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We provide an overview of the rapidly evolving landscape of integrated photonic neuromorphic architectures, 
specifically targeting the implementation of convolutional neural networks. The exploding research momentum 
stems from the well-known advantages of photonic circuits compared to digital electronics, and at the 
same time, it is driven by the massive need for cognitive image/video processing. In this context, we provide 
a detailed literature review on photonic cores operating as convolutional neural networks, covering either 
the functionality of a conventional neural network or its spiking counterpart. Moreover, we propose 2 
alternative photonic approaches that refrain from simply transferring neural network concepts directly into 
the optical domain; instead, they focus on fusing photonic, digital electronic, and event-based bioinspired 
processing to optimally exploit the virtues of each scheme. These approaches can offer beyond state-
of-the-art performance while relying on realistic, scalable technology. The first approach is based on a 
photonic integrated platform and a bioinspired spectrum-slicing technique. The photonic chip allows 
feature extraction through optical filtering with low power consumption and an equivalent computational 
efficiency of 72 femtojoules per multiply-and-accumulate operation for 5-bit precision. When combined 
with typical digital neural networks, an almost 5-fold reduction in the number of parameters was achieved 
with a minor loss of accuracy compared to established convolutional neural networks. The second approach 
follows a bioisomorphic route in which miniaturized spiking laser neurons and unsupervised bioinspired 
training are unified in a deep architecture, revealing a noise-resilient and power-efficient proposition.

Introduction

Brain-inspired computational paradigms have paved the way for 
applications relying on perception and adaptability. The most 
successful brain-inspired paradigm is the artificial neural network 
(ANN), which mimics the multilayer architecture of biological 
neural networks at both the operational and structural levels [1]. 
Training algorithms should be used to unleash their true potential. 
One of the most successful examples that unfortunately seem to 
lack biocompatibility is the backpropagation algorithm [2], which 
can tune an ANN to extract meaningful features from raw data 
in applications such as pattern recognition and decision-making, 
a procedure known as representation learning [1]. These raw data 
streams are highly heterogeneous and are generated by an ever-
expanding palette of applications such as autonomous vehicles, 
robotics, medical diagnostic tools, and multisensory systems. 
Despite their diversity, these data streams often involve images 
or videos that require cognitive image processing. The most 
successful type of ANN for image processing is a convolutional 

neural network (CNN) [3]. Through weight sharing and convo-
lution attributes, CNNs can process images while minimizing the 
computational overhead of typical ANNs, which is mainly attrib-
uted to fully connected networks. Initially, CNNs were limited to 
simple tasks, such as recognizing handwritten digits [3], owing 
to the lack of powerful computational resources and sufficiently 
large training datasets [1]. The landscape changed with the 
demonstration of a deep multilayer CNN known as AlexNet, 
implemented on a graphics processing unit (GPU) to handle the 
ImageNet dataset [4]. This work accomplished the resurgence of 
the field, leading to the development of more complex deep CNNs 
such as ZFNet [5], VGGNet [6], GoogleNet [7], and ResNet [8]. 
Advances in deep CNNs have provided state-of-the-art results in 
applications such as image recognition [4,8], object detection 
[9,10], and speech recognition [11].

Although an increase in depth and trainable parameters for 
CNNs results in better performance, it also imposes an equally 
important increase in power consumption and memory demand. 
A survey by OpenAI shows that from 2012 (AlexNet) to 2018 
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(AlphaZero [12]), an increase in the number of computations 
by a factor larger than 300,000 was observed. In contrast, in the 
same period, Moore’s law accounts for only a 7-fold increase in 
computational power [13]. More specifically, in image process-
ing, the convolution stages of CNNs account for 80% of the total 
power consumption [14]. Consequently, to meet the exponen-
tially increasing demand, companies and researchers aim to 
exploit multiple chips and unlock massively parallel computa-
tions. This leads to a severe increase in the energy footprint, 
thereby raising important financial and ecological concerns 
when upscaling is considered [15].

