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Abstract: Li-ion batteries are more and more common not only in the sector of e-mobility but their role 

is increasing in stationary storage as well. The possibilities of the use of these storages are various. In 

this paper, the authors were focused on the possibility of providing frequency reserve and other 

flexibility services for the grid. The paper focuses on the operation of a battery energy storage system 

and not the sizing of one. In the developed model the authors consider the profit from these services and 

their impact on the battery lifetime. With these two main factors, the operation of the battery system is 

compared in the case of different frequency reserve services and other market operations. Results show 

that battery energy storage systems have the potential for frequency reserve services in case of an 

optimized operation strategy. Simulation results also show that these optimized operation strategies can 

be different in different phases of the battery life.  The presented model was developed under the EU 

Horizon 2020 programme in the OneNet project. 
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Nomenclature 

aFRR Automatic Frequency Restoration Reserve 

BESS Battery Energy Storage System 

CC Constant Current 

Cp Specific heat capacity 

CV Constant Voltage 

D Degradation factor summary 

d Weighted degradation factor for each 
contributor 

DAM Day-ahead-Market 

DoD Depth-of-Discharge 

DVA Differential Voltage Analysis 

EFC Equivalent Full Cycle 

Ethr Energy throughput 

EV Electric Vehicle 

FCR Frequency Containment Reserves 

LCO Lithim Cobalt Oxide 

LMFP Lithium Manganese Iron Phosphate 

LMNO Lithium Manganese Nickel Oxide 

m mass 

mFRR Manual Frequency Restoration Reserve 

n nominal 

nj period of the j-th service 

NCA Nickel Cobalt Aluminum 

NMC Nickel Manganese Cobalt 

P Profit 
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PV Photovoltaic 

pwr Power 

Q Capacity 

q Heat 

RES Renewable Enerqy storage 

S Service 

SEI Solid electrolyte interface 

SOC State-of-Charge 

SOH State-of-Health 

T Temperature 

TSO Transmission System Operator 

t Time 

U, u Voltage 

W Weight function 

δ Degradation factor for each contributor 

 

1. Introduction 

Applications of battery energy storage systems (BESS) are rapidly growing worldwide. Battery usage 

can be grouped into three major application categories: e-mobility, stationary energy storage, and 

consumer electronics, including telecommunication devices. The global demand for stored energy was 

around 184 GWh in 2018, and 282 GWh in 2020, and exponential growth is estimated for the next 

decade reaching 2623 GWh in 2030 according to the Strategic Research Agenda for batteries by the 

European Commission [1], [2]. The driving force of this growth is mainly the electric vehicle (EV) 

sector, but increasing demand is observable for the stationary energy storage sector as well. For EVs the 

demand could be even higher as in 2021 the European Commission adopted the so-called ‘Fit for 55’ 

legislative package to further reduce net greenhouse gas emission [3]. From the energy production side, 

the spread of renewable energy sources (RES) means the necessity of increasing installed storage 

capacity. According to the Eurostat [4] the share of renewable energy production and consumption more 

than doubled between 2004 and 2019. 

In this paper, the authors focus on stationary energy systems and their possibilities in the electricity 

market. On the electricity market, many different services can be sold. For a market player, there can be 

two different scenarios. The participant is new to the electricity market and the installation of a battery 

energy storage system is expected to make a profit. Or the market player already had a battery system, 

for example, next to a wind farm to balance the rapidly changing electricity production. In this second 

scenario, the battery system had been designed according to the specific requirement to align the wind 

farm production. In their paper authors of [5] show a case study of optimal BESS sizing for lowering 

wind farm operating costs. As new products are introduced to the electricity market it could be an option 

to provide extra services beyond the balancing of the owned wind farm. The main focus of our paper 

will be this second case when a BESS is already installed for some specific task, but as new services are 

introduced it is possible to allocate energy and operation time for them as well. The question for the 

battery system is how each type of service affects the lifetime of the battery. The first aspect usually is 

the profit of the services; however, it is also important to compare the services based on their effect on 

battery lifetime. 

As mentioned earlier our goal is to compare different electricity market services, by which power 

profiles are meant from the battery point of view. Classic electricity market services for frequency 

regulations are FCR, aFRR, and mFRR or as previously called primary, secondary and tertiary reserves. 

These three services are to help restore grid frequency and the main difference between them is their 

duration, FCR is the first, and from 30 seconds aFRR replaces it with 5 minutes to provide the full 

reserve. Later from 12.5 minutes starts the mFRR supports the aFRR, if necessary. The authors of [6] 
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developed a method of the utilization of household-sized BESS for participating in FCR, aFRR, and 

also on the day-ahead market. In their paper Y. Hu et. al. examined option-based operation of the BESS, 

although their focus was on only FCR ancillary service from the system point of view [7]. 

The possible new services that are currently under research and development by the OneNet EU project 

will be a quarter-hour-based flexibility service – where ramp-up speed is not critical – traded on the day-

ahead market. 

In the following, the paper will be structured into the following sections. Section 1 is to observe and 

evaluate the main contributors and discuss their relations to battery aging. In Section 2 a methodology 

will be presented for determining the numerical value of these aging factors and the assigned weight to 

provide a comparison of the profiles. In this paper, the following two market services will be observed 

in terms of aging: FCR and aFRR. Besides them day-ahead-market (DAM) and intraday market are 

considered as well. [8] Section 3 presents an installed BESS from Hungary that will be used to evaluate 

the effects of the profiles. At the end of the paper, results are presented and discussed as well as future 

perspectives.   

  

2. Contributors to degradation  

In this section, the factors contributing to the aging process and their effects on each other are 

summarized, but the underlying causes of the exact aging phenomenon like SEI formation [9] or lithium 

plating [10] will not be discussed. 

