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Abstract 
 
        Multiplicative inverse is a crucial operation in 
cryptographic systems; public key cryptography has given 
rise to such a need [6], in which we need to generate a 
related public/private pair of numbers, each of which is 
the inverse of the other. One of the best methods for 
calculating the multiplicative inverse is Extended-
Euclidean method [5] [3]. In this paper we will propose a 
new algorithm for calculating the inverse, based on 
continuous adding of two fraction numbers until an 
integer is obtained. 
 
1. Introduction 
 
      The multiplicative inverse of (e) modulus (n) is an 

integer (d) ∈ Zn such that e.d � 1 mod n, d is called the 
inverse of e and denoted e-1. The study of inverse 
calculation was a stubborn science due to lack of real 
improvement, due to [4] the modulus inverse problem is a 
lot more difficult to solve. However, there were only a 
couple of methods. One is trivial and lengthy in 
calculating the inverse, because it is a sequential search. 

(i.e. start by d=1, keep on adding 1 to d until e.d � 1 mod 
n). Euclidean (the oldest, yet) the most powerful one, 
which is based on finding the greater common divisor 
(gcd) between e and n, such that gcd(e,n)=gcd(e,n mod e). 
The algorithm solves x,y such that e.x+n.y=1. Stein 
method [1] [5] which improve Euclidean method by 
testing for odd and even numbers of e,n, and divide e 
and/or n by 2 if needed before calculating the inverse. 
Gordon method [2] is based on using shifts to avoid 
lengthy multiplication and division. The description, the 
space requirements and the complexity of each method is 
discussed in the following sections. 
 
2. Euclidean method 

 
   This method is based on the idea that if n>a then 
gcd(a,n) = gcd(a, n mod a), also on finding a.x+y.n=1 in 
which x is the multiplicative inverse of a. 
 
 
 

2.1 Algorithm of Euclidean method 
 
Input:   a ∈ Zn such that gcd(a,n) =1 
Output: a-1 mod n, where a-1= i provided that it exists  

1. Set g←n, u←a, i ←0, v ←1. 
3. while u>0 do the following: 

3.1 q←�g/u�, t←g-qu,  
3.2 g←u, u←t, t← i –qv 
3.3 i←v. 
3.4 v←t. 

4. if i < 0 then i←n+i.  
5. a-1← i 

 
2.2 Example 
 

Tracing of the algorithm and the variables used is 
shown in the table below. 

 
Let a←7, n←60 
g u i v q t 
60 7 0 1 0 0 
7 4 1 -8 8 -8 
4 3 -8 9 1 9 
3 1 9 -17 1 -17 
1 0 -17 -52 3 -52 
 
a-1 ← n+i = 60+(-17) = 43 
 
2.3 Space and complexity 
 
   The method needs around 6 variables, and uses 
subtraction, multiplication division, and comparison as 
operations with complexity of O (log n) 2. 
 
3. Stein method 

 
   This algorithm was described by [1] and improved by 
Penk [5] which avoids multiplications. It is based on the 
observation that gcd(x,y)=gcd(x/2,y) if x is even, also 
gcd(x,y)=2gcd(x/2,y/2) if both x, y are even, and 
gcd(x,y) = gcd((x-y)/2,y) if x, y are both odd. 
 
 
 
 



3.1 Algorithm of Stein method 
 
Input:   a ∈ Zn such that gcd (a,n) =1 
Output: a-1 mod n, provided that it exists 

1. while a and n is even do 
1.1 a←�a/2�, n←�n/2�. 

2. u1←1, u2←0, u3←a, v1←n, v2←1-a, v3←n. 
3. if a is odd then t1←0, t2←-1, t3←-n else t1←1, 

t2←0, t3←a 
4. repeat  

4.1 while t3 is even do 
4.1.1 t3←�t3/2�. 
4.1.2 if t1 and t2 is even then 
t1←�t1/2�, t2←�t2/2� else t1←�(t1+n)/2�, 
t2←�(t2-a)/2�. 

4.2 if (t3>0) then u1←t1, u2←t2, u3←t3 else 
v1←n-t1, v2←-(a+t2), v3←-t3 

4.3 t1←u1-v1, t2←u2-v2, t3←u3-v3. 
4.4 If (t1<0) then t1←t1+n, t2←t2-a. 

5. until t3=0. 
6. a-1←u1. 

 
3.2 Example 
 
   Tracing of the algorithm and the variables used is shown 
in the table below. 
 
