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ABSTRACT
Over the last few years, the adoption of encryption in network
traffic has been constantly increasing. The percentage of encrypted
communications worldwide is estimated to exceed 90%. Although
network encryption protocols mainly aim to secure and protect
users’ online activities and communications, they have been ex-
ploited by malicious entities that hide their presence in the network.
It was estimated that in 2022, more than 85% of the malware used
encrypted communication channels.

In this work, we examine state-of-the-art fingerprinting tech-
niques and extend amachine learning pipeline for effective and prac-
tical server classification. Specifically, we actively contact servers to
initiate communication over the TLS protocol and through exhaus-
tive requests, we extract communication metadata. We investigate
which features favor an effective classification, following state-of-
the-art approaches. Our extended pipeline can indicate whether a
server is malicious or not with 91% precision and 95% recall, while
it can specify the botnet family with 99% precision and 99% recall.
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1 INTRODUCTION
As of October 2020, more than 90% of Internet traffic is commu-
nicated over TLS [4]. The adoption rate of TLS 1.3 surpassed the
adoption rate of previous versions of TLS with remarkable speed.
Based on the TLS Telemetry Report in 2021 [8], TLS 1.3 has become
the preferred protocol for 63% of the top 1 million web servers on
the Internet [3]. Yet, the increasing popularity and simplified usage
of TLS led malware to exploit encryption to hide its presence and
communications [12]. WatchGuard observed in 2021 that 91.5% of
malware is delivered through encrypted channels [11]. Furthermore,
the TLS Telemetry Report revealed that the proportion of phishing
sites using HTTPS and valid certificates had risen to 83% in the
same year [8]. To establish a secure channel using the TLS protocol,
a crucial step involves the exchange of metadata between the client
and the server. This metadata is shared through unencrypted Client
Hello and Server Hello messages.

Several works [2, 7, 29, 40] and studies [49] have acknowledged
the significance of metadata exchanged during the TLS handshake
and attempted to leverage this information to enhance Internet
security [46]. The majority of these works focus on the passive
analysis of the messages exchanged during the TLS handshake.
By employing active approaches, like active TLS fingerprinting,
researchers and organizations [15, 21] can collect relevant TLS pa-
rameters that when properly processed, they enable the extraction
of valuable information for the network status and the participating
devices and applications [6, 45].

In this work, we leverage a range of active TLS fingerprinting
techniques to examine server behavior. First, we initiate our in-
teraction with servers by sending the first request from a set of
predefined requests, and then, we start re-sending this request by
progressively forcing the server to select an alternative cipher suite.
The resulting TLS parameters are then utilized from the enhanced
version of a publicly available semi-automatic machine learning
pipeline [20]. To ensure a robust evaluation, we employ three dis-
tinct classification models. Building upon this methodology, we
compile a database with traffic from benign and malicious enti-
ties. We create a binary classification system capable of accurately
labeling servers as either benign or malicious. Additionally, we
implement a multi-class classification model to further indicate
specific botnet families. Finally, we implement a TLS fingerprint-
ing technique and evaluate the performance of 4 different feature
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categories. Through this comparison, we explore the strengths and
limitations of each method. The contributions of this work follow:

• We examine state-of-the-art approaches for server classi-
fication through active probing and integrate them into a
publicly available machine learning pipeline.

• We present an analysis of these approaches using a com-
parative evaluation between different (i) features categories
based on fingerprinting and (ii) ML models for classification.

• We present the most extensive dataset known to date for
actively categorizing servers. The already processed data is
available and ready-to-use in [25].

2 BACKGROUND
To establish a secure channel via TLS, a secure TLS parameters
exchange is essential immediately following the TCP handshake,
allowing both sides to share their capabilities and preferences.

The TLS handshake begins with the client sending a Client Hello
message to the server. This message contains information, such
as the supported TLS versions, cipher suites, and extensions. It
serves as a way for the client to communicate its capabilities and
preferences to the server. Upon receiving the Client Hello message,
the server responds with a Server Hello message. This message in-
cludes the selected TLS version, cipher suite, and other parameters
chosen by the server. It allows the server to inform the client of its
preferences and capabilities, enabling both parties to negotiate and
agree upon the most secure and compatible settings for their com-
munication. A common technique is to leverage these parameters
during the initial stages of establishing the secure channel for differ-
ent purposes (e.g., OS identification [45], server-side libraries [44],
client identification [38, 52], or in censorship circumvention tools
[37]), since the messages exchange happens in plaintext.

3 RELATEDWORK
Although we follow an active probing approach, in this paragraph,
we briefly discuss related works that focus on passive analysis.
In 2009, Ristic’s work [54] made TLS fingerprinting gain popular-
ity [27], leading to more research [1, 2, 29, 33, 40, 55]. Over time,
TLS fingerprinting was applied to diverse applications. It has been
employed for longitudinal studies [44], identification of android
apps [52], characterization of malware [28], and the detection of
IoT components[51].

In the domain of active probing-based fingerprinting techniques,
there are two popular methodologies, ATSF [60] and JARM [6],
which send a fixed number of Client Hello messages to a server.
Both techniques generate fingerprints according to the Server Hello
responses they receive. Papadogiannaki et al. [50] use JARM to
generate fingerprints for servers that are known to participate in
botnets and they examine their evolution over time. They also show
that the percentage of fingerprint overlapping with benign servers
progressively rises. In ATSF, authors propose a list of alternative
Client Hello messages, which seem to result in more expressive
and optimized fingerprints when compared to JARM. Nonetheless,
a notable aspect of these approaches is the initial generation of
the first 10 Client Hello messages. This initial step, could benefit
from heightened explainability, thus facilitating potential optimiza-
tion strategies and refining the generation process. DissecTLS [59]

introduces an enhanced functionality of a recursive process of sys-
tematically excluding selected server parameters or preferences
from the interaction sequence. By iteratively eliminating these
values and subsequently re-sending the requests, the DissecTLS
methodology strives to generate more expressive fingerprints. No-
tably, DissecTLS concentrates on the comprehensive extraction of
server configurations for server classification. This emphasis on
configuration extraction sets DissecTLS apart, offering insights into
server behavior outperforming similar tools [23, 24].