In literature, the aging of the battery is usually divided into two categories: calendar aging and cycling, 

as described by Broussely et al. [11] Calendar aging is the storage of the battery cells, while cycling is 

the intended operation. In this paper, we consider aging due to cycling rather than calendar aging, but 

the developed model considers longer times without charge or discharge (idle state) in case of high SOC. 

The following list contains the most important aging factors of a BESS according to the literature. Here, 

ordering in the list does not represent any information.  

• Temperature 

• C-rate (discharge/charge) 

• SoC (initial, end) 

• DoD 

• FEC (full equivalent cycles) 

• Idling time 

Each element of the list is discussed in the next sections. 

2.1. Temperature 

Commercial lithium-ion batteries are usually possible to operate in a wide temperature range. The upper 

limit for safe operation is typically between 50 °C – 60 °C, while the lower limit is between -10 °C – 0 

°C. Of course, these are just general values, the exact limits for a given battery type can differ from 
these. Despite the relatively wide range of use, continuous usage of the batteries in elevated or colder 

temperatures results in accelerated aging. Therefore, there is an optimal temperature is determined close 

to room temperature, in the range of 20 °C – 30 °C. This optimum for most of the cells is 23 °C or 25 
°C, as shown in the examples [12], [13] and [14]. Allowed temperature limits are affected by the method 

of usage as well; there can be different safe temperature ranges for the charge, discharge, and storage, 

due to different electrochemical processes inside the cell. 

2.1.1. High Temperatures 
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For higher temperatures (25 °C and above) Dubarry et. al. [15]  found that two types of prismatic LFP 

cells cycled with C/2 for 100 times, and lost 37% of their initial capacity.  Feng et. al. [16] examined 
the aging mechanisms, of LCO chemistry cells, at 25 °C, 35 °C, 45°C, and 55 °C with constant 1C 

discharge. They found that after 250 discharge cycles the capacity decrease was 4.22%, 6.57%, 8.74%, 

and 13.24% respectively. In their study Zhang et al. [17] studied the storage of cells at elevated 
temperatures and compared the results to non-stored, only cycled battery cells. At 25 °C the stored and 

non-stored cells yield similar results, between 5 - 6 % capacity loss after 100 cycles. Cells stored at 60 

°C lost almost 10 % of their capacity, while for 70 °C the loss was around 17 %. Authors of [18] 

investigated NMC-111 chemistry cells at 40 °C and 60 °C with different discharge current rates from 
0.1C to 1C. Capacity loss at 40 °C was between 1 – 3 % for 100 cycles, while for 60 °C the results are 

between 2 – 6 %. Gilbert et al. in [19] examined NMC-532 chemistry cells, in the voltage range from 

3V to 4.4V, which is above the usual 4.2V voltage cutoff limit. They measured both charge and 
discharge capacity fade at 30 °C, the results were 10.8 % and 18.9 % respectively. Similar elevated cut-

off voltage limit cycling was done by Buchberger et at. [20], though they investigated cycling results in 

the case of 4.6V for NMC-111 cells. The results were compared to cycling at room temperature and 
60°C both with 1C. Capacity fades for 25 °C at around 2.3 % for 60°C at around 28% and the worst 

result for 100 cycles with 38% capacity loss is the elevated cut-off voltage.  In 2014, Ziv et. al. [21] 

examined three chemistries (LMFP, HC-NMC, and LMNO) at 30 °C and 60 °C. The capacity loss at 

30°C varied between 21 – 46 %, and between 34 and 60 % at 60 °C. 

The above-presented results show very different results, presumably because of the different 
chemistries, and different aging methods (cycling current or storage). Because of these reasons in the 

further sections, only NMC-type cells will be considered, as later the modeled battery system is made 

up of NMC chemistry cells. In their work, Waldmann et al. [22] investigated a range of temperatures 
starting from -20 °C and ending at 70 °C. Their results are exceptionally useful as results of high and 

low-temperature aging can be observed. According to their work lower temperatures have a higher aging 

effect on the cells making the SOH (State-of-Health) decrease as a function of temperature 

asymmetrical. Researches on degradation are rather rare, although in [23] the authors compared different 
electrolytes at 80 °C, in our case for safety reasons [24], [25] temperatures above 70 °C will be avoided. 

Jalkanen et al. [26] examined commercially available Kokam 40Ah cells. In their work, they observed 

cell cycling at room temperature, 45 °C, and 65 °C climate chamber. While cells cycled at elevated 
temperature lost their capacity steadily, for room temperature cells, this monotonous capacity decrease 

started roughly after 500 full cycles. That may indicate that at room temperature the full-equivalent 

cycles affect capacity fade, however, this effect was not observable in the case of 45 °C and 65 °C. 

2.1.2. Low Temperatures 

In the previous section study considering lower temperatures [22] was already mentioned, however, it 

is important to have more data on this topic as well. Here lower temperatures mean that lower than the 
optimal 25 °C. Wu et. al. [27] conducted their cyclic measurements at -10 °C with different C-rates. To 

get comparable results they used reference measurements at 25 °C. Capacity fade was between 5 and 

20% depending on the discharge current at the 100th cycle. In 2017 Matadi et al. [28] found significant 
capacity loss for a commercial 16Ah NMC cell. Cells with full cycles, in the allowed range of 2.7 V to 

4.2 V lost around 75% of their initial capacity. That is probably due to on one hand the high upper 

voltage limit, on the other hand, the charging current of the constant current (CC) phase was 1C as 
opposed to the manufacturer’s recommendation of 0.3C between 0 °C and 10 °C.  Friesen et al. [29] 

similar results for a 2.2 Ah NMC-532 cell, as the end of life limit, was set to 70% (lower than the usual 

automotive limit, 80%) the cells reached this limit in 50 cycles with 1C load. It is important to note that, 

the cells were initially unable to provide 2.2Ah at this temperature. Their initial capacity was around 
72% of the nominal at the start. In 2017 authors of [30] cycled NMC-111 chemistry cells at -10°C, with 

various C-rates. Although only 40 cycles were performed at this low temperature the capacity loss is 

still remarkable, for 1C it is more than 50% of the original capacity. Wu et al. [31]  

compared the aging mechanism of NCA-type cells, at three different temperatures, 10 °C, 25 °C, and 

40 °C. The results of 10 °C cyclings were only a bit higher than the 25 °C measurements. 

