not intersect the 
curve for ;I, and hence s; and s: do not exist. In such situations, Regions (B) and (D) in 
Fig. 5 do not occur, and the transfer function vanishes whenever p(s) is located outside of 
the operating space. 

The threshold, s;, if it exists, should satisfy equation (38) with substitution p. = 1 and 
(p, [) = ( - 1, l), which implies that 

A(sJ = $1 - $(s;)] 1 n/“,Iai T :] + 3&L). (41) 

Here the s-dependence of 2 is emphasized by writing 3.(s). Similarly, s: satisfies equation (38) 
with p. = - 1 and (p, {) = (1, l), which implies that 

These equations can only be solved numerically. On the other hand, s; and sz are 
independent of the flow model, and equations (31) and (34) still apply in the parabolic flow 
model. 

From equations (19) and (37), the transfer function in the parabolic flow model is 

t(s) = (P”o - Pb) c3 - (P?J2 - P:, Pb - hw1/4~ (43) 

To obtain & and pt in Region (C), we substitute (p, [) = (- 1, 1) and (1, l), respectively, in 
equation (36), and solve for p. numerically. This procedure applies also to ~b in Region (B) 
and pk in Region (D), if these regions exist. On the other hand, the values of pg in Region (B) 
and P; in Region (D) are 1 and - 1, respectively, as is obvious from Fig. 5. 
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1 

Fig. 5. Particle trajectories for various values of p(s) in the parabolic flow model. The resolution 
parameter, A,, was assumed to be 1.12 throughout. 

The transfer functions calculated in this way are shown in Fig. 8. For comparison, the 
transfer functions in the uniform flow model are shown, too. As will be verified in the 
following section, the shape of the transfer function is determined mainly by ,I,., and does 
not depend significantly on the individual design and operation parameters. In Fig. B(a) 
where 2, is much smaller than unity, the transfer function looks like a skewed trapezoid. As 
;1, becomes larger, the symmetry of the trapezoid tends towards being restored, and the two 
models result in similar shapes as is seen in Figs B(b), (c), (e), and (f). When 2, exceeds unity, 
the parabolic flow model gives narrower transfer functions with higher peak height than the 
uniform flow model. This occurs, because in the parabolic flow model the axial motion of 
particles in the neighborhood of the electrode surfaces is inert, which in effect narrows the 
width of the operating space. As A, increases further, the transfer function eventually 
assumes a Gaussian-like shape as is observed in Fig. B(h). 

When the transfer function is noticeably asymmetric, the meaning of s, is not so clear. In 
most cases shown in Fig. 8, however, it is fairly symmetric, and we can think of s, as 
representing the center of the specific mass band. In Fig. 9, s, is calculated as a function of 
the applied voltage. The device parameters given in Table 1 were used in this calculation. 
The particle mass and diameter derived from s, are also shown as separate scales in Fig. 9. 
The calculated relative width, As/s, = (s: - s;j/s,, is given in Fig. 10. When s: and s; do 
not exist, s: and s; were used instead. Note that the relative width by diameter, Ad,/d,,, is 
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2 i . _ 1 E-2 IE-1 1 E+O lE+l 1 E+2 lE+3 1 E+4 

Uniforry flo;Oyd;j /-I-/‘h 
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Fig. 6. Values of L[(p = 1; pO = - 1) and Li(p = - 1; p,, = 1) as functions of specific mass for 
various voltage settings calculated in the uniform flow model. The device parameters given in 
Table 1 were used in the calculation. For each voltage setting, the leftmost curve is for ni(p = - 1; 

pO = 1) and the rightmost curve is for j,[(p = 1; pa = - 1). 

about one-third of As/s,.* Hence, a magnitude of As/s, as large as 1.0 would still give an 
acceptable resolution in terms of particle diameter. Figures 9 and 10 demonstrate that the 
present method can be applied to particles whose sizes are in practically important ranges, 
subject to a feasible choice of design and operation parameters. 

Similarity rule 

Figure 8 suggests that the shapes of transfer functions for similar values of 1, resemble 
one another. In this section, we examine such a similarity with respect to 1,. 

IE-2 IE-1 lE+O lE+l 1 E-t2 1 E+3 1 E+4 

Specific mass (kg/C) 

Fig. 7. Values of ,?i(p = 1; pO = - 1) and L[(p = - 1; pO = 1) as functions of specific mass for 
various voltage settings calculated in the parabolic flow model. For details, see Fig. 6. 

*Since d is proportional to s1f3, the logarithmic derivative yields Ad,/d,, = 1/3(As/s,) for infinitesimally small Ad, 
and As. khen Ad, and As are finite, this relationship is approximate. 
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Fig. 8. Transfer functions in the parabolic (solid lines) and uniform (broken lines) flow models for 
various voltage settings and rotational velocities. The device parameters given in Table 1 were used 
in the calculation. Figures from (a) to (d) are for 1000 RPM and (e) to (h) are for 3000 RPM. Note 

that the vertical scales are not identical. 