Let a←7, n←60. 
a n u1 u2 u3 v1 v2 v3 t1 t2 t3 
7 60 1 0 7 60 -6 60 0 -1 -60 
        30 -4 -30 
        15 -2 -15 
     45 -5 15    
        -44 5 -8 
        16 -2  
        8 -1 -4 
        34 -4 -2 
        17 -2 -1 
     43  1    
        -42 5 6 
        18 -2  
        9 -1 3 
  9 -1 3       
        -34 4 2 
        26 -3  
        43 -5 1 
  43 -5 1       
        0 0 0 
 
a-1←u1=43 
 
3.3 Space and complexity 
 
   The algorithm needs around 11 variables, and uses 
addition, subtraction, multiplication, division by 2, and 
comparison with complexity of O(log n)2. 
 

 
4. Gordon Method 

 
   This algorithm is based on the observation that (q) at 
Euclidian algorithm does not need to be the remainder of 
n/a but it can be any power of 2 up to that limit [2]. 
 
4.1 algorithm 
 
Input:   a ∈ Zn  such that  gcd(a,n) =1 
Output : a-1 mod n, provided that it exists 
 

1. g←n, i←0, v←1, u←a. 
2. repeat 

2.1 s←-1, p←0. 
2.2 If u>g then  

2.2.1 t←0 
2.3 else 

2.3.1 p←1, t←u. 
2.3.2 while (t≤g) do 

2.3.2.1 s←s+1. 
2.3.2.2  t←left shift t by 1. 

2.3.3 t←right shift t by 1. 
2.4 t←g-t, g←u, u←t, t←i, i←v. 
2.5 if p=1 then 

2.5.1 v←left shift v by s. 
2.5.2 t←t-v.         

2.6 v←t. 
3. until u=0 or u=g. 
4. if i<0 then i←n+i. 
5. a-1←i. 

 
4.2 Example 

 
   Tracing of the algorithm and the variables used is 
shown in the table below. 

 
Let a←7, n←60. 
g u i v s p t 
60 7 0 1 0 1 14 
    1  28 
    2  58 
    3  112 
      56 
7 4     4 
  1    0 
   8   -8 
   -8    
    -1 0  
     1 4 
    0  8 
      4 
4 3     3 
  -8    1 
      9 
   9    
    -1 0  



     1 3 
    0  6 
      3 
3 1     1 
  9    -8 
      -17 
   -17    
    -1 0  
     1 1 
    0  2 
    1  4 
      2 
1      1 
  -17    9 
   -34   43 
   43    
 
a-1←60-17=43 
 
4.3 Space and complexity 
 
   The algorithm needs around 7 variables, and uses 
addition, subtraction, comparison and shifts with 
complexity of O (log n) 
 
 
5. Fraction-Integer Method 
 
   The idea behind the proposed method is very simple, 
including the division by 1, n by e and keep on adding n/e 
to 1/e until an integer obtained. 
 
5.1 Algorithm of Fraction-Integer method 

 
Input:   a ∈ Zn such that gcd (a,n) =1 
Output: a-1 mod n, provided that it exists 
 

1. Let d←1/a 
2. Let def←n/a 
3. repeat 

3.1 d←d+def. 
4. until d is integer 
5. a-1←d. 

 
5.2 Example 
 
   Tracing of the algorithm and the variables used is shown 
in the table below. 
 
Let a←7, n←60. 
D def 
0.1429 8.5714 
8.7143  
17.2857  
25.8571  
34.4286  
43.0000  

 
a-1←d. 
 
5.3 Space and complexity 
 
   The algorithm needs only 2 variables, and uses 
addition and comparison with complexity of O(size 
floating point registers ) 
 
6. Proof of Fraction-Integer Method (FIM) 
 
   In order to prove the algorithm, we need to prove that 
the algorithm will give integer number only when d is 
the inverse of e. 
 