To the best of our knowledge, there is no related work that uses
machine learning to classify server activity with information col-
lected after active probing. Although several studies have explored
the utilization of machine learning techniques in conjunction with
TLS parameters and fingerprinting [32, 39, 41, 43, 45, 48, 53, 57, 62],
they focus on different use cases (e.g., OS identification, website
fingerprinting, detection of privacy leaks). To accurately compare
works that do not share analogous techniques is challenging. The
combination of active probing and machine learning adds an extra
layer of complexity, as active probing generates data in real-time,
while machine learning depends on static data for training. This
requires continuous processing, which is challenging for large and
dynamic datasets due to the computational resources requirements.
Also, combining active probing with machine learning, dictates
the mutual reinforcement of each other. Kim et al. [42] focused
on analyzing TLS traffic based on enhanced neural networks com-
bined with TLS fingerprinting methods. Yet, its reliance on passive
techniques contrasts with our emphasis on active ones.

In this work, we aim to explore every facet of existing approaches,
striving to identify the optimal outcome in terms of classification.
That’s why we employ active techniques to gather a broad range of
features and subsequently feed them into machine learning models,
which are then utilized in our fingerprinting methods. In the upcom-
ing sections, we’ll explore the benefits of fingerprinting methods
used in active probing and combine the different techniques used
in ATSF, JARM and DissecTLS. Finally, we use a modified version
of a publicly available machine learning pipeline tailored for our
experiments. By testing different fingerprinting techniques and
adapting the machine learning models, we aim to examine how
they perform in active scenarios.

4 METHODOLOGY
In this section, we present an overview of the methodology used.
Our approach centers on optimizing and comparing the current ac-
tive approaches of collecting unique messages from servers during
TLS parameter negotiation.

An approach to attain this is by employing a predefined number
of particular requests to a server and receiving the corresponding
responses in return. For this purpose, instead of generating new
initial Client Hellomessage, we leverage existing ones from previous
works. We select the JARM tool, renowned for its scalability and
efficiency [5], widely adopted by major Internet scanners, such as
Censys [16] and Shodan [22]. JARM sends 10 customized TLS Client
Hello messages to a target TLS server, enabling us to identify a
distinct set of responses.

Each of these Client Hello messages triggers a response from
the server in the form of a Server Hello message, agreeing on the

1934



Fingerprinting the Shadows: Unmasking Malicious Servers with Machine Learning-Powered TLS Analysis WWW ’24, May 13–17, 2024, Singapore, Singapore

selected parameters. During this process, it is possible for a server
to abort the handshake or attempt to renegotiate. DissecTLS [59]
exploits this opportunity by conducting intensive scans on servers.
This process continues until the complete TLS configuration can be
successfully reconstructed. Based on this approach, we implement
an extension of JARM, integrating this additional functionality. Our
tool executes each of its initial requests by progressively removing
previous preferences. Our choice is to concentrate on a specific
parameter for reduced complexity. The key is to iteratively remove
previous cipher suites selected by servers. This process continues
until an error occurs or a timeout elapses. This proves to be the
best case due to its wide range of options and the presence of a
preference order. More details can be found in §4.1. Finally, we
extend an existing pipeline to enhance and fine-tune it for the
purpose of server classification through active probing.

4.1 Cipher Suite Selection
To enhance themethod of active probing and achieve amore stream-
lined process, we focus on a single parameter during TLS parameter
negotiation – the cipher suite. The cipher suite plays a crucial role
in establishing a secure channel between the client and server. Ci-
pher suites encompass a wide variety of cryptographic algorithms
and key exchange methods, and their order of preference can sig-
nificantly impact the server’s behavior.

We perform an iterative process, where we interact with the
server by initiating TLS connections and start removing the se-
lected cipher suites one by one. We continue this process until an
error occurs or a timeout is reached. The primary objective is to
identify the server’s preferred cipher suite by observing its behavior
when specific cipher suites are eliminated. By concentrating on a
single parameter, we aim to extract all possible preferences of the
server related to the cipher suite, leading to more unique responses.
This approach not only increases the precision of our model, but
also reduces the extra overhead associated with probing multiple
parameters simultaneously, while also delaying the occurrence of
errors. We monitor the server’s responses and gather data on each
interaction. This data serves the crucial purpose of identifying the
server’s most preferred cipher suite and comprehending how its
behavior evolves when different cipher suites are removed.

4.2 Data Collection
Our data collection methodology is designed to include a wide spec-
trum of servers and network configurations. The process involves
two main sources: the “Top 10K domains” from the Tranco list and
various “Blocklists” containing potentially malicious IP addresses.

4.2.1 Top 10K Domains. To initiate our data collection process, we
select the “Top 10K domains” from the Tranco list, which is a reliable
source of Internet-wide domain information [14]. Considering the
time and resources required to scan the entire Tranco list on a
daily basis, we scan a representative sample; the top 10K domains.
To maintain the relevance and timeliness of our data, we schedule
nightly downloads. This regular update process allows us to capture
evolving trends within the TLS ecosystem.

