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Abstract: Water is vital for the life on the Earth. Human 
health, food security, and economic growth are all water 
dependent. Monitoring of water bodies and their spatial 
changes is crucial for understanding the impact of human 
activities and climate changes on aquatic ecosystems. 
Remote sensing data provides large amounts of data that 
have been extensively used for monitoring water bodies, 
geometry, topology, associated attributes, and their 
changes. However, water body delineation is challenging 
due to sensor limitations, cloud presence, and 
atmospheric conditions. This paper presents a novel 
approach leveraging Convolutional Neural Networks 
(CNNs) for extracting water bodies from Sentinel-2 
imagery. The efficacy of the proposed algorithm is 
rigorously evaluated across heterogeneous terrains 
encompassing diverse riverine and lacustrine features. Key 
metrics such as overall accuracy, F1 score, precision, and 
recall are employed to quantitatively assess algorithmic 
performance. Our findings underscore the promising 
potential of deep learning techniques in accurately 
delineating water bodies and monitoring their dynamic 
behaviour within intricate environmental contexts at local, 
regional, and global scales. 
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1 Introduction 
Water is essential for life, supporting humans, animals, 
plants, and entire ecosystems. Recently, the effects of 
global climate change and human activities on the spatial 
and temporal variations in water quality and quantity have 
gained increasing attention. These changes in surface 
water bodies impact agricultural and industrial 
production, ecological balance, environmental conditions, 
and food and health safety. Accurate and rapid information 
about the spatial distribution, persistence, and quality of 
surface water is crucial for sustainable water usage and 
protection from feature degradation. Remote sensing 
covers large geographic areas at various spatial, spectral, 
and temporal resolutions, and provides extensive data 
used for analysing surface water bodies and their 
dynamics. Satellite images are particularly valuable for 
obtaining information about water bodies in remote, 
inaccessible, extremely large, or hazardous areas, such as 
during floods. Over the past three decades, multi-source 
satellite imagery of different resolutions has been utilized 
for extracting data on surface water bodies. 
Until now, a variety of algorithms have been used for water 
body delineation from satellite images, ranging from 
simple spectral indices to deep learning models. Jiang et 

al. (2021) have been using the Sentinel-2 Water Index and 
OTSU thresholding for the detection of water bodies. 
Similarly, Lekhak et al. (2023) combined the spectral 
indices and slop information with the threshold method to 
provide more accurate water body mapping. Although 
threshold-based methods can be used to delineate water 
pixels, they yield inconsistent results due to high spatial 
and temporal variation among regions. A wide range of 
Machine Learning (ML) algorithms, such as Supported 
Vector Machine (SVM) and Decision Trees (DT) has been 
used to address that limitation. Acharya et al. (2019) tested 
the performance of 6 different ML algorithms for surface 
water extraction in Landsat 8 images. The Random Forest 
(RF) provided the highest accuracy followed by Gradient 
Boosted Machines (GBM). Jakovljevic et al. (2018) was 
adopted the SVM for water body extraction resulting in a 
kappa coefficient of 0.89 for Sentinel 2 images. Although 
ML algorithms can provide high accuracy, they are mainly 
based on spectral information of the training samples, 
which can lead to the misclassification of surfaces with 
similar spectral signatures such as dark areas (topographic 
and cloud shadows), buildings, snow, etc (Kumar et al. 
2014). Moreover, the performance of ML algorithms mainly 
depends on expert-designed features, which limits 
generalization ability. 
In recent years, deep learning algorithms, particularly 
Convolution Neural Networks (CNN), have been widely 
used for image classification (Kim et al. 2022), object 
detection (Galvez et al. 2018), and semantic segmentation 
(Alam et al. 2021). The deep learning models have been 
used for the classification and change detection of remote 
sensing data. Li et al. (2019) adopted the Fully Connected 
Network (FCN) model to extract water bodies from Very 
High Resolution (VHR) images and significantly outperform 
the indices and ML-based methods. Similarly, Erdem et al. 
(2021) used U-Net architecture for automatic shoreline 
extraction from Landsat 8 images with high accuracy (F1: 
99.79%). 
This paper presents an automatic method for the 
identification of inland water bodies of different sizes and 
shapes in complex environment conditions based on 
Sentinel 2 images. 

2 Study area  
The Republic of Serbia is in Southeast Europe, covering 
part of the Pannonian Plain and the Central and Western 
Balkan Peninsula (Figure 1). Serbia covers 88,361 km2 of 
which 56.8 % is cropland, and 36.6 % is covered by forest 
(OECD 2024). The almost entire territory of Serbia belongs 
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to the Danube (Black Sea) basin. The Danube is the lagers 
river in Serbia and the second largest river basin in Europe, 
covering 801,463 km2 over 19 countries and more than 81 
million people (ICPDR 2024). The tributes of the Danube in 
Serbia are Sava, Tisa, Drina, and Great Morava (Morava) 
(Figure 1). 

 
Figure 1. Study area. 

3 Materials and methods 
Semantic segmentation aims to assign the set of 
predefined class labels to each pixel in the image (Janai et 
al. 2020). According to the structure, CNN models for 
semantic segmentation can be divided into encoder-
decoder and spatial pyramid pooling. The encoder-
decoder consists of an encoder function that converts the 
input data into feature maps by using convolution, 
activation, and pooling layer and a decoder function that 
up-samples the encoder features maps and converts them 
to segmentation results. The U-Net architecture 
(Ronneberger et al. 2015) (Figure 2a) consists of an encoder 
that captures contextual information and a symmetrical 
decoder that restores spatial resolution. The encoder 
followed the typical architecture of CNN (convolution, 
activation, max pooling), progressively decreasing feature 
maps resolution, and increasing the number of feature 
channels per encoder at the same time. The skip 
connection is used to connect resolution feature maps 
from the encoder with a corresponding up-sampled output 
of the decoder, which allows the network to learn back 
relevant features that are lost aher pooling operations and 
to predict more precise outputs based on that information. 
In this paper, the ResNet 50 (He et al. 2016) was used as an 
encoder part of the network. The architecture of ResNet 50 
has four stages. The network performs the initial 
convolution and max pooling using 7x7 and 3x3 kernel 
sizes, respectively. Aherward, stages 1, 2, 3, and 4 consist of 
3, 4, 6, 3 ResNet building blocks (Figure 2b). As the network 
progress from one stage to another, the feature map 
resolution is reduced by 2 in terms of height and width 
while the number of feature channels is doubled. The 
decoder is fully symmetrical to the encoder, and it is used 
to restore feature map resolution enabling precise 
localization. Each step in the decoder consists of 2x2 up 
sampling that halves the number of feature channels 
concatenation with the corresponding feature map from 
the encoder path, followed by two 3x3 convolutions, BN, 

and ReLU activation functions. In the final layer, a 1 × 1 
convolution with the Sigmoid activation function is used to 
predict the probability of a pixel being assigned to a water 
or non-water class. 

 

 
Figure 2. (a) UNet architecture for semantic segmentation, (b) 

ResNet 50 building block. 
The performance of a deep learning network is strongly 
dependent on a large amount of training data, which is 
needed to understand hidden patterns of data. Transfer 
learning has been widely used for solving an insufficient 
data problem (Castelluccio et al. 2015). Fine-tuning of 
existing networks that are trained on large datasets such as 
ImageNet is most used in practice (Penatti et al. 2015). 
ImageNet is a large and diverse dataset with more than 14 
million images labelled into 1000 classes. 
In addition to limited size, datasets for the classification of 
inland water bodies are highly imbalanced since most 
pixels represent non-water classes. To prevent imbalance 
learning, enlarge dataset, and reduce over-fitting the data 
augmentation was used. In this research, clipping, rotating, 
flipping, and translating were used. 
To assess the accuracy of the implemented model the 
recall, precision, F1-score, and estimate of Kappa 
coefficient were calculated, as shown in Foody (2008). 
Implementation: Dataset was split into 80% for training 
and 20% for validation. The network is fine-tuned on the 
dataset created during preprocessing. The cross-entropy 
and Stochastic Gradient Descent were selected as loss 
function and optimization algorithm. The GPU limited the 
batch size, and it was chosen as big as possible for each 
network. The models were implemented in the Python 3 
programming language by using artificial intelligence 
libraries such as PyTorch, TensorFlow, Keras, and 
Matplotlib. The training of the networks was done using the 
publicly available cloud platform Collaboratory (Google 
Colab). 
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4 Results  
Accuracy assessment of the proposed model for Sentinel 2 
is based on 861 and 13600 image patches for validation and 
test phases. The results of the accuracy assessment are 
presented in Table 1. 
Table 1. Results of accuracy assessment for water body 
extraction from Sentinel 2. 

The visual inspection shows (Figure 3) that detected 
wetlands and channels are more completed comparing to 
masks, which also decrease the precision. 
The visual inspection of results (Figure 3) shows that the 
water bodies extracted from the satellite images followed a 
similar pattern with true data. As can be seen from the 
figure, the algorithm can detect lakes, large rivers, and 
even small ponds or reservoirs with high accuracy (Figure 

3a, Figure 3b, Figure 3g). As expected, the lowest accuracy 
is obtained for small and narrow streams. The small water 
bodies were overestimated (Figure 3d, Figure 3e, Figure 3f) 
due to mixed pixels producing lower precision. 

5 Discussion 
Motivated by recent success in deep learning, this research 
focused on using those methods to improve the water body 
mapping from satellite images. As presented results 
indicated, the proposed approach provides water body 
detection in the complex environment from optical with 
consistently high F1-score and kappa coefficient despite 
varying topology, land-use/land cover, and atmospheric 
conditions. Similarly, Yan et al. (2022) has reported an F1-
score of 0.9 for mapping lakes from Sentinel-2 by using the 
Unet architecture. 

The difference between F1 score during the validation and 
test phase was 3% indicating the algorithm's high 
generalization ability. Therefore, it can be used for 
automatic water body detection from different areas 
without manual intervention. These results are also 
confirmed by Billson et al. (2023). It is observed that during 
the test phase recall value increases while the precision 
decreases meaning that on the one hand algorithm is more 
secure that the pixel labelled as water represents the water 
body in the real world but on the other hand, it includes 
more non-water pixels in water class. Although the 
proposed approach produces stable results on large and 
medium size water bodies, the extraction of narrow streets 
and small lakes remains challenging. 

6 Conclusions 
In this paper, the methodology for automatic inland water 
body mapping based on UNet architecture and Sentinel 2 
images have been proposed. The Kappa coefficient, 
precision, recall, and F1-score were calculated to evaluate 
the performance. The high value and visual inspection 

show that ResUNet 50 is not sensitive to low albedo 
surfaces such as built-up areas, roads, or shadows, which is 
one of the primary sources of errors during water body 
extraction from remote sensing data. Comparison of 
validation and test accuracy (F1: 0.89 vs 0.92) indicates 
great generalization ability and the possibility to apply the 
algorithm for automatic water body detection over 
different areas. 
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