As we know that if d is the inverse of e then 

1- Both e,d are positive integer numbers between 
[1,n] ……. (1) 

2- gcd(e,n)=1 .…….....(2) 

3- e*d� 1 mod n, i.e. e*d=1 + k*n ( for k ∈ Z ), 
…………..(3) 

 
so 
d=(1+k*n)/e=1/e+k*n/e …..(4) 
 
From the algorithm we see that  
 
d=1/e+ (def+def+…+def) i times until d is integer. 
 
d=1/e + i*def= 1/e+i*n/e ……..(5) 
 
   From that we know that the algorithm above is correct 
for i=k, but if this is the case we need to prove that (5) 
will give a none integer for all values of i<k, and the 
only integer value is when i=k, so we know d is an 
integer so (1+k*n)/e is also an integer for an integer 
value of k. Assume that this is true for some value k (by 
definition (3,4) ) 
 
Then we need to proof that (1+i*n)/e is never an integer 
for all values of i between [1, k-1]. Assume that there is 
another value of i , 1<i<k such that d=(1+i*n)/e is also 
an integer, i.e.   
i=k-1 --------------------------------- (6) 
Then d = (1+ (k-1)*n)/e will be integer.  So 
         d =(1+k*n-n) / e  
            =(1+k*n) / e-n/e  
            = 1/e + k*n/e – n/e 
 
But by definition (1,3,4) we know that 1/e+k*n/e is 
integer , also that gcd(e,n) should be 1 (2) so if there is 
no greater common divisor between e and n except 1, 
that mean n/e is a non integer value. So subtracting a 
non integer value form an integer value will yield d is 
not an integer. Which contradicts our assumption (that d 
is an integer)……… (6). 
 



    Now assume that there exist an i=k-q such that d is an 
integer for q between [1, k-1]. Then d=(1+(k-q)*n)/e=1/e 
+ k*n/e –q*n/e, and if this to be integer then q*n/e must 
be integer, but since gcd(e,n)=1 then q must be a multiple 
of e so 
d=1/e+k*n/e–x*n  …………… (5) 
 
   This will lead to d being a negative number d<0 but 
from definition we know that both e,d must be positive (1)  
so there is no values for x that satisfy the definition. So the 
only value for q that satisfy the conditions is when q=0 
and that i=k (done).  
 
7. Problem of FIM method 
 
   We have proved that FIM algorithm is correct, but the 
question is that is it implementable ? i.e. the algorithm 
will terminate giving the correct answer when 
implemented using the computer programming languages 
? 
 
Let dm be the mathematical value of d where d=dm. 
Let dc be the calculated value of d in the computer 
memory and registers. 
Let � be the error in calculating, between the mathematical 
value and the computer value (round off error). So 
 
dm = ( 1m+ km* nm ) / em so 

= 1m/em + km * nm / em  
= (1/e)m + (k*n/e)m 
 

   But we know that the calculated value of fractions is 
never exactly as the mathematical value for big values of e 
that when used to divide 1 and n will give a cyclic fraction 
number, so (1/e)m = (1/e)c + �1 and (n/e)m = (n/e)c + �2     

where   �1<< (1/e)c and �2 << (n/e)c, and  dc = (1 / e)c + (k * 

n / e)c + �1 + k*�2  such errors will yield that either dm �  dc  

or dm �  dc, dm = dc if and only if �1 + k*�2 = 0 i.e. (1/e)m = 
(1/e)c and (n/e)m=(n/e)c. We know that the error �1,�2 is 
small, but multiplying �2 with  k will produce big value off 
error, so as k  increase the error also will increase, so the 
best approach is to use small  values for e.  
 
8. Timing 
 
   The MATLAB 5.1 is used to compare the proposed FIM 
algorithm with some of known algorithms [Extended 
Euclid, Stein, and Gordon methods] and is shown in 
figures 1-4. We have implemented the algorithm for 
different numbers from one digit to 6 digits for e numbers 
and the result are shown in the figures below. We noticed 
that the time for Extended Euclid algorithm is 
approximately irrelevant to e or n, but other algorithms is 
affected by e and n. The proposed FIM algorithm 
outperform the other methods for small number of e and 
irrelevant to n. As we can see that FIM algorithm is based 
only on addition which is the fastest operation, and that is 

why it outperform the other methods except Euclid for 
big numbers of e. 
 
 
9. Conclusion 
 
     For security reasons, cryptography recommends 
smaller values for public keys and bigger values for 
private keys [3]. The suggested algorithm needs small 
values for public keys (lower value of e) and big values 
for private key, which is fully compatible with the 
preferred cryptographic algorithm. The method is 
simple, fast and needs less storage, and its complexity is 
also less. 
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Figure(1) comparison between methods big scale of 
time  
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Figure(2) comparison between methods 50 sec scale 
of time  
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Figure(3) comparison between methods 10 sec scale of 
time 
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Figure(4) comparison between methods 1 sec scale of 
time 
Note: FIM outperform over other methods for small 
values of e.  
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