Equation (14) indicates that for any situation where both A(s) and p(s) are equal, the 
trajectory patterns are identical. For any two values of s, it is always possible to realize this 
similarity by choosing appropriate values for the parameter set {w, T/, L, V , . }. However, 
for the transfer functions in two different instances to be similar, it is required that both A(s) 
and p(s) behave identically for both instances. 

The function p(s) can be rewritten as 

(44) 
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Fig. 9. Center of the specific mass, s,, as a function of the applied voltage for various rotational 
velocities. The scales for the particle mass and the diameter for the corresponding s, are also given 
under the assumption that the particle carries unit elementary charge and is a sphere of density 

1 gem-3. 

IO 100 1,000 10,000 

Voltage (V) 

Fig. 10. The specific mass band relative width As/s, as a function of the applied voltage. The device 
parameters given in Table 1 and a total aerosol flow rate of 0.5 1 min- 1 were assumed. 

and hence it is a function of s/s,, with r,/6 being a scaling factor. To examine how n(s) 
behaves as a function of s/s,, we calculate n(s) for three different values of s,, with the 
parameter set being chosen to give the same value of 2, for each value of s,. The result is 
shown in Fig. 11, where & was chosen arbitrarily to be 1.0. We notice that /l(s) as a function 
of s/s, changes little for three widely different values of s,. This suggests that the transfer 
functions for the same value of >_, are approximately equal when expressed as functions of 
s/s,. That this is in fact true is seen in Fig. 12, where we find that the transfer functions in the 
parabolic flow model for the three values of s, coincide within the thickness of the plotted 
lines for constant A,. For values of A, larger than those shown in Fig. 12, this observation is 
even more accurate, because the width of the specific mass band is narrower. 

In Fig. 13, the relative width of the transfer function, As/s,, is plotted as a function of ,4,. 
The three curves in Fig. 10 are not distinguishable in Fig. 13. They approach 46/r, 
asymptotically as E., increases. Note that since As is the base width, little difference is 
observed between the uniform and parabolic flow models in Fig. 13. The maximum transfer 

Al 2712-E 
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Fig. 11. Behavior of the nondimensional parameter A(s) as a function of s/s, for various values of s,. 
The parameter set is chosen so that ,I(s,) is equal to 1.0 for all values of s,. 
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Fig. 12. Transfer functions in the parabolic flow model for the three sets of parameters which give 
the same values of 1, for three different values of s,. The three transfer functions nearly coincide both 

in (a) and (b). 

function height, t(sJ, as a function of 1, is shown in Fig. 14. The parabolic flow model gives 
a larger t(sJ than the uniform flow model especially for large i,. 

Figures 13 and 14 give an indication of an appropriate choice for 2, in real applications. If 
one requires Ad,/d,c to be smaller than 0.4, for example, which is equivalent to As/s, being 
smaller than about 1.2, then ;1, should be larger than 0.1. On the other hand, if & is too 
large, only a small fraction of entering particles will come out, which will usually be 
undesirable. If one requires t(sJ to be larger than 0.1, A, should be smaller than about 3 by 
Fig. 14. Consequently, 0.1 d /2, d 3 would be an appropriate choice for E., in typical 
applications. 

EXPERIMENTAL VERIFICATION 

We have constructed a prototype classifier based on the principles described above. As is 
shown schematically in Fig, 15, the coaxial cylindrical electrodes constitute the operating 
space whose dimensions are summarized in Table 1. An aerosol drawn through the inlet 
tube flows outwardly into the thin topmost space, and enters the operating space. Four thin 

Table 1. Summary of the device parameters of the prototype 
aerosol particle mass analyzer 

rl (outer radius of the inner electrode) 
r2 (inner radius of the outer electrode) 
L (vertical length of the electrodes) 

100 mm 
103 mm 
200 mm 



Novel method to classify aerosol particles 231 

Parabolic flow model 
Uniform flow model 

Resolution parameter hc 

Fig. 13. The transfer function relative width As/s, as a function of the resolution parameter 1,. 
Results for the parabolic and uniform flow models nearly coincide. 

plastic partitions parallel to the axis, not shown in Fig. 15, are inserted between the 
electrodes to ensure that the aerosol rotates at the same velocity as the electrodes. The 
aerosol exiting the operating space flows inwardly at the bottommost space, and is finally 
taken out via the outlet tube located at the rotation axis. The high voltage is applied 
through the brushes which make electrical contact between the rotating and stationary 
parts. For the device parameters given in Table 1, 6/r, is equal to about 0.015, and hence 
condition (5) is safely satisfied. 