The fundamental difference between ANN implementation 
and the actual operation of biological neural circuits is a poten-
tial source of scalability bottlenecks in ANN implementation. 
These differences can be traced both at the “algorithmic level” 
and, more importantly, in the underlying physical hardware 
responsible for the “computations.” In light of this, the first route 
toward mitigation of these effects targets the algorithmic archi-
tecture of ANNs and corresponds to closing the gap between 
processing in the brain and ANNs as much as possible. In par-
ticular, ANNs are based on the crude oversimplification of bio-
logical architectures, which dictates the substitution of spiking 
neurons with non-linear functions under the rate-encoding 
hypothesis [16]. Spiking is a sparse spatiotemporal encoding 
scheme present in the brain that partly accounts for the large 
power efficiency of the brain [17]. Information encoding is still 
a matter of scientific debate; however, the main hypothesis dic-
tates that information is encoded at the firing/arrival time of 
pulses with relatively constant amplitude and temporal width, 
which are generated by ionic interactions on the membrane of 
neurons [16]. In neuroscience, these pulses are known as acti-
vation potentials or spikes. In artificial spiking neural networks 
(SNNs), neurons are modeled by non-linear systems such as 
the leaky integrate and fire (LIF) [18], Izhiekevich [18], and 
spike response models (SRM) [19], which exhibit the property 
of excitability and entail major neurocomputational attributes 
such as thresholding, a refractory period, potentiation, and 
inhibition [18]. Multiple spiking codes have been proposed to 
explain how information is represented inside the brain, which 
can be harnessed by SNNs to significantly decrease power con-
sumption [17]. This spike-driven paradigm shift unlocks event-
based processing because computations are performed only 
when a spike is available at the input of a neuron. SNNs imple-
mented on regular platforms require fewer hardware resources 
and achieve faster processing than ANNs [20,21]. The major 
reason behind the dominance of ANNs in the technological 
landscape is that SNNs are challenging in terms of training 
because they are incompatible with the aforementioned back-
propagation algorithm. However, this picture can change because 
there is strong ongoing research focusing either on the exploita-
tion of biologically plausible algorithms based on Hebbian learn-
ing strategies, such as spike timing-dependent plasticity (STDP) 
[22], or on the adaptation of the backpropagation algorithm in 
the case of SNNs [23]. SNNs can implement CNNs (SCNN) 
by simply following the interconnection rules dictated by CNNs 
[24,25].

Another route toward energy-efficient computation lies in 
the development of novel platforms that can mimic the struc-
tural architecture of the brain at the hardware level. Both ANNs 
and SNNs are typically implemented on conventional von 
Neumann computers, where the memory and processing units 
are physically separated, thus demanding costly data transfer, 

an issue known as the von Neumann bottleneck [26]. The von 
Neumann processors are significantly burdened when ANNs 
are implemented. This stems from the fact that the multiply-
and-accumulate (MAC) operations required to compute the 
flow of information through the synaptic connections in a sin-
gle fully connected layer (FCL) with N neuron scale with O(N2) 
compared to O(N) for non-linear activation. This is in contrast 
with the processing methodology of biological neurons, where 
there is no such separation because memory is implemented 
by synaptic weights, and processing is performed by the non-
linear transformation of the neural cells. These 2 processes are 
collocated, thereby alleviating the inherent non-von Neumann 
constraints. Therefore, dedicated hardware that directly mimics 
the architecture of neural networks has been developed. A char-
acteristic case is the realization in recent years of multiple 
digital neuromorphic platforms, such as True North [27], 
SpiNNaker [28], BrainScaleS [29], and Loihi [30], which aim 
to combine brain-inspired architectural rules with spiking cod-
ing schemes. Another important direction is the design of 
analog electronic hardware to directly mimic neural structures, 
such as crossbars based on resistive elements [31]. Although 
analog processors suffer from low bit precision compared to 
digital processors, research on neural network performance 
has revealed that high bit precision is not always imperative 
[32,33]. However, despite the disruptive nature of these attempts, 
their full-scale applicability and technological maturity remain 
limited. Therefore, these analog bioinspired devices are mainly 
designed and utilized as computational accelerators, meaning 
that they aim to unburden conventional processors from the 
demanding computational bandwidth required at the first neural 
layers and not to tackle the entire processing pipeline, as illus-
trated in Fig. 1.

Photonics is a rapidly evolving field that harnesses the unique 
properties of light for transmitting and processing information 
and has the potential to revolutionize various applications, 
including data communication, sensing, and computing. Unlike 
electrons, photons do not experience resistance or capacitance, 
and can travel without signal degradation. This feature enables 
photonic systems to operate at significantly higher speeds 
and over longer distances than traditional electronic systems. 
Furthermore, photonics offers high bandwidths, which enable 
the rapid transfer of large amounts of data. Photonic devices can 
simultaneously transmit multiple signals, allowing high-bandwidth 
data transmission [34]. Additionally, photonic integration offers 
high levels of scalability and miniaturization, allowing the crea-
tion of compact, lightweight, and portable devices that can be 
easily integrated into existing systems. The potential of photonic 
integrated chips (PICs) has been demonstrated in various fields, 
such as optical communication, data centers, sensing, and bio-
medical systems.