In conclusion in the above describe literature three main points can be highlighted: 
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• The optimal temperature of commercial Li-ion cells is around 25 °C. 

• Temperature effects on aging is asymmetrical. 

• Temperatures below -20 °C or above 70 °C should not be considered, either for safety or initial 

capacity loss concerns. 

2.2. C-Rate 

In this subsection, the aging effect of different C-rates will be discussed. The C-rate of a battery 
represents a current, though the C-rate itself has no unit. C-rate is the current with which the battery is 

charged or discharged relative to the reference current, or the nominal capacity. [32] In general, it can 

be concluded that the higher the C-rate, the higher the degradation of the battery. It is always limited 

both for continuous and short time cases. There are two different types of cells, the so-called “power” 
and “energy” cells. The “power” cells as their name suggest are optimized to deliver higher power, 

which means higher discharge current. In some cases, it can be more than 10C. High power requirements 

are typical for e-mobility applications electric cars or aviation. [33]  

For stationary storage applications, however, “energy” type cells are used with lower allowed C-rates, 
1C or even less. In these cases, space and mass mean no or less restriction compared to e-mobility. From 

commercial datasheets, a general rule can be considered as the maximum C-rate for charging and 

discharging are different. It is possible of course to find cells, that have the same limit for charge and 

discharge, but only lower C-rate cells have this feature. It is almost impossible to find a cell, that can be 
discharged with 10C, and the charging C-rate is in this range as well. Also, fast charging contributes to 

the aging phenomenon, especially at low temperatures, one of the main challenges of today’s e-mobility 

industry. 

In case we investigate literature, several publications are examined the effects of C-rate. In our paper 
selected results from them will be presented. In 2019 Saxena et al. [34] examined several commercially 

available cells with different C-rates from 0.2C to 2C. Although the test results showed some variance, 

they managed to create a model to estimate the results of low C-rate cycling from high C-rate cycling 

measurements. Measurements were concluded at 37 °C which as previously shown is a slightly elevated 
value. From their work, it can be seen that low and very low C-rates (below 0.2C) have little contribution 

to aging, while 0.5C, 1C, and 2C caused significant capacity fade over the cycling. Ning et al. [35] 

cycled 1.4 Ah capacity 18650 size cells with 1, 2, and 3C-rates through 300 cycles. Their results show 
that cells cycled with higher C-rates aged faster, and also their internal resistance increased faster. 

Murashko et al. [36] cycled different chemistry cells with different charging C-rates at 45 °C until 15% 

capacity loss. In their work, the authors developed a DVA-based method, for determining aging 
mechanisms in the Li-ion cells. In their study Choi et al. [37] investigated the effect of C-rate in both 

charging and discharging directions in the range of 1C to 2C. From their work, the higher current 

adversely affects the capacity of the examined cell.  

2.3. EFC 

Equivalent full cycles (or in some papers FEC – full equivalent cycles) are the energy throughput of the 
battery relative to the nominal energy. [38] It can be calculated by a simple equation (1) as in the authors 

of [39] presented: 

 𝑁𝐸𝐹𝐶 =  
𝐸𝑡ℎ𝑟

2∙𝑈𝑛∙𝑄𝑛
 (1) 

It is an important value because battery manufacturers usually give a maximum value under optimal 

operation conditions, so it gives an operational limit. 

2.4. SOC 

The state-of-charge of a battery affects the cyclic performance in three different ways. At first, the SOC 
level itself has a contribution to aging, this is mainly studied in calendar aging examinations. In 2014 

Ecker et al. [40] did comprehensive research on the topic with various SOCs for storage. In general, the 

higher SOC contributes to more elevated aging. The second way SOC affects aging is the used SOC 
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range.  In their study the authors compared different SOC ranges for ΔSOC = 100% (full discharge) to 

ΔSOC = 5%, symmetrical to 50% SOC. In the first case, the cells could provide around 440 full 
equivalent cycles, while in the second the number increased to 8500 full equivalent cycles until the 

capacity reached 80%. It must be noted however that the second result, is only a linear interpolation, the 

presented cycle number did not reach 4000. On the contrary Harlow et al. [41] provided even better 
results for battery aging, though, their research was done not on commercially available cells, but on 

cells that are modified. 

3. Evaluation of degradation 

There are several articles regarding battery sizing. Mostly these articles consider a single or few purposes 
for the battery. In their article [42], the authors listed the possibilities for these applications. Sizing for 

an application is for example [43] where the authors researched the sizing and optimal operation of a 

BESS with a PV system. In the primary goal of BSS sizing is frequency regulation. In terms of operation 
of the battery sometimes the placement of the BESS is considered as in [44]. Another example of a 

dedicated reason for sizing a battery system is where [45] the energy storage system supports dynamic 

inertia [46]. These articles usually neglect battery aging or implement a simple aging model. Of course, 

more detailed models exist as well, but the used parameters of these models can be obtained with several 

time-consuming measurements [47]. 

There is multiple literature for BESS strategies as well, but usually they take into consideration only 

some of the above-mentioned aging contributors. As an example, in [7] the authors take into 

consideration only FEC and DoD, while in [48] and [49] only SoC and DoD play significant roles. For 

different applications there can be found different developed strategies, but these are focusing only on 

some of the possible battery functions, like only FCR or aFRR, or other non-system related operation 

scenarios like peak-shaving or energy arbitrage as in [50] and [51], respectively. 

In our paper, we focus on a BESS that has been already built for some specific reason (frequency 

regulation, inertia support, operating with renewables, etc.). Therefore, battery sizing questions are not 
in the scope of this article. So, the main parameters of the investigated system, such as cell configuration 

or cooling method, are fixed and cannot be changed. This article focuses on the operation of the battery 

in a scenario where the battery is capable of providing different services for the electricity market. These 
can be services that are already possible to provide or new services that are not introduced so far. In this 

scenario, the different services are present as power vs. time functions, in this article called profiles. As 

the battery parameters are fixed, it is possible to evaluate different profiles regarding their possible effect 
on battery aging. All profiles have different characteristics contributing to battery aging, the most 

important ones are summarized in the previous section. These will be called degradation factors and will 

be denoted by dij, where i stands for the i-th degradation factor, and j for the j-th profile. The degradation 

factors for each profile can then be summarized into one cumulated degradation factor (2) characteristic 

for the profile. 

 𝐷𝑗 = ∑ 𝑑𝑖𝑗𝑖  (2)  

The optimization task is to minimize the degradation for a given period (3) with the calculation of the 

number (nj) of these profiles that can be executed. 

 min(∑ (𝐷𝑗 ∙ 𝑛𝑗)𝑗 ) (3) 

Note that nj always has an upper limit either because of the given period or the battery state limits, for 

example, the actual SOC. The obvious solution for this problem would be if each n value would be zero, 

therefore, and for natural market player reasons another equation is required that ensures the maximal 
profit. Similarly, to the previous degradation factors, a profit (Pj) is assigned to each service. The profit 

is maximized with equation 4.   

 max(∑ (𝑃𝑗 ∙ 𝑛𝑗)𝑗 ) (4)  

3.1. Degradation factors 
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These factors are calculated to form the profiles and the actual states of the battery and will be weighted 

based on the information from the literature review. The general formulation of the degradation factors 

will be: 

 𝑑𝑖𝑗 = 𝑊(𝛿𝑖𝑗) (5) 

Where δij is the contribution of each profile to each degradation factor, while W is a weight function. 

For battery states the SOC, T, and the actual cycle number are considered EFC act. In this section, the 

calculation of the degradation factors dij is presented. They are the same that were detailed in Section 1, 

but not necessarily in the same order. 

3.1.1. C-rate 

The first factor, denoted with d1j is the C-rate, more specifically the maximum of the C-rate, as the 

profile is a function of time, so can be the C-rate. For a given P(t) function the C-rate can be expressed 

as: 

 𝑐𝑟𝑎𝑡𝑒(𝑡) =
𝑝𝑤𝑟(𝑡)

𝑢(𝑡)
∙

1

𝑄𝑛
  (6) 

Although p(t) is given and Qn is known, u(t) is the battery response for the applied p(t). To determine 

u(t) we would need some battery model. Models would require measurement data and would slow down 

the algorithm therefore we will approximate the result, with Un, nominal battery voltage (7). Note that 
our goal is not to exactly calculate battery response, only to compare the possible profiles with each 

other. 

  𝑐𝑟𝑎𝑡𝑒(𝑡) =
𝑝𝑤𝑟(𝑡)

𝑈𝑛
∙

1

𝑄𝑛
  (7) 

For eq. 7. d1j factor can be calculated as: 

 𝛿1𝑗 = max (|𝑐𝑟𝑎𝑡𝑒(𝑡)|)  (8) 

The absolute value of the C-rate is necessary as it is possible to change power direction during a profile, 

which means change from charge to discharge. For example, in a case where the battery provides 

frequency reserve, after the activation, it shall be recharged. 

3.1.2. SoC and DoD 

The second and third factors are related to the state of charge. The state of charge can be calculated 

simply with the coulomb counting method. The current will be estimated similarly to the C-rate case 

with Un. It has to be noted that our definition of the SOC range is analogous to the definition of depth-

of-discharge (DoD), which is also widely used.  

 𝛿2𝑗 = ∆𝑆𝑂𝐶 =
1

𝑄𝑛
∙ ∫

𝑝𝑤𝑟(𝑡)

𝑈𝑛
𝑑𝑡 (9) 

In this case, δ2j is equal to ΔSOC. Not only the range of the SOC is important, but the remaining SOC 

as well. Partly because it has some effect on the next profile, but also because the effects in shown in 

calendar aging. 

 𝛿3𝑗 = 𝑆𝑂𝐶𝑟𝑒𝑚 = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 − 𝛥𝑆𝑂𝐶 (10) 

Where SOCrem is the remaining SOC, and SOCinit stands for initial SOC. Then δ3j will be equal to SOCrem. 

3.1.3. EFC 

Equivalent full cycles give information on how many cycles our BESS is capable of. Eq. 1 shows the 

calculation method for EFC, and eq. 11 shows the next factor. 
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 𝛿4𝑗 =
1

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒𝑛

1

2∙𝑄𝑛∙𝑈𝑛
∙ ∫ 𝑝𝑤𝑟(𝑡) 𝑑𝑡 (11) 

3.1.4. Temperature 

In the case of the temperature, a simplified model is required. Although the cell temperature is indeed 

connected both to the IRMS value and the energy throughput, which is much easier to calculate, weighting 
these values would be rather hard since temperature effects on aging are included directly in the literature 

review. 𝛿5𝑗 = 𝑇𝑒𝑛𝑑(𝑝𝑤𝑟(𝑡)) (12) 

Where Tend is the temperature that the battery reaches at the end of the profile. Temperature is calculated 

from the generated heat from the power loss of the cell, eq.13. 

 𝑚 ∙ 𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝑞𝑑𝑖𝑠𝑠 − 𝑞𝑐𝑜𝑛𝑣 (13) 

During the years several models have been developed and published, this basic equation is from papers 

[52] and [53]. In our model, we assumed free air convection, and the model neglects radiative heat 

transfer. Heat capacity is estimated by the value of aluminum. The heat generated by side reactions is 

also neglected. This is a generally accepted thermal model for the simple calculation of a battery system. 

3.2 Weights 

In this section, the authors discuss the used weights for each degradation factor, based on the 

measurement results presented in the first part, the literature review. In this section the lower-case j 

notes, that indicates the index of the profile is not shown in the equations. These weights can be 

considered general, as the above-mentioned degradation contributors may have some differences in case 
of different Li-ion battery chemistries. For the comparison of service cause degradation this general 

model is considered appropriate, in case of a new battery design a more detailed battery model might be 

necessary. In our simulation an NMC chemistry-based BESS was used, detailed parameters are 

discussed in section 4.2.  

3.2.1 C-rate 

Based on the reviewed literature in the first section, it can be stated that increasing the discharge / charge 

current will lead to more and more increasing SOH fade. There is a manufacturer-allowed current limit 

for both charge and discharge, that represents the maximum of the weighting function. The proposed 

weight function is a sigmoid function namely the logistic function, eq. 14. 

 𝑊𝐶−𝑟𝑎𝑡𝑒(𝛿1) =  
𝐿𝐶

1+exp[−𝑘𝐶∙(𝛿1−𝑥0,𝐶)]
 (14) 

The maximum of the function (LC) is 25, the steepness coefficient kc is 20, and the midpoint (x0,c) is set 

to be 0.5. 

3.2.2 SOC window 

The SOC window represents the difference between the beginning and end SOC of a given profile. 

Capacity fade is highly dependent on this window. An exponential weight function is proposed based 

on results from [40]. 

 𝑊∆𝑆𝑂𝐶 (𝛿2) = 𝐴∆exp (𝐵∆ ∙ 𝛿2) (15) 

Coefficients AΔ and BΔ are 1.942 and 0.0554 respectively. 

3.2.3. Remaining SOC 

The weight for the remaining SOC is calculated based on the capacity fade of calendar aging results. 
The reason for this calculation is to observe how much the SOH would be affected if the battery would 

remain in that state. In general, 0% remaining SOC means insignificant aging, while 100% SOC would 
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cause more capacity loss than low C-rate cycling [40]. The proposed weight function is eq.16., based on 

those two values. 

 𝑊𝑆𝑂𝐶𝑟𝑒𝑚(𝛿3) = 𝐴𝑟exp (𝐵𝑟 ∙ 𝛿3) (16) 

Coefficients Ar and Br are estimated to be 1.1426 and 0.323 respectively. 

3.2.4. EFC 

For the equivalent full cycle, the weight should show that at the beginning of life the number of 
equivalent cycles is almost insignificant, as cells nowadays could provide several hundred or even some 

thousand cycles. The factors should be more and more important as the cells approach the theoretical 

cycle life limit. Because of these reasons a sigmoid type function, namely, the logistic function is chosen 

eq. 17, with coefficients that resemble the rise of the degradation factor value from around 80%.  

  𝑊𝐸𝐶𝐹 (𝛿4) =  
𝐿𝐸𝐶𝐹

1+exp[−𝑘𝐸𝐶𝐹 ∙(𝛿4−𝑥0,𝐸𝐶𝐹)]
 (17) 

The maximum of the function (LC) is 25, the steepness coefficient kc is 30, and the midpoint (x0,c) is set 

to be 0.5. 

3.2.5. Temperature 

Weighting the temperature value will be separated into two regions by the optimal operating 
temperature, since its asymmetrical behavior. Unfortunately, most papers did not examine the whole 

operating temperature range by for example 5 °C steps, usually, only two or three different 

measurements are given. Some exemptions are [16], [22], and [26]. Although it is always possible to 

linearly interpolate the measured values, the results show that an exponential function could yield better 
estimation results, in terms of R2 values. Therefore, for temperatures, an exponential weight function is 

used. To determine the parameters for this function, the other reviewed data is also included, in the 

following way. For each measurement, the coefficients of the exponential functions are estimated, and 
after that, the estimated capacity loss from these functions is averaged. From these averaged results, the 

weight function coefficients are estimated. The weight equation for Tend ≥ 25 °C eq. 18 is given: 

 𝑊𝑇,ℎ𝑖𝑔ℎ(𝛿5) = 𝐴ℎ𝑖𝑔ℎ ∙ exp(𝐵ℎ𝑖𝑔ℎ ∙ 𝛿5) (18) 

where δ5 is the degradation factor, Ahigh and Bhigh are the coefficients of the exponential function with 

values of 5.0398 and 0.021 respectively. For low (Tend < 25 °C) the equations form is the same, eq. 19, 

only coefficients are changed to Alow and Blow, 42.6619 and -0.0717. These coefficients are estimated 

with the help of [22]. 

 𝑊𝑇,𝑙𝑜𝑤(𝛿5) = 𝐴𝑙𝑜𝑤 ∙ exp(𝐵𝑙𝑜𝑤 ∙ 𝛿5) (19) 

In the end of this sections Table I. gives a summary of the coefficients for each weight equation. 

 Table I. 

Coefficient Corresponding factor Value 

LC C-rate 25 

kC C-rate 20 

x0,C C-rate 0.5 

AΔ SOC range 1.942 

BΔ SOC range 0.0554 

Ar remaining SOC 1.1426 

Br remaining SOC 0.0323 

LECF ECF 25 

kECF ECF 30 

x0,ECF ECF 0.85 

Ahigh Temperature 5.0398 
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Bhigh Temperature 0.021 

Alow Temperature 42.6619 

Blow Temperature -0.0717 

 

 

4. Simulation setup 

4.1. Profiles and profits 

In our research, we used six power profiles, to evaluate the developed algorithm. The profiles are 
denoted with Sj, where S refers to the service (to avoid confusion with profit or power), and j is the 

index. Fig. 1 shows the defined profiles. The objective of the paper is to evaluate these services and 

present a framework in which newly defined services can be compared based on degradation. When a 
battery owner contracts to mandatorily provide a service, and pays significant fines in case the system 

fails to deliver. Therefore, the power profile cannot be altered, even if the battery aging status would 

require due to capacity loss, or resistance increase. 

  

 Fig. 1. Power profiles 

As Fig. 1. shows the power of the profiles is in kW, and the time is in seconds. From the electrical 

market point of view, the power is measured at 15 minutes intervals (which refers to typical settlement 

periods). The negative power indicates charging the battery, or from a grid viewpoint, the BESS is a 

consumer, while positive power means discharging the battery, or it acts as a producer. The profiles tend 

to represent real scenarios, S1, S2 and S6 are short time, high power consumption or production, while 

S3, S4, and S5 represent a longer use interval with lower power. It shall be noted that S1 and S2 are 

symmetrical to the P-axis, just like S3 and S4. To calculate the profit there are many possibilities. The 

simplest version is to assign a profit value to each profile, there no calculation is required. The second 

possibility would be to calculate electrical energy in both charge and discharge directions from the 

profile, then assign a profit value to these signed energy values. This would represent better the market 

situation. A more complex method would be to dynamically change the profit, based on the actual state 

of the network. In our study, the fixed energy-based profit calculation is used Table II. shows the 

calculated energy values and the assigned prices. Of the six load profiles, four are discharges and two 

are charges of the BESS. Charging or discharging to the initial value of the battery systems is considered 

to be the same for all cases therefore their impact is neglected when comparing the services. 

 Table II. 
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Profile 
Represented 

Service 

Energy 

[MWh] 

Energy 

Price 

[€/MWh] 

Reserve 

Price 

[€/MWh] 

S1 
FCR 0.4113 0.0 42.6 

S2 

S3 
aFRR 0.5 

409.0 37.8 

S4 274.5 31.7 

S5 DAM 0.8067 40 0.0 

S6 
Intraday 

trading 

0.4908 20 0.0 

 

4.1.1. Idle Profile 

Another “service” is defined to represent those periods where no other service is active. We can consider 

the previous six services as profit-generating and this one as no profit generation. But it must be 
emphasized that aging in the BESS happens without providing energy, it is usually noted as calendar 

aging., therefore degradation factor has to be calculated for this as well. 

4.2. Battery for the case study 

The battery on which we examined our algorithm is an installed stationary storage battery in Hungary, 

Földeák substation. The BESS system is made of prismatic Samsung NMC cells. Table III. contains the 

relevant parameters of the battery system. [54] 

 Table III.  

Parameter Unit Value 

Voltage [V] 730 

Capacity [Ah] 2256 

Energy [kWh] 1644 

Peak Power 
rate 

[-] 1.2 

Modul 

weight 
[kg] 54 

Cell RDC [mOhm] 0.75 

Optimal 
Temperature 

[°C] 23 

Nominal 

cycles 
[-] 8000 

  

4.3 Simulation algorithm 

For the simulation, there are two possible methods and both are implemented. Both simulation processes 
can be divided into two separate parts. In the first part, the simulation calculates the accumulated 

degradation factors for each service based on the actual power profile and the given initial conditions 

(e.g. T, SOC). The second part of the simulation solves a linear programming problem, for the optimal 

number of nj in a given period.  

4.3.1 Online simulation 

In this case, the initial conditions are the results of the previous service, therefore the degradation factors 

change from profile to profile. The linear programming problem is simplified to a choice between the 

lowest degradation factor and the highest profit services. In this case, no planning is included the whole 

period shall be simulated. There can not be a case where the battery is not capable of providing services, 
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as the degradation factors would prevent this problem. With a short example, if a battery starts from 

50% SOC and the profit and degradation factors would show that a discharge service (Service 1) is the 
best that reduces the SOC by 20% and the cumulative degradation factor is D1,1 and the profit is P1,1 

(here the first number represents, the number of the service, and the second is the simulation number). 

In the next simulation D1,2 > D1,1 because of the remaining SOC value, and P1,1 = P1,2. In this case, the 

chosen profile may be a profile with lower profit, but also a lower degradation factor. 

The longest power profile is 1 hours long, considering additional 1 hour resting period for the battery 

the whole simulation period will be dived into 2 hours. In this case in one day 12 services are realizable, 

and in one week 84. This is only for simplification reasons. In Fig. 2. The flow chart of the online 

simulation is shown. 

 

Fig. 2. Online simulation algorithm 

4.3.2. Offline simulation 

In this case, the initial conditions are the results of the previous service, therefore the degradation factors 
change from profile to profile. The linear programming problem is simplified to a choice between the 

lowest degradation factor and the highest profit services. In this case, no planning is included the whole 

period shall be simulated. There cannot be a case where the battery is not capable of providing services.  
In offline, or planning mode the degradation factors are calculated only once. That assumes each 

simulation starts from the same initial conditions. For that, the services will be changed, in a way that 

each service longs for 4 hours. In the additional time for the profile, the battery is assumed to be capable 
to return to the initial state. (Charge or discharge to the initial SOC, and cool back to the optimal 

temperature). During this period, it is possible to charge / discharge a battery with a low current that 

affects the aging minimally. In this way EFC is maintained constant during the period, for shorter 
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periods, a week does not mean a great error. Of course, the aging will appear in the next simulations as 

the EFC is calculated continuously. The initial value can be changed for the next simulation, for example 

simulating the next week. Fig. 3. shows the flowchart of the offline simulation. 

 

 

Fig. 3. Offline simulation algorithm 

4.4. Optimization methods 

In both online and offline cases, there is a step where there is a decision to make which profile will be 

selected. On the diagrams, it is either shown as select profile or solve the equations. For that different 

possibilities will be shown in this section. They will be different in what is the property that is more 
important for us. For this, the original set of equations will be slightly modified. In Eq. 4 it is stated that 

we want to maximize the profit, therefore it is a maximization objective. However, it can be changed to 

a minimization task. Since each defined service has a profit value it is possible to calculate a theoretical 

maximum profit. Then subtracting the actual scenario profit gives a type of difference between 

theoretical and actual profit, eq. 20. 

 𝑃𝑑𝑖𝑓𝑓,𝑗 = 𝑃𝑚𝑎𝑥 − 𝑃𝑗   (20) 

where Pmax is the theoretical profit maximum, Pj is the actual profit of the jth service, and Pdiff,j is their 

difference. Now the minimum of eq. 21 is provided by the same service as for eq. 4. 

 𝑚𝑖𝑛(∑ (𝑃𝑑𝑖𝑓𝑓,𝑗 ∙ 𝑛𝑗𝑗 ) (21)  
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4.4.1. Minimal aging and maximum profit 

With eq. 3 and eq. 21 we have two terms to be minimized. One of the possible strategies is to calculate 

the internal multiplication for each combination of services as in eq. 22 and 23. There is a third equation 
for n, the time horizon for which the profile selection is made. For online mode n = 1, for offline mode, 

it is arbitrary eq. 24. 

 𝐷𝑘 =  ∑ (𝐷𝑗𝑗 ∙ 𝑛𝑗) (22) 

 𝑃𝑘 =  ∑ (𝑃𝑑𝑖𝑓𝑓,𝑗 ∙ 𝑛𝑗)𝑗  (23) 

 𝑁 =  ∑ 𝑛𝑗𝑗  (24) 

where index k refers to the combination. Then select the combination with the minimum of the sum of 

Dk and Pk. 

4.4.2. Minimal aging, then maximum profit 

To maximize the lifetime of the BESS it is a better approach to select a number from the least aging 

contribution combinations, for example, the least 10 and chose the one that offers the maximum profit. 
Generally, the set of equations 21, 22, and 23 is not changed only the that we reduce the cases based on 

Dk values to the best 10 and the chose the best based on Pk. Note that the percentage value is completely 

arbitrary.  

4.4.3. Maximum profit, with minimal aging 

The same as the previous one, with the difference that the selected roles are changed between Dk and 

Pk. First, select the highest 10 profit combination, then chose that gives the least aging. 

4.4.4. Number of combinations 

For a given period the number of possible services is different. In this paper, we consider the period in 
days. For DAM and Intraday it is set that one is possible in one, so in one day either a DAM or Intraday 

service can be provided. However, for FCR and FRR services the main value is the availability for 

longer periods. For FCR it will be set that, one FCR consumes 30 days, one day in which the service is 

provided, and 29 days in idle mode. This is based on the provided frequency data by Hungarian TSO: 
MAVIR. [55] Based on their frequency measurements roughly 1 frequency limit violation occurs per 

month. For aFRR, the data is based on data provided by Hungarian Energy and Public Utility Regulatory 

Authority. Data from Monthly Market Monitoring Report: Electricity between 2019 September and 
2022 March are used for the statistics. [56] In the case of aFRR, the merit order plays a significant role 

in activation, therefore we considered the activation is most likely if the activated aFRR energy is greater 

than or equal to 50 MW. Days were counted with this power criteria. The authority provides these data 
only from 2019.09, hence the start of the period. Unfortunately, the data is distorted by the COVID 

pandemic, 11 months from the total 31 were affected by COVID measures, which is around 1/3 of the 

whole period. Because of this uncertainty the results are multiplied by 0.65 (11 over 31) The results are 

the average activation for positive aFRR is 3.2 days / month, while for negative aFRR is 2.9 days / 
month, therefore it will be considered 3 days / month for simplification. In our simulation aFRR will 

consume a maximum of 3 days for service providing and a minimum of 27 days in idle mode. 

5. Results and Discussion 

In this section, top 10 results from different optimization strategies are presented for a 10-day time 

period. Table IV. shows the results for aging and profit optimization. The rows contain each service 

combination and result. The numbers below each service is the number of the service performed. 