4.2.2 Blocklists. In addition to the top 10K domains, we incorpo-
rate the Feodo Blocklist into our data collection [9]; a blocklist that

contains IP addresses associated from five different botnet families.
To expand our dataset, we also include unlabeled blocklists that
contain potential malicious IP addresses (i.e., Blocklists.de [13], Ci-
Badguys [17], SSLBL [10], and Darklist.de [18]). In the paper, the
term Blocklists refers to these 4 unlabeled lists. The daily number of
unique IP addresses contained in these blocklists ranges from 30 to
20K. This integration enables us to gain insights into existing TLS
behaviors across a broader range of servers, encompassing both be-
nign and potentially malicious activities. To handle the large size of
blocklists, we employ weekly Censys’s active TLS scans [34], which
filter the lists and provide us with an up-to-date and manageable
set of active IP addresses along with a list of open ports.

4.2.3 Database. After this preparation phase, we employ our tool,
starting to send its 10 consecutive Client Hello messages. For each
one of them, we proceedwith an iterative process, where we remove
the cipher suite selected by the server. Initially, we send the first
Client Hello message to the server and wait for its response. Upon
receiving the server’s selection of a cipher suite, we proceed with
removing this specific option from the list of supported cipher suites
for the subsequent interaction.We then resend the same Client Hello
message to the server, this time without the eliminated cipher suite.
This iterative approach continues until the server either refuses
to respond or stops acknowledging our queries. Subsequently, we
repeat this entire procedure for each of the remaining 9 Client Hello
messages in a methodical manner.

Through this process, we acquire valuable insights into TLS pa-
rameter negotiation, allowing us to assess how servers dynamically
adapt their responses to different cipher suite options. Throughout
this interaction, we monitor and collect the network packets ex-
changed using the tcpdump tool. In contrast to real-time fingerprint
generation approaches, we store the collected traffic for subsequent
analysis. This decision allows us to focus on the efficiency of fea-
ture selection when creating fingerprints. The stored traffic forms a
rich dataset that enables deeper investigations into TLS parameter
negotiation and server behavior.

Over a five-month period (01/2023 – 05/2023), we accumulate ap-
proximately 1.8M samples, resulting in unprocessed data of 278 GB
in total. This extensive repository empowers us to observe evolu-
tionary trends within the TLS ecosystem, and monitor how mali-
cious botnets adapt their activities on benign servers. Furthermore,
this dataset provides fertile ground for exploring novel capabilities
and potential in TLS parameter negotiation and secure channel
establishment research.

4.3 Filtering
To ensure the integrity and reliability of our dataset, we implement
a filtering process to retain only the successful samples while re-
ducing potential anomalies. First, we remove servers that did not
respond to any of the initial 10 Client Hello messages, resulting
in empty packet capture files. Next, we identify scenarios where
servers initially respond successfully to our requests but subse-
quently stop acknowledging our messages during the TLS rene-
gotiation, leading to a timeout. Such occurrences are flagged as
“Incomplete”, as they do not provide valuable insights into server
behavior in cases that communication is unexpectedly disrupted.
Furthermore, we encounter instances that servers respond with no
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Table 1: Number of data samples processed

Source Filtered Samples

Tranco 763,443
Blocklists 84,354
QakBot (Feodo) 3,890
Dridex (Feodo) 1,369
BumbleBee (Feodo) 931
Emotet (Feodo) 863
BazarLoader (Feodo) 75

Total 854,925

TLS packets or repeatedly provide the same Server Hello for each
request. These anomalies are marked as “Disrupted” and discarded
from processing alongside with the “Incomplete” samples (§ A.1).

To minimize these anomalies to the maximum extent possible,
as a final step, we perform a flow checksum on the collected traffic.
We carefully check and confirm that the way each communication
happens follows the usual patterns and rules expected. For example,
we make sure that the TLS information is contained within the TCP
packet. We also look at cases where packets arrive too late (after
the timeout lapsed) or when ACK numbers do not match the SEQ
ones. If things don’t match up or follow the rules, we remove that
data from our collection. Table 1 provides an overview of the final
data samples resulting from our filtering process.

4.4 Data Transformation and Parameters
Selection

After filtering our dataset and retaining only the Completed files,
the next crucial step is to address the challenge posed by the size of
packet capture files, since processing and feeding them directly into
a classification model for training proved impractical. Therefore,
we have created a lighter format that would still retain the essential
features needed for our analysis and evaluation. To achieve this, a
subset of TLS parameters, extensions, and certificates is carefully
selected (§ A.2). These parameters include TLS versions, cipher
suites, ALPNs, Elliptic Curves, certificates (x509) and other rele-
vant information. During the data transformation phase, we aim
for a balance between information richness and efficiency. Thus,
we create a list large enough to enable the utilization of different
parameters subsets and perform comparisons effectively. Finally,
we unify the original data samples into a single CSV file, containing
all the extracted fields and reaching the size of 55 GB. Its simplicity
and ease of use make it an ideal choice for representing the curated
list of parameters and TLS negotiation data.

To ensure consistent data presentation, each packet capture file
in our database corresponds to a single row into a CSV file. This row
contains all the parameters extracted from each server’s response,
providing a total view of the TLS negotiations that occur. Each
column holds a particular parameter’s value that the server chose
from the corresponding request at that specific time. Since we
perform exhaustive requests to servers, the exact number of their
total responses for each Client Hello varies, resulting in a dataset
that includes rows with features ranging from 200 to 20K. The
calculation yielding 20K features is determined by the following

factors: we extract 46 distinct parameters from each Server Hello
message, the maximum observed number of iterations is 45, and
there are 10 initial handshake procedures. Consequently, if a server
responds 45 times recursively for each of the 10 initial handshakes,
the resultant dataset comprises 20,700 features (46 parameters x
45 iterations x 10 handshakes), in addition to columns indicating
the corresponding date of the sample, category, botnet family (if
applicable), IP/domain, port, and 10 columns indicating the total
number of responses for each of the 10 initial handshakes until the
server encountered an error or fails to respond.

Finally, in the last step, we transform string-type values into an
arithmetic-like format representation. This conversion is necessary
for the selected classification machine learning models, as they
can only process numeric features. We implement a technique to
represent strings as integers while ensuring consistency for the
same input. By leveraging the MD5 hash function, we effectively
convert these string-based parameters into a standardized format
that is suitable. Consequently, we successfully transform the string-
based parameters into fixed-size representations and then convert
the hexadecimal output into integers. In cases where the input is
empty, for example, ’None’, our implementation returned ’-1’ to
maintain data integrity and signify the absence of applicable data.

5 ANALYSIS
Before proceeding to the design of our models, we conduct a pre-
liminary analysis on the final transformed and extracted data to
gain insights and understand the variation in server responses
when performing exhaustive requests. In this analysis phase, we
calculate the average number of responses for each data source to
examine the server’s behavior during TLS parameter negotiation
and cipher suite selection. Additionally, we apply the Borda Count
rule [35, 36, 56] to identify the top cipher suites among the servers
in our dataset, based on their min-max normalized scores [26].

To gain a deeper understanding of the data, we visualize the
distribution of server responses. Following figures represent the av-
erage responses of the sources and the distribution of them through
box plots, providing an overview of the data central tendency, dis-
persion, and outliers. By analyzing these plots, we examine the
variation in server responses and determine if exhaustive tech-
niques can lead to better results. The insights gained from this
preliminary analysis help us identify patterns, trends, and potential
variations in server behavior during TLS parameter negotiation.
Understanding these aspects is critical to move on with the evalua-
tion phase and compare our models. The box plots, in particular,
allow us to visually compare the distribution of server responses
across different sources, highlighting any variations and enable us
to draw important conclusions about the impact of uniqueness in
server classification.

5.1 Number of Responses
Figure 1 presents the mean number of responses for each source
(i.e., Tranco, Blocklists, Feodo) during the 10 exhaustively iterative
handshakes until the server either responds with an error message
or ignores the request. We observe that at the last handshakes the
majority of sources exhibit a lower number of responses compared
to earlier ones. This could open up intriguing possibilities for future
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Figure 1: Mean number of successful handshakes per itera-
tion and data source (i.e., Tranco, Blocklists, Feodo)

investigations into the specific Client Hello parameters responsible
for this reduction and why they influence server behavior. Dridex
and Emotet botnets exhibit the highest average number of responses
among all sources. Notably, the Dridex botnet demonstrates a high
response rate across all handshakes, indicating its reluctance to
refuse a TLS connection regardless of the utilization of any outdated
parameters. On the other hand, the Emotet botnet seems to respond
in a standardized manner, consistently producing specific patterns
in its responses following a specific configuration.

Figure 2 illustrates the distribution and variability of the total
response counts across the different sources. The extent of spread
within the boxes and the length of the whiskers directly indicate the
degree of variation. Tranco, which represents benign server activity,
exhibits a high number of outliers. This outcome is in line with
expectations considering the extensive diversity among domains
and their unique configurations. In contrast, the Feodo source has
a reduced number of outliers (resulting from BumbleBee, Emotet
and QakBot botnet families). It consists of traffic from 5 different
botnet families, each consistently following its distinct behavior.
For this source, an outlier might indicate a misclassification. Lastly,
interpreting the list namely Blocklists is challenging, since the family
of the IP addresses contained is unknown. Unlike the Feodo list, the
list Blocklists contains raw IP addresses with no other information.

5.2 Variances in Cipher Suite Selection
In the next phase of our analysis, we evaluate the cipher suite
preferences exhibited by various sources within the dataset. We
extract the cipher suite selections for each Client Hello message
and aggregate them based on the specific handshakes employed.
To benchmark the preferences, we harness the Borda Count rating
technique [36]. This method assigns points to candidates accord-
ing to their rankings on each ballot. Lower-ranked candidates are
allocated fewer points, while higher-ranked ones garner more. By
summing up the scores granted to each cipher suite (divided per
source list), we derive server preferences. To ensure uniformity, we
apply min-max normalization. This allows us to identify the cipher
suite selections per source list, based on the initial handshakes and
to observe variations across sources. Coupled with the analysis
of response counts, these findings could potentially reveal botnet

Table 2: Top 10 SSL/TLS cipher suites of Tranco ranked by
Borda count (presented in descending order) and the corre-
sponding values of the C2 lists

Cipher Score

Tranco Blocklists Feodo

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 1.000 0.998 0.975
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0.965 1.000 0.964
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0.742 0.730 0.856
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0.730 0.834 1.000
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0.711 0.756 0.843
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0.703 0.846 0.979
TLS_RSA_WITH_AES_128_GCM_SHA256 0.586 0.650 0.751
TLS_RSA_WITH_AES_128_CBC_SHA 0.563 0.940 0.873
TLS_RSA_WITH_AES_256_CBC_SHA 0.531 0.937 0.852
TLS_RSA_WITH_AES_256_GCM_SHA384 0.497 0.658 0.737

Unique cipher suites 69 68 49

attempts to imitate benign TLS configurations. Table 2 presents
the top 10 Tranco cipher suites selection. For each cipher suite, we
display its corresponding score as occurred during the examination
of the Blocklists and Feodo source lists.

6 MODEL DESIGN
In this section, we present the machine learning classification ap-
proach and an implementation of a fingerprinting method with 4
different feature categories, each one derived from a different strat-
egy. Our aim is to explore the potential of these methods for server
classification. Notably, existing methods are based on the similarity
between new and already known fingerprints. Such an approach is
limited concerning the detection of newly observed samples. Also,
the computation of exact matches without proper reduction of non
relevant parameters generates constraints towards the generaliz-
ability of the method. Our research seeks to address this limitation
by investigating the effectiveness of machine learning models in
this context, combined with the benefits of active probing.

6.1 Machine Learning Model
In this study, one of our main objectives is to investigate the effi-
cacy and accuracy of machine learning classification approaches.
We examine the characterization of servers into benign and mali-
cious (binary classification), as well as the categorization into differ-
ent types of malicious sources (multi-class classification). Machine
learning classification tasks entail several key steps, including data
pre-processing, feature selection, defining multiple models along
with their configurations, fine-tuning during cross-validation, and
ultimately selecting the best model. It is crucial to execute each
step properly to avoid common pitfalls such as information leakage
between training and testing sets, class imbalance, overfitting/un-
derfitting, and decision threshold optimization.

To ensure a robust implementation, we have chosen a publicly
available semi-automatic machine learning pipeline that addresses
common issues encountered in classification tasks [20, 58]. Further-
more, we have selected 3 distinct classification models to facilitate
a comprehensive comparison of different classification approaches:
Gaussian Naive Bayes [61], Random Forest [30], and the state-of-
the-art XGBoost [31]. These selected methods are well-equipped
to handle class imbalance and perform effectively on imbalanced
datasets, a crucial consideration for our dataset.
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Figure 2: The distribution of total responses across the sources (i.e. Tranco, Blocklists, Feodo)

The chosen pipeline includes data division into 80%/20% propor-
tions for training-validation and testing (also known as hold-out).
However, this random split based solely on the sample class cate-
gory (also known as a target) is not suitable for our dataset due to
the presence of different malicious or benign machines that have
been sampled multiple times (daily measurements). In some cases, a
machine may or may not change its configuration during the mon-
itoring period, and the initial splitting based solely on the target
value could result in nearly identical samples being present in both
the training and testing data portions. This type of data separation
could lead to overly optimistic model performance.

To address this issue, we have taken measures to ensure the
appropriateness of our data splitting. Specifically, we have retained
only unique samples for each machine in our dataset. Furthermore,
we have divided the dataset into 80% for train/validation and 20% for
the testing portion. This division is based on the combination of the
target (benign or malicious) and the machine’s IP address, ensuring
that the testing set contains 20% of the unique machines, avoiding
the presence of similar samples between training and hold-out set.

6.2 Fingerprinting
Fingerprinting techniques consist of two fundamental steps. The
first step focuses on feature selection, which is the most significant
aspect of this methodology. During this phase, most informative
and discriminative parameters from TLS metadata are carefully
curated and identified. The selected features play a pivotal role in
characterizing the server behavior and for effective classification.
The second step involves the fingerprint generation by concatenat-
ing these features and then by utilizing hash functions, converting
them into standardized format outputs.

In a dataset with more than 20K possible features, selecting the
optimal ones is challenging. Based on current approaches we create
4 distinct combinations of features. Each category offers valuable
insights into the trade-off between the selected features and the
model’s precision. Table 3 presents the different categories. Exhaus-
tive category, contains features from only 1 parameter, the chosen
cipher suite extracted from each Server Hello during the handshakes.
Although changing cipher suites could impact other parameters,
we concentrate on the most relevant one during our step-by-step
removal process. Conversely, in Predefined category, 21 out of the 46

Table 3: Maximum number of features per category

Exhaustive Predefined ML-Selected All-Possible

450 210 84 20,710

parameters are included as features as we choose to exclude param-
eters relevant to certificates and concentrate solely on behavioral
patterns. These features are exclusively extracted from the initial
response of each handshake, ignoring the previous exhaustive ap-
proach completely. The last 2 categories are designed with the first
containing the features selected from the machine learning pipeline
outlined in § 6.1 and the second with all features possible, with an
additional 10 features that indicate the total responses per hand-
shake. All in all, each category is inspired by the methodologies
in the state-of-the-art (i.e., “Exhaustive”/“All-Possible” categories
are inspired by [59] and the “Predefined” category comes from [6]
and [60]), whereas the “ML-Selected” category is the newly evalu-
ated feature set that is introduced in our work.

To generate the fingerprints, we follow a simple approach. We
concatenate the selected features and pass directly through the
SHA256 hash function, resulting to a 32-byte output. This process
should provide a single fingerprint for each unique server behavior.

JARM’s 62-character fingerprints are segmented, with the initial
30 characters representing the server’s chosen TLS version and
ciphers for each of the 10 client hello messages, and the subsequent
32 characters forming a truncated SHA256 hash of the cumulative
server extensions, excluding x509 certificate data [19]. Unlike JARM,
we’re not emphasizing in a fingerprint generation process that
relies on partial fingerprint matching for similarities. Using the
methodology described above, our goal is to observe the variations
in results across the different feature categories, each representing
a different feature selection approach.

Finally, we use a different approach for data splitting compared to
the machine learning process. Given that fingerprinting techniques
depend on periodically updated databases we divide the dataset
into 80%/20% based on the dates of collection. We retain the 80% of
daily traffic for training, generating fingerprints that are stored in
our database, while the remaining 20% is allocated for testing.

1938



Fingerprinting the Shadows: Unmasking Malicious Servers with Machine Learning-Powered TLS Analysis WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 4: Total and unique fingerprints per feature category
(i.e., Exhaustive, Predefined, ML-Selected, All-Possible)

Source Total FPs Unique FPs

Ex/ve Pred/ed ML All

Tranco 763K 5K 123K 207K 329K
Blocklists 84K 2K 19K 27K 35K
QaKBot (Feodo) 3K 4 109 354 1855
Emotet (Feodo) 863 2 37 72 158
Dridex (Feodo) 1369 3 42 62 330
BumbleBee (Feodo) 931 5 16 35 215
BazarLoader (Feodo) 75 3 28 3 33

Total 854K 7K 143K 235K 367K

7 EVALUATION
In this section, we outline the steps we followed to evaluate our
models. The entire process was performed on an AMD EPYC 7543
32-Core processor with 512GiB of system memory, equipped with
anNVIDIAA30GPU. This configurationwas essential for efficiently
handling and processing the substantial amount of data, given
the extensive number of extracted features and the fine-tuning
of machine learning models. We evaluate our models based on
two distinct classification techniques. First, we perform binary
classification to specify whether a server is malicious (C&C) or not.
Then, we perform multi-class classification, to identify the botnet
family of each server. To compare the performance of our models,
we use the precision, recall and F1 metrics.

7.1 Pre-Assessment
Before training, we perform some checks for possible IP address
overlaps over the whole dataset. We encounter only 3 IP addresses
overlapping in different dates between the Emotet and Dridex bot-
nets of Feodo. For realistic reasons, none of them was excluded.

Subsequently, we extract all possible fingerprints from our dif-
ferent feature selections. Table 4 provides an overview of the total
and unique fingerprints per category. Interestingly, even though
ML-Selected category contains the fewest features, produces more
unique fingerprints than the Exhaustive and Predefined.

Next, we aim to determine the number of overlaps between
the fingerprints. Figure 3 illustrates the ratio of the unique over-
laps across sources. We observe that, once again, the ML-Selected
category, despite having fewer features, exhibits fewer overlaps
compared to the Exhaustive and Predefined. Notably, several servers
from the Blocklists list share identical fingerprints with the Tranco,
possibly indicating an effort to imitate legitimate behavior and
duplicate configurations.

7.2 Malicious vs benign
7.2.1 Machine Learning. The binary classification pipeline effec-
tively reduces the dataset’s dimensionality by selecting only the
top 84 most important features from the pool of maximum 20K
extracted features. We identify the significant features using the
Lasso regression model based on non-zero coefficients. Following
the feature selection process, the pipeline proceeds to fine-tune
each predefined model, retaining only the best configuration for
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Figure 3: The ratio (%) of unique overlaps

each. The average performance of these configurations during K-
Fold cross-validation is summarized in Table 5. The results indicate
that XGBoost is the optimal classification configuration, achieving
an average F1 score of 0.973 over the validation set.

To comprehensively evaluate the performance of the selected
model, we utilize the remaining of the hold-out dataset, which
contains 120,374 unseen data samples. The chosen configuration
achieves an F1 score of 0.931, a ROC-AUC score of 0.971, a recall
score of 0.95, and a precision score of 0.911 (§ A.3). Additionally, to
further evaluate and stress the selected model, we repeat the testing
procedure with newly added data, originating from IP addresses
never processed before1. Specifically, we collect different sets of
unseen benign and malicious machines for 2 separate time periods
(06/2023 and 07/2023). We process unseen data from 18,883 samples
collected in June and 21,782 samples collected in July. We utilize
these data samples in order to evaluate the model performance
in a realistic case scenario. According to the results presented in
Table 6, our model (XGBoost) manages to achieve more than 0.95 F1
score and more than 0.986 precision in both datasets (06/2023 and
07/2023). We have extracted the explanation of the captured model
patterns using the SHAP model explainability technique (Fig. 4).

Table 5: Performance of selected binary and multi-class clas-
sificationmodels during theK-Fold cross validation (F1 score)

Model Multi-class Binary
Training Validation Testing Training Validation Testing

XGBoost 0.9976 0.9811 - 0.9865 0.9737 0.9311
Random Forest 0.9973 0.9819 0.9907 0.9481 0.9395 -
Gaussian NB 0.9300 0.9257 - 0.8636 0.8636 -

7.2.2 Fingerprinting. In our next step, we want to examine how
the selection of features based on different approaches affects the
results. Any sample within our testing data, as discussed in sec-
tion §6.2, which generates a fingerprint observed at least once in
1Same sources used: 10K Tranco domains [14], Feodo [9] and blocklists [10, 13, 17, 18]

1939



WWW ’24, May 13–17, 2024, Singapore, Singapore Andreas Theofanous, Eva Papadogiannaki, Alexander Shevtsov, and Sotiris Ioannidis

Table 6: Performance of the selected binary classification
model over three different datasets: (i) the hold-out dataset,
(ii) the dataset collected in June 2023, and (iii) the dataset
collected in July 2023

Dataset F1-Score ROC-AUC Precision Recall

Testing 0.931 0.971 0.911 0.950
06/2023 samples 0.955 0.976 0.925 0.986
07/2023 samples 0.953 0.943 0.919 0.990

Blocklists-Feodo traffic, is classified as malicious. The calculation of
the precision, recall and F1 score is calculated using the classifica-
tion_report function from the python library metrics.

Surprisingly, the results reveal a significant deviation. The cate-
gories Exhaustive, Predefined, ML-Selected and All-Possible achieve
precision/recall scores of 0.38/0.94, 0.51/0.69, 0.71/0.59, and 0.64/0.47
respectively. This outcome suggests that while the All-Possible cate-
gory has fewer overlaps compared to ML-Selected, the overall over-
lap count was actually higher leading to more miss-classifications.

The scores highlight the essential role of feature selection in
determining the quality of predictions. ATSF [60] uses an empirical
strategy of randomly generating Client Hellos in order to find the
best feature set based on the specific kind of classification each
time. Their binary classifier which decides whether a server is a
C2 server from a blocklist achieves 99% precision score, with a 35%
recall due to the nature of these techniques which rely on exact
matching.

7.3 Malicious separation
7.3.1 Machine Learning. Similarly to binary classification, themulti-
class pipeline also succeeds in significantly reducing the feature
space of the extracted dataset, from 20K down to a 108 best fea-
tures, determined by the Lasso regression coefficients. Moreover,
the model fine-tuning process accurately identifies the optimal
configuration for each of the predefined classification models, as
documented in Table 5. In contrast to the binary classification,
the pipeline selects the Random Forest model as the most suitable
choice, primarily due to its higher average validation F1 score.

Upon selecting the appropriate model, its performance is further
evaluated using the hold-out dataset. The chosen configuration for
the Random Forest model yields impressive results, achieving a
ROC-AUC score of 0.999, F1 score of 0.990, precision of 0.990 and
recall of 0.990 (§ A.4).

7.3.2 Fingerprinting. Simultaneously, we use the fingerprinting
technique similarly to the binary classification to explore how fea-
ture categories behave in a multi-class problem. After updating the
new features to the ML-Selected category and considering only
labeled traffic, we extract the following scores. The categories Ex-
haustive, Predefined, ML-Selected and All-Possible achieve preci-
sion/recall scores of 0.70/0.79, 0.68/0.71, 0.68/0.70, and 0.62/0.28
respectively. Remarkably, this time, the highest scores are achieved
by the Exhaustive category, which exclusively leverages the cipher
suites selected from the botnet families. Given that each server
within this experiment is associated with a distinct botnet family,
it is supposed to consistently respond in the same manner. On

the other hand, the All-Possible category demonstrated lower per-
formance due to the potential issue of overfitting caused by the
inclusion of numerous features.

Compared with the binary classification based on fingerprinting
in §7.2.2, we see that these techniques work better when servers
consistently follow a regular pattern, which makes them particu-
larly suitable for categorizing familiar behaviors. Moreover, since
they rely on exact matches with known patterns before, they are
optimal for configuration replication discovery. Finally, it is nec-
essary to mention that we do not directly compare them to our
machine learning experiments, since we split the dataset differently
in order to reflect how each technique would be used in real-life
situations.

8 ETHICAL CONSIDERATIONS
We contact IP addresses that are advertised as malicious in public
blocklists and we do not perform any port scanning. In addition,
the communication initiated by our machines did not provoke any
reaction from system administrators (e.g., email warnings [47]).

9 LIMITATIONS
We utilize two distinct IP addresses for the data collection process.
We have not performed any analysis to detect any potential black-
listing from the servers side. If an attacker is able to fully mimic the
TLS configurations of common, benign machines, it will cause a
misclassification. In the future, we will investigate if servers detect
our activity and respond using fixed TLS Server Hello messages to
bypass the analysis.

10 CONCLUSION
In this paper, we utilize active TLS fingerprinting techniques in
conjunction with a machine learning pipeline to examine whether
a server is part of a botnet network and to identify in which spe-
cific botnet the server participates. We evaluate 3 machine learning
models and 4 distinct feature categories selected with different ap-
proaches based on fingerprinting. Our results demonstrate that both
machine learning and fingerprinting techniques mutually enhance
one another, resulting in higher precision. Finally, the dataset result-
ing from this work is publicly available and can be found in [25].

As future work, we aim to enrich our TLS fingerprints database
with more and different botnets, explore approaches that could help
us recognize the randomization of cipher suite vectors and try to
recognize servers in the wild. We will perform a more in depth
analysis of those server TLS responses specifically to uncommon
“TLS Client Hello” configurations. Ultimately, we plan to optimize
our fingerprinting techniques throughmachine learning by refining
the utilization of the initial 10 handshakes.
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A APPENDIX
A.1 Data Collection
In this section, we present some details regarding the blocklists used
as input in this work. As stated in the webpage of Darklist.de [18],
“Darklist.de is an IP blacklist that uses multiple sensors to identify
network attacks (e.g. SSH brute force) and spam incidents”.

The webpage of SSLBL [10] states that “The SSL Blacklist (SSLBL)
is a project of abuse.ch with the goal of detecting malicious SSL
connections, by identifying and blacklisting SSL certificates used
by botnet C&C servers”. Concerning Blocklist.de, the following
is stated in their webpage [13]: “In the Export / DNS list all IP
addresses which have in the past 48 hours executed an attack on
our systems and/or partners.”. Finally, in the webpage of CINS
Army [17], it is reported that the blocklist “consists of IP addresses
that meet one of two basic criteria: 1) The IP’s recent Rogue Packet
score factor is very poor, or 2) The IP has tripped a designated
number of ’trusted’ alerts across a given number of our Sentinels
deployed around the world”. Concerning the Feodo blocklist, all
the IP addresses are associated with botnets [9].

We consider a sample as “successful” (also referred to as “Com-
pleted”) in cases where the server properly terminates a connection.
A sample is marked as “disrupted” (also referred to as “Disrupted”)
when a server consistently insists with a specific Server Hello mes-
sage (e.g., using a fixed cipher suite that is not provided in the
cipher suite list in the Client Hello message, etc.). Finally, a sample
is marked as “Incomplete” when there is a time-out in the connec-
tion. The numbers that we have calculated regarding the connection
attempts that we performed, follow. “Completed” connections: (1)
Tranco list 79.52%, (2) Blocklists 5.53%, (3) QakBot 79.40%, (4) Bazar-
Loader 94.93%, (5) BumbleBee 97.08%, (6) Dridex 85.83%, (7) Emotet
43.94%. “Refused” connections that correspond to non-responsive
servers in the lists: (1) Tranco list 8.26%, (2) Blocklists 42.85%, (3)
QakBot 6.55%, (4) BazarLoader 0%, (5) BumbleBee 1.35%, (6) Dridex
7.71%, (7) Emotet 0.15%. “Incomplete”/“Disrupted” connections :
(1) Tranco list 12.21%, (2) Blocklists 51.61%, (3) QakBot 14.04%,
(4) BazarLoader 5.06%, (5) BumbleBee 1.56%, (6) Dridex 6.45%, (7)
Emotet 55.90%. For the evaluation phase we opted to retain only the
“Completed” files to ensure more robust results in our classification.
“Incomplete”/“Disrupted” samples can be used for fingerprinting, if
the features missing are eliminated.

