
 Fraction-Integer Method (FIM): Calculating Multiplicative Inverse

 Sattar J Aboud Abdulla M. Abu-Ayyash
 Philadelphia University Arab Academy for banking and financial Sciences.
 Computers & Information Systems Dept. Information System Dept.
 Email: sattar_aboud@yahoo.com Email: abuayash@cbj.gov.jo

Abstract

 Multiplicative inverse is a crucial operation in
cryptographic systems; public key cryptography has given
rise to such a need [6], in which we need to generate a
related public/private pair of numbers, each of which is
the inverse of the other. One of the best methods for
calculating the multiplicative inverse is Extended-
Euclidean method [5] [3]. In this paper we will propose a
new algorithm for calculating the inverse, based on
continuous adding of two fraction numbers until an
integer is obtained.

1. Introduction

 The multiplicative inverse of (e) modulus (n) is an

integer (d) ∈ Zn such that e.d � 1 mod n, d is called the
inverse of e and denoted e-1. The study of inverse
calculation was a stubborn science due to lack of real
improvement, due to [4] the modulus inverse problem is a
lot more difficult to solve. However, there were only a
couple of methods. One is trivial and lengthy in
calculating the inverse, because it is a sequential search.

(i.e. start by d=1, keep on adding 1 to d until e.d � 1 mod
n). Euclidean (the oldest, yet) the most powerful one,
which is based on finding the greater common divisor
(gcd) between e and n, such that gcd(e,n)=gcd(e,n mod e).
The algorithm solves x,y such that e.x+n.y=1. Stein
method [1] [5] which improve Euclidean method by
testing for odd and even numbers of e,n, and divide e
and/or n by 2 if needed before calculating the inverse.
Gordon method [2] is based on using shifts to avoid
lengthy multiplication and division. The description, the
space requirements and the complexity of each method is
discussed in the following sections.

2. Euclidean method

 This method is based on the idea that if n>a then
gcd(a,n) = gcd(a, n mod a), also on finding a.x+y.n=1 in
which x is the multiplicative inverse of a.

2.1 Algorithm of Euclidean method

Input: a ∈ Zn such that gcd(a,n) =1
Output: a-1 mod n, where a-1= i provided that it exists

1. Set g←n, u←a, i ←0, v ←1.
3. while u>0 do the following:

3.1 q←�g/u�, t←g-qu,
3.2 g←u, u←t, t← i –qv
3.3 i←v.
3.4 v←t.

4. if i < 0 then i←n+i.
5. a-1← i

2.2 Example

Tracing of the algorithm and the variables used is
shown in the table below.

Let a←7, n←60
g u i v q t
60 7 0 1 0 0
7 4 1 -8 8 -8
4 3 -8 9 1 9
3 1 9 -17 1 -17
1 0 -17 -52 3 -52

a-1 ← n+i = 60+(-17) = 43

2.3 Space and complexity

 The method needs around 6 variables, and uses
subtraction, multiplication division, and comparison as
operations with complexity of O (log n) 2.

3. Stein method

 This algorithm was described by [1] and improved by
Penk [5] which avoids multiplications. It is based on the
observation that gcd(x,y)=gcd(x/2,y) if x is even, also
gcd(x,y)=2gcd(x/2,y/2) if both x, y are even, and
gcd(x,y) = gcd((x-y)/2,y) if x, y are both odd.

3.1 Algorithm of Stein method

Input: a ∈ Zn such that gcd (a,n) =1
Output: a-1 mod n, provided that it exists

1. while a and n is even do
1.1 a←�a/2�, n←�n/2�.

2. u1←1, u2←0, u3←a, v1←n, v2←1-a, v3←n.
3. if a is odd then t1←0, t2←-1, t3←-n else t1←1,

t2←0, t3←a
4. repeat

4.1 while t3 is even do
4.1.1 t3←�t3/2�.
4.1.2 if t1 and t2 is even then
t1←�t1/2�, t2←�t2/2� else t1←�(t1+n)/2�,
t2←�(t2-a)/2�.

4.2 if (t3>0) then u1←t1, u2←t2, u3←t3 else
v1←n-t1, v2←-(a+t2), v3←-t3

4.3 t1←u1-v1, t2←u2-v2, t3←u3-v3.
4.4 If (t1<0) then t1←t1+n, t2←t2-a.

5. until t3=0.
6. a-1←u1.

3.2 Example

 Tracing of the algorithm and the variables used is shown
in the table below.

Let a←7, n←60.
a n u1 u2 u3 v1 v2 v3 t1 t2 t3
7 60 1 0 7 60 -6 60 0 -1 -60
 30 -4 -30
 15 -2 -15
 45 -5 15
 -44 5 -8
 16 -2
 8 -1 -4
 34 -4 -2
 17 -2 -1
 43 1
 -42 5 6
 18 -2
 9 -1 3
 9 -1 3
 -34 4 2
 26 -3
 43 -5 1
 43 -5 1
 0 0 0

a-1←u1=43

3.3 Space and complexity

 The algorithm needs around 11 variables, and uses
addition, subtraction, multiplication, division by 2, and
comparison with complexity of O(log n)2.

4. Gordon Method

 This algorithm is based on the observation that (q) at
Euclidian algorithm does not need to be the remainder of
n/a but it can be any power of 2 up to that limit [2].

4.1 algorithm

Input: a ∈ Zn such that gcd(a,n) =1
Output : a-1 mod n, provided that it exists

1. g←n, i←0, v←1, u←a.
2. repeat

2.1 s←-1, p←0.
2.2 If u>g then

2.2.1 t←0
2.3 else

2.3.1 p←1, t←u.
2.3.2 while (t≤g) do

2.3.2.1 s←s+1.
2.3.2.2 t←left shift t by 1.

2.3.3 t←right shift t by 1.
2.4 t←g-t, g←u, u←t, t←i, i←v.
2.5 if p=1 then

2.5.1 v←left shift v by s.
2.5.2 t←t-v.

2.6 v←t.
3. until u=0 or u=g.
4. if i<0 then i←n+i.
5. a-1←i.

4.2 Example

 Tracing of the algorithm and the variables used is
shown in the table below.

Let a←7, n←60.
g u i v s p t
60 7 0 1 0 1 14
 1 28
 2 58
 3 112
 56
7 4 4
 1 0
 8 -8
 -8
 -1 0
 1 4
 0 8
 4
4 3 3
 -8 1
 9
 9
 -1 0

 1 3
 0 6
 3
3 1 1
 9 -8
 -17
 -17
 -1 0
 1 1
 0 2
 1 4
 2
1 1
 -17 9
 -34 43
 43

a-1←60-17=43

4.3 Space and complexity

 The algorithm needs around 7 variables, and uses
addition, subtraction, comparison and shifts with
complexity of O (log n)

5. Fraction-Integer Method

 The idea behind the proposed method is very simple,
including the division by 1, n by e and keep on adding n/e
to 1/e until an integer obtained.

5.1 Algorithm of Fraction-Integer method

Input: a ∈ Zn such that gcd (a,n) =1
Output: a-1 mod n, provided that it exists

1. Let d←1/a
2. Let def←n/a
3. repeat

3.1 d←d+def.
4. until d is integer
5. a-1←d.

5.2 Example

 Tracing of the algorithm and the variables used is shown
in the table below.

Let a←7, n←60.
D def
0.1429 8.5714
8.7143
17.2857
25.8571
34.4286
43.0000

a-1←d.

5.3 Space and complexity

 The algorithm needs only 2 variables, and uses
addition and comparison with complexity of O(size
floating point registers)

6. Proof of Fraction-Integer Method (FIM)

 In order to prove the algorithm, we need to prove that
the algorithm will give integer number only when d is
the inverse of e.

As we know that if d is the inverse of e then

1- Both e,d are positive integer numbers between
[1,n] ……. (1)

2- gcd(e,n)=1 .…….....(2)

3- e*d� 1 mod n, i.e. e*d=1 + k*n (for k ∈ Z),
…………..(3)

so
d=(1+k*n)/e=1/e+k*n/e …..(4)

From the algorithm we see that

d=1/e+ (def+def+…+def) i times until d is integer.

d=1/e + i*def= 1/e+i*n/e ……..(5)

 From that we know that the algorithm above is correct
for i=k, but if this is the case we need to prove that (5)
will give a none integer for all values of i<k, and the
only integer value is when i=k, so we know d is an
integer so (1+k*n)/e is also an integer for an integer
value of k. Assume that this is true for some value k (by
definition (3,4))

Then we need to proof that (1+i*n)/e is never an integer
for all values of i between [1, k-1]. Assume that there is
another value of i , 1<i<k such that d=(1+i*n)/e is also
an integer, i.e.
i=k-1 --------------------------------- (6)
Then d = (1+ (k-1)*n)/e will be integer. So
 d =(1+k*n-n) / e
 =(1+k*n) / e-n/e
 = 1/e + k*n/e – n/e

But by definition (1,3,4) we know that 1/e+k*n/e is
integer , also that gcd(e,n) should be 1 (2) so if there is
no greater common divisor between e and n except 1,
that mean n/e is a non integer value. So subtracting a
non integer value form an integer value will yield d is
not an integer. Which contradicts our assumption (that d
is an integer)……… (6).