Column titled D [%] contains the relative degradation compared to the best from the chosen set. Profit 

[€] is the accumulated profit for the service combination. 
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Table IV. -  Minimal aging, then maximum profit 

Nr. FCR aFRR_pos aFRR_neg DAM Intraday Idle 
D 

[%] 
Profit [€] 

1. 0 3 0 0 0 27 4.532 1180.5 

2. 0 2 1 0 0 27 2.266 1082.7 

3. 0 2 0 0 10 18 49.778 1179.7 

4. 0 1 2 0 0 27 0 984.9 

5. 0 2 0 1 9 18 50.439 1172.7 

6. 0 2 0 2 8 18 51.090 1165.7 

7. 0 2 0 3 7 18 51.760 1158.7 

8. 0 2 0 4 6 18 52.421 1151.7 

9. 0 2 0 5 5 18 53.092 1144.7 

10. 0 2 0 6 4 18 53.75 1137.7 

 

According to table IV. positive direction aFRR service dominates the best combinations. These 

strategies can be provided best at the beginning of life when degradation may be less important. This is 

true because their degradation factors are lower than the day-ahead market and intraday market. Their 

profit is the highest only in case they are activated in the period, as the number indicates, then besides 
the reserve price, the activation price is also paid to the operator. With DAM or intraday profiles, the 

degradation increases significantly, this is due to the fact that the idle period reduces significantly, which 

offers the best degradation numbers for the given initial conditions. Note that these initial conditions 
(SOC = 50% and T = 25 °C) cause relatively low calendar aging, it would be different with other setups, 

higher initial SOC for example. Operation with DAM or intraday increases aging by circa 50%. In terms 

of profit, the difference is not so significant, it is around 200 €. Interestingly FCR is not an optimal 
service in this case due to the low profit associated with it, although its degradation factor would be 

smaller. In this case, from all the possible combinations, the fourth row contains the minimal aging of 

the battery system. Note that here the system would age as well, but all other combinations accelerate 

the aging phenomenon more, most of them by around 50%. In physical quantities that could mean that 
if the capacity of the battery would be decreased by 1% as an example during the 4. scenario, then it 

would lose 1.5% in the case of the 5. column scenario. Of course, this is a simplified example, for the 

exact aging in the case of the 4. scenario a more detailed battery model would be required, which was 

not in our scope. 

Table V. shows the results for aging optimization, and Table VI. shows the results for profit 

optimization. 

 

Table V. - Minimal aging and maximum profit 

Nr. FCR aFRR_pos aFRR_neg DAM Intraday Idle 
D 

[%] 

Profit 

[€] 

1. 1 0 0 0 0 29 0 525.6 

2. 0 0 3 0 0 27 8.52 887.1 

3. 0 1 2 0 0 27 11.03 984.9 

4. 0 2 1 0 0 27 13.56 1082.7 

5. 0 3 0 0 0 27 16.07 1180.5 

6. 0 0 2 0 10 18 61.28 984.1 

7. 0 0 2 1 9 18 62.01 977.1 

8. 0 0 2 2 8 18 62.75 970.1 
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9. 0 0 2 3 7 18 63.48 963.1 

10. 0 1 1 0 10 18 63.79 1081.9 

 

In case aging is our priority, possibly towards the end of life, FCR service becomes a better choice; as 

discussed previously it has a lower degradation factor, compared to aFRR, DAM, and Intraday services. 

However, FCR service offers a relatively low profit, around 50% lower compared to the best 
alternatives. In this case, the order follows the degradation factor order for the services, as the base is 

the first column scenario. The basic rule of degradation is the same as mentioned in the previous case. 

This operation strategy would be useful when the battery system is in an aged state (but nonlinear rapid 
capacity is not yet observed). As an example, The EOL of the battery is determined at 60% of the initial 

capacity, and the remaining capacity in the battery is 65%. In this example, if the first scenario would 

cause 1% capacity loss then it can be offered five-time, while 10. the scenario only twice. In this case, 

the profit would be higher with the 1. scenario. Note one important thing however, the direct comparison 
between the tables is not possible, because rows may contain completely different service combinations, 

and baselines are not the same. 

 

Table VI. Maximum profit, with minimal aging 

Nr. FCR aFRR_pos aFRR_neg DAM Intraday Idle 
D 

[%] 

Profit 

[€] 

1. 0 3 0 0 0 27 0 1180.5 

2. 0 2 0 0 10 18 43.286 1179.7 

3. 0 1 0 0 20 9 86.563 1178.9 

4. 0 0 0 0 30 0 129.855 1178.1 

5. 0 2 0 1 9 18 43.925 1172.7 

6. 0 1 0 1 19 9 87.22 1171.9 

7. 0 0 0 1 29 0 130.484 1171.1 

8. 0 2 0 2 8 18 44.554 1165.7 

9. 0 1 0 2 18 9 87.831 1164.9 

10. 0 0 0 2 28 0 131.123 1164.1 

 

According to maximizing to profit optimization, the best possibility is positive aFRR again, with both 

reserve and activation energy prices. This strategy can be best suited for a battery at the beginning or 

mid of its life. However, the other close-to-optimal profit choices can increase the degradation of the 

battery dramatically, some of them would age twice as fast as the others, without any significant profit 
increase. It is interesting to observe that degradation can vary significantly between each case, and 

compared to the other tables, achievable profit is not so much more than the profit-oriented case. For 

these scenarios a more detailed battery model could be helpful for decision making. 

Note that in the aging optimization strategy the service combinations are ordered by D [%], while in the 

case of profit optimization it is ordered by P [€]. 

6. Conclusion 

In a summary, it can be stated based on Table IV. and VI. that considering battery aging problems has 

a significant role in operation management. Without it the operation strategy may result in much faster 
aging, yielding no significant income difference. In this paper the authors presented three simple method 

for operation strategy and assigned to them possible life phases of the battery system.  Results show that 

batteries have a place among other system reserve providers not only based on their technological 
features but from an economic point of view as well. Scope of further work with this simulation 

framework could consider different initial conditions, the difference in results if activation for reserve 
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services did not happen and other more sophisticated operation strategies, and if there are any, new 

services of course. This battery-operated model will be used in the OneNet project by WP 10 Hungarian 

demonstration for testing flexibility services. 
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