A.2 Parameters Extraction
Table 7 contains a proportion of the parameters extracted from
each packet capture file from our database. Each parameter is de-
rived from each individual Server Hello and it is presented with
the corresponding name from our source code alongside with a
small description. We select a wide range of options available for

Figure 4: SHAP decision explanation of the binary classifica-
tion model. Illustrates the variances among the top 20 signifi-
cant features and their influence on the finalmodel’s decision
(i.e. handshake_length_10_1 corresponds to the handshake
length extracted from the 10th handshake and the 1st Server
Hello).

feature selection. Together with the exhaustive approach, we are
allowed to exponentially increase the total number of parameters.
We aim to generate an extensive collection of 20K potential features
and let machine learning choose the optimal ones. Since manually
testing every possible combination is impractical, even impossible,
we leveraged a machine learning pipeline for accomplishing this.

A.3 Binary Classification
A.3.1 Machine Learning. Figure 4 shows the insights about feature
values and the effect of those feature values over the final model
decision of the binary classification. More specifically, in the y-axis
we can see the most significant features which have the biggest
influence over the model decision. Each of the presented features
have a range of values, which are represented between blue (low
feature values) and red (high feature values) colors. Furthermore,
the x-axis represents the impact of the particular feature value over
the final model decision (SHAP value). The higher SHAP values
push the model decision towards the positive decision, in our case
represented as the malicious sample prediction, and lower values
push the model towards the negative decision (benign class). For
example, samples with low value of port number will push the
model towards predicting a server as benign, and the higher port
number samples will classify a server as malicious. Additionally, the
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Table 7: A selection of descriptions for the TLS parameters extracted from each Server Hello

Parameter Description

versions TLS protocol version
ciphers Cipher suite
record_length Length of the TLS record
handshake_length Total length of the handshake message
handshake_extensions_length Length of the handshake extensions field in bytes
handshake_extension_type Type of the handshake extension included in the negotiation
handshake_extensions_alpn_len Length of the Application-Layer Protocol Negotiation
handshake_extensions_alpn_str_len Length of the ALPN protocol string in the handshake extensions
handshake_certificate_length Total length of the X.509 certificate chain
x509af_signedcertificate_element Element containing the signed certificate in the X.509 certificate structure
x509af_version Version number of the X.509 certificate
x509af_serialnumber Serial number of the X.509 certificate
x509af_signature_element Element containing the signature in the X.509 certificate
x509af_algorithm_id Algorithm identifier used for the signature in the X.509 certificate
x509af_issuer Issuer of the X.509 certificate
x509if_id Identifier for the X.509 certificate
x509sat_utf8string UTF-8 string in the X.509 Subject Attribute Type
x509af_notbefore Certificate validity start date in the X.509 certificate
x509af_algorithm_element Element containing the algorithm info in the X.509 certificate
x509af_extensions Extensions included in the X.509 certificate
x509af_extension_id Identifier for the extensions in the X.509 certificate
ber_bitstring_padding Padding used for the BER-encoded bit strings
handshake_server_curve_type Elliptic curve type used by the server
handshake_sig_hash_alg Signature hash algorithm used

dot cluster thickness provides information about the distribution of
tested values. In the case of the port number feature, it is clear that
most of the samples have low values since our dataset is imbalanced
and a higher percentage of tested samples belong to the benign
class. Furthermore, as it is shown in Figure 4 the separation and
the effect of feature values is not always binary since in some cases
machine configuration may utilize low port number but additional
features will lead to a classification decision towards malicious.

Table 8 visually presents a detailed breakdown of the number
of accurately predicted samples through a confusion matrix of the
binary classification.

Table 8: Confusion matrix of the selected binary model over
the hold-out dataset

TN FP FN TP

108,854 517 968 10,035

A.3.2 Fingerprinting. Figure 5 shows the precision, recall and F1
score that achieved each category during the binary classification
process based on TLS Fingerprinting.

A.4 Multi-Class Classification
A.4.1 Machine Learning. Figure 6 shows the detailed predictions
for each class during the multi-class classification.

Similarly to the binary classification, in the case of multi-class
classification, we also utilize the SHAP explainability method to
extract additional insights from our developed method concern-
ing prediction decisions (Fig. 7). Unlike the previous explainability

Figure 5: The performance of each category in binary classi-
fication based on fingerprinting

method (binary classification), the current figure illustrates the
mean impact of the most important features overall for class dif-
ferentiation. In this representation, features are displayed on the
y-axis, and the impact of each feature on a specific class can be
discerned through the colored bars and their sizes. For instance,
the feature hs_len_5_1 has a significant impact on the QakBot cate-
gory. The explainability presented offers general insights into the
patterns captured by the developed classification model for each
botnet category.
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Figure 6: Confusion matrix of our multi-class classification
model over the hold-out dataset portion.

Figure 7: SHAP explanation of the secondary model based on
multi-class classification. This figure illustrates the average
impact of the top 20 features over the final model’s decision.

Moreover, Figure 8 shows the SHAP multi-class model explain-
ability for the QakBot botnet. The presented figure illustrates the
top 20 features along with their decision distribution.

Figure 8: SHAP decision explanation (abbreviations are used)
of the multi-class classification model of the QakBot botnet
(i.e. ciphers_10_2 corresponds to the cipher suite extracted
from the tenth handshake and the second Server Hello).

Figure 9: The performance of each category in multi-class
classification based on fingerprinting

A.4.2 Fingerprinting. Figure 9 shows the precision, recall and F1
score that achieved each category during the multi-class classifica-
tion process based on TLS Fingerprinting.
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