To examine the performance of the prototype, we have measured the mass distribution of 
monodisperse polystyrene latex (PSL) spheres nominally 0.309 pm in diameter, produced 
by JSR Co. Figure 16 shows schematically the setup used for this experiment. An aerosol 
generated by atomizing a PSL suspension was passed through a charge neutralizer utilizing 
241Am prior to classification. The particle concentration in the aerosol leaving the classifier 
was measured with a laser particle counter (KC-l& Rion Co., Tokyo) for various voltage 
settings. Two measurements were made: one with the charge neutralizer and one without. 
The rotational velocity was fixed at 1000 RPM. The temporal stability of the particle 
concentration in the entering aerosols was also monitored with the particle counter. The 
results of our measurements are given in Fig. 17. Each experimental spectrum is normalized 
to the maximum in the region of 300 V. The arrows labelled 4 = 1, 2 and 3 in Fig. 17 
indicate the theoretically predicted peak locations corresponding to singly, doubly, and 
triply charged particles, respectively. A particle density of 1.054 g cme3, the value provided 

1 

0.8 
Parabolic flow 

0.1 0.3 1 3 10 

Resolution parameter AC 

Fig. 14. Maximum height of the transfer function in the uniform and parabolic flow models as 
functions of 2,. 
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Fig. 15. Schematic diagram of the prototype aerosol particle mass analyzer. 
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Fig. 16. Experimental setup for measuring the mass distribution of monodisperse polystyrene latex 
spheres. 

by the manufacturer of the PSL spheres, was used in the calculation. Although the maxima 
for doubly and triply charged particles in the absence of the charge neutralizer are not well 
resolved, the other peak positions agree fairly well with the theoretical predictions. 

The concentration of the exiting particles as a function of voltage, n(V), is given by 

n(V) = 
s 

f(s)t(s)ds. (45) 

Here, f(s) is the specific mass distribution of the aerosol particles before classification, and is 
assumed to be proportional to the S-function, for simplicity. As a result of air leaks probably 
through the bearings, the exact aerosol flow rate in the operating space could not be 
determined. For instance, when the flow rate of the entering aerosol was 1.1 lmin-‘, the 
flow rate measured at the outlet was around 0.7 lmin- ‘. So we took the average of 
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Voltage (V) 

Fig. 17. Experimental spectra for 0.309 pm PSL spheres. The arrows indicate the theoretical 
predictions of the peak positions and the solid line is for a theoretically calculated spectrum. 

0.9lmin-’ to obtain a rough estimate of the flow rate in the operating space, and we used 
this value to calculate n(v) for singly charged particles. The solid curve in Fig. 17 shows the 
result of this calculation which used t(s) in the parabolic flow model. We note that the 
theory predicts a slightly larger mass distribution than is observed in the experiment. 
According to equation (30), the experimental peak position, 318 V, corresponds to 
m = 1.53 x lo-i7 kg, or d, = 0.302 pm. So the relative disagreement between theory and 
experiment is about 6.5% in terms of mass, or 2.3% in terms of diameter. 

Due to the four partitions in the operating space, the velocity of the aerosol flow is 
expected to depend on the azimuthal angle, 4. If the &dependence of the average velocity, 
V (c#J), were known, it could be accounted for by considering a local transfer function t(s, 4), 
and integrating it over C$ to obtain the total transfer function. Although the inhomogeneity 
of v may lead to a variation in the width of the transfer function with 4, its center, s,, will 
not be affected. Thus, this inhomogeneity is expected to have only a minor effect on n(v). It 
should also be noted that the prediction of the maxima’s positions is not affected by the 
absence of an exact value for the total aerosol flow rate. 

CONCLUSIONS 

A method to classify aerosol particles according to their specific mass has been proposed. 
Since classified particles are obtained as an aerosol suspension, the classification device 
based on this method may be regarded as the mass-to-charge counterpart of the differential 
mobility analyzer; the latter is essentially a classifier of the diameter-to-charge ratio. Unlike 
the differential mobility analyzer, the transfer function for this method depends on the 
detailed form of the velocity distribution of the aerosol flow in the operating space. We 
considered two models for the velocity distribution. The uniform flow model leads to an 
analytical expression for the transfer function which has the shape of a symmetric trapezoid. 
The transfer function in the parabolic flow model was calculated numerically, and was 
found to be somewhat narrower than the uniform flow model, especially when the resolu- 
tion parameter 1, is larger than unity. 

A similarity rule has been derived which states that the transfer function is determined 
solely by i,,. This rule is mathematically inexact, but is expected to be valid to good 
accuracy in practical situations. In applications, this similarity rule will be useful in 
choosing the operating parameters for optimal performance. 

A prototype classifier was constructed and the mass distribution of 0.309 pm monodis- 
perse particles was measured with this device. The locations of maxima in the experimental 
spectra were found to agree fairly well with the theory, which has verified the feasibility of 
this method. 
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One of the favorable features of this method is that the classification performance is 
insensitive to the instability and inhomogeneity of the aerosol flow in the operating space. 
The shape of the transfer function will be distorted to some extent by these imperfections of 
the flow filed, but its center, s,, will not be shifted in principle. This feature will facilitate 
designing and constructing this type of classifier. 
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