
Validation Tests

This document presents the results of various preliminary validation tests to verify that the

simulation is working as described.

1 Ventilation solver check

First, we tests the ventilation solver by comparing against a simple two-component lung model

representing the left and right lung as symmetric trees. Taking the elastance to be identical in

each region, we change the resistance by applying constrictions to the left lung. The ventilation

equations become
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where RT is the trachea and mouth resistance, RL is the resistance of the left lung and RR

the right lung. Lung volumes are similarly labelled and ∆P (t) is the pleural pressure change

relative to the steady state solution when V̇L = V̇R = 0 and VR = VL = V ∗/2 where V ∗ is the

steady lung volume. The final equation constrains the total lung volume flux to be sinusoidal

with tidal volume VT . We take VL(t = 0) = VR(t = 0) = V ∗/2 giving the solutions
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)
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The resistances RL and RR are computed from the airway geometry, via the Poiseuille relation

with viscosity µ = We compare these to the simulated case in figure 1. As can be seen, the

discrepancy is < 0.01% for the parameters listed in the caption. This is within the margin of

error expected for the given discretisation method.

2 Transport solver check

Analytical solutions for the transport equation are only possible under specific circumstances,

therefore we have used a somewhat artificial case in order to test the validity of the simulations.
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Figure 1: Fractional difference in simulated volumes vs. analytical solution (from equations (4)
and 5). Constrictions have been applied to all conductions generations of the left lung resulting
in RL > RR in all cases. Results for (a) 60%, (b) 70%, (c) 80$ and (d) 90% constrictions of the
cross section are shown. Parameters used: V ∗ = 2.83L K = 5cmH2OL−1, τ = 2.5s. Airway
size prior to constrictions were calculated to fit a geometric lung model with airway dead space
of 120ml. Beyond 90% constricted the fractional error begins to decrease.
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Figure 2: Lines show analytical solutions to trumpet transport equations for the values of
trachea Peclet number in the legend. Matching dots show the simulated steady state profiles.
These were simulated on a finer grid than was used elsewhere in order to accurately interpolate
the analytical trumpet cross-section. The distance parameter x∞ corresponds to the length
of the trumpet in the limit of an infinite number of conducting generations. In this case, 14
conducting generations were used for both sets of solutions.

We simulated steady state concentration fields on a single mean-path. We applied a fixed and

constant flow rate at the mouth, and set the concentration boundary conditions as c = 1 at the

mouth and c = 0 at the end of the conducting branches. We also set the node cross-sections

to be smoothly varying according to the trumpet model. In this way we were able to compare

the transport model solution directly to the analytical steady state predicted by the trumpet

model (for conducting branches only), as shown in figure 2.

3 Numerical Mass Conservation

Despite its low-order accuracy, the finite-volume method has the distinct advantage over finite-

difference of exactly conserving mass (or in this case inert gas volume, which is assumed to have

fixed density). This was tested by calculating the cumulative flux of inert gas at the boundary

node V
(in)
IG , and comparing to the total volume of inert gas V

(tot)
IG . Figure 3 shows that the inert

gas volume is conserved to machine precision, and this was tested for a range of scenarios.

4 Linear perturbation convergence

The perturbative method approximates the response of the system to a small change in an

airway property or acinar elastance. To test this, we compare the effects of changing a single
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Figure 3: V
(in)
IG − V

(tot)
IG plotted against simulation time. The systematic discrepancy (identical

for each realisation) is the result of cumulative rounding errors of the outputs (outputted to
precision 10−12). The different legend entries indicate simulations where the area or length of a
single conducting branch was altered, the area or length of an acinar branch, or the elastance
of a single acinus. In all these cases mass was numerically conserved.

airway size or acinar elastance to the linear predictions. By choosing a range of perturbation

sizes, figure 4 demonstrates how these results converge exactly to the linear predictions in the

limit ε→ 0.

5 Convergence tests

Finally, we ran several convergence tests in order to choose suitable time- and space-steps for

the simulations. In figure 5 we measure the error relative to the most accurate realisation in

terms of the inert gas concentrations in the acini. Our reasoning is that this gives a global

measure of lung function, and so if this property is converged, convergence of other functional

measurements should follow. Due to the different factors that go into selecting space-steps

on the multi-scale grid, we compare each one independently. Figures 5(b)-(d) affect only the

separation of points in the conducting tree, and appear to be relatively well converged for all

values. The main improvement is gained by increasing the number of acinar points (figure

5(e)). The highlighted points correspond to the values chosen for future simulations.
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Figure 4: Difference in concentration between baseline model and perturbed model divided by
perturbation strength. This is shown for (a) length perturbation to RM lobe, generation 5,
branch 0, (b) area perturbation to RM lobe, generation 5, branch 0 (c) length perturbation to
RM lobe, generation 16 (within acinus), branch 0, (d) area perturbation to RM lobe, generation
16, branch 0. The black line indicates the linear prediction (fixed, as this necessarily scales
linearly with perturbation size). Red lines indicate the non-linear solution (for negative and
positive perturbation values). In all cases the non-linear solution converges exactly to the linear
one in the limit of zero perturbation size. In all cases the concentration compared is that within
a node of the perturbed branch at the end of the simulation (t=125s), to ensure that differences
would be maximised and therefore any discrepancies easily visible.
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Figure 5: Plots of the fractional difference in acinar inert gas volumes versus reference simulation
vs. (a) Timestep δt scaled by breathing frequency τ , (b)-(e) Inverse of total number of FV nodes
in the model. The number of FV nodes was varied by changing the (b) maximum node length
δx/L (c) maximum node Peclet number Penode, (d) minimum number of nodes per conducting
generation Mcond and (e) minimum number of nodes per acinar generation Macin. In each case,
the reference simulation was a realisation with double the precision (in terms of the relevant
parameter) of the most precise shown in each figure. For (a) the spatial discretisation was
generated using the parameter values (δx/L = 0.025, Penode = 10, Mcond = 1 and Macin = 4).
For (b)-(e) a value of δt/τ = 0.001 was used to ensure stability in all cases. The values chosen
for future simulations are circled in red (δt/τ = 0.01, δx/L = 0.025, Penode = 10, Mcond = 1
and Macin = 4).
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