 Now assume that there exist an i=k-q such that d is an
integer for q between [1, k-1]. Then d=(1+(k-q)*n)/e=1/e
+ k*n/e –q*n/e, and if this to be integer then q*n/e must
be integer, but since gcd(e,n)=1 then q must be a multiple
of e so
d=1/e+k*n/e–x*n …………… (5)

 This will lead to d being a negative number d<0 but
from definition we know that both e,d must be positive (1)
so there is no values for x that satisfy the definition. So the
only value for q that satisfy the conditions is when q=0
and that i=k (done).

7. Problem of FIM method

 We have proved that FIM algorithm is correct, but the
question is that is it implementable ? i.e. the algorithm
will terminate giving the correct answer when
implemented using the computer programming languages
?

Let dm be the mathematical value of d where d=dm.
Let dc be the calculated value of d in the computer
memory and registers.
Let � be the error in calculating, between the mathematical
value and the computer value (round off error). So

dm = (1m+ km* nm) / em so

= 1m/em + km * nm / em
= (1/e)m + (k*n/e)m

 But we know that the calculated value of fractions is
never exactly as the mathematical value for big values of e
that when used to divide 1 and n will give a cyclic fraction
number, so (1/e)m = (1/e)c + �1 and (n/e)m = (n/e)c + �2

where �1<< (1/e)c and �2 << (n/e)c, and dc = (1 / e)c + (k *

n / e)c + �1 + k*�2 such errors will yield that either dm � dc

or dm � dc, dm = dc if and only if �1 + k*�2 = 0 i.e. (1/e)m =
(1/e)c and (n/e)m=(n/e)c. We know that the error �1,�2 is
small, but multiplying �2 with k will produce big value off
error, so as k increase the error also will increase, so the
best approach is to use small values for e.

8. Timing

 The MATLAB 5.1 is used to compare the proposed FIM
algorithm with some of known algorithms [Extended
Euclid, Stein, and Gordon methods] and is shown in
figures 1-4. We have implemented the algorithm for
different numbers from one digit to 6 digits for e numbers
and the result are shown in the figures below. We noticed
that the time for Extended Euclid algorithm is
approximately irrelevant to e or n, but other algorithms is
affected by e and n. The proposed FIM algorithm
outperform the other methods for small number of e and
irrelevant to n. As we can see that FIM algorithm is based
only on addition which is the fastest operation, and that is

why it outperform the other methods except Euclid for
big numbers of e.

9. Conclusion

 For security reasons, cryptography recommends
smaller values for public keys and bigger values for
private keys [3]. The suggested algorithm needs small
values for public keys (lower value of e) and big values
for private key, which is fully compatible with the
preferred cryptographic algorithm. The method is
simple, fast and needs less storage, and its complexity is
also less.

0.00E+00
2.00E+02
4.00E+02
6.00E+02
8.00E+02
1.00E+03
1.20E+03
1.40E+03
1.60E+03

1142740536679

euc

fim

gor

stn

mph

Figure(1) comparison between methods big scale of
time

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

1142740536679

euc

fim

gor

stn

mph

Figure(2) comparison between methods 50 sec scale
of time

0.00E+00
1.00E+00

2.00E+00
3.00E+00

4.00E+00
5.00E+00
6.00E+00
7.00E+00
8.00E+00

9.00E+00
1.00E+01

113253749617385

euc

fim

gor

stn

mph

Figure(3) comparison between methods 10 sec scale of
time

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

1.00E+00

112233445566778

euc

fim

gor

stn

mph

Figure(4) comparison between methods 1 sec scale of
time
Note: FIM outperform over other methods for small
values of e.

11. References

[1] Stein, J. (1967) J. Comp. Phys, 1, p397-405.
[2] J. Gordon, “Fast Multiplicative inverse in modular
arithmetic”, cryptography and coding, clarendon press
oxford, 1989.p269-279.
[3] Menezes A. et al, “Handbook of applied
cryptography”, 1996 p67, p71.
[4]Bruce Schneier “applied Cryptography”, Second
Edition, John Wiley and sons, 1996.p246.
[5] Knuth, D. E., “The art of computer programming -
Vol. 2 semi numerical algorithms’, 2nd Ed., Addison-
Wesley, 1981,pp 319,321,339, 599.
[6] Rivest R., Shamir A., Adlemen L.,”A method for
obtaining digital signatures and public key
cryptosystems”, Comms. ACM, 1978, 21,2, 120-126.