However, several challenges and limitations must be addressed 
before integrated photonics can become a viable alternative to 
their electronic counterparts. One of the main challenges is inte-
grating different photonic components into a single device. 
Unlike electronic devices, which can be easily fabricated on a 
single substrate, photonic components often require different 
materials and fabrication processes. For instance, waveguides and 
detectors are typically fabricated using different materials and 
processes, making it challenging to integrate them into a single 
device. Moreover, photonic devices require materials that can 
efficiently interact with light. This restricts the range of materials 
that can be used for photonic integration, making it difficult to 
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achieve the desired functionality. Another well-known limitation 
is the low integration scale of photonics owing to the need for 
precise alignment and control of light at the nanoscale level. This 
limitation can reduce the complexity and functionality of pho-
tonic devices. In addition, there is a lack of standardization in the 
design and fabrication of photonic components, which can hin-
der their adoption in commercial applications [35]. Despite these 
challenges and decade-long advancements in photonic compo-
nent design, fabrication processes, and materials, integrated 
photonics technology has the potential to move beyond the 
well-established data-transfer role and infiltrate new industries 
such as high-performance computing and machine learning.

In the machine learning landscape, PICs have emerged as 
highly promising platforms for analog data processing [36]. 
Photonics offers 2 major advantages for addressing the core 
issues of neural-like computations: straightforward computa-
tional parallelism and linear operation at the speed of light. 
Parallelism in photonics can be achieved through wavelength- 
division multiplexing (WDM) or time-division multiplexing 
(TDM). In this case, the same physical device can process data 
encoded at different wavelengths/time slots, thus significantly 
increasing the computational density. Furthermore, compared 
to conventional electrical synapses (connections between neu-
rons), photonics offers lower propagation losses and is free 
from electrical resistance-related thermal effects, which can be 
deleterious at high synaptic densities. More importantly, pho-
tonics does not suffer from the well-studied bandwidth/fan-in 
trade-off that plagues electronics [36]. For these reasons, pho-
tonic neural networks are attractive for high-bandwidth appli-
cations such as wideband radio frequency signal processing 
[37], fiber optic communications [38,39], non-linear program-
ming in autonomous vehicles/robotics [40], and ultrafast online 
learning [41]. In terms of linear operations, by using specialized 
optical hardware structures, the equivalent of the MAC oper-
ations defined in electronics can be performed by a simple 
propagation of information at the speed of light through a 
passive optical mesh. Thus, a substantial increase in energy 
efficiency can reach up to a few femtojoules per multiply-and- 
accumulate operation (fJ/MAC) (3 orders of magnitude lower 
than the current GPUs) [34,42,43]. Finally, numerous excitable 
photonic devices can be used as spiking nodes in photonic 
SNNs [44]. Compared to biological and electronic neurons that 
produce spikes on the millisecond scale, photonic spiking 

neurons can produce optical spikes with durations in the nano- 
to picosecond-scale regime, with marginal power consumption 
owing to their high wall-plug efficiency, which renders them 
suitable for ultrafast event-based processing.

This study’s aim is twofold: on the one hand, to provide an 
overview of current integrated photonic CNNs that tackle the 
demanding field of ultrafast image processing and, on the other 
hand, to present 2 alternative CNN photonic accelerators that 
offer a different perspective in this rapidly expanding field. In 
the Convolutional Neural Networks—Background section, a 
short introduction to CNNs is provided. The Convolutional 
Neural Networks on Photonic Integrated Platforms section 
provides a detailed review of the CNNs implemented in inte-
grated photonic platforms. The Unconventional Convolutional 
Processing Based on Optical Spectrum Slicing section intro-
duces an unconventional neuromorphic processor that lever-
ages optical spectrum slicing (OSS) to perform convolutional 
processing in the analog domain. In the Photonic Spiking 
Convolutional Neural Networks section, recent advancements 
in spiking CNN accelerators are presented. The Generic Spiking 
Convolutional Neural Network for Image Classification section 
and the Deep Photonic Spiking Convolutional Neural Networks 
(Deep Spiking CNN) section introduce a different approach to 
photonic CNNs that targets the edge-to-edge training of a deep 
photonic spiking CNN using unsupervised local learning. The 
paper concludes with a discussion of the merging of OSS with 
a spiking operation for ultrafast and hardware-friendly convo-
lutional and event-based processing.

Convolutional Neural Networks—Background
Inspired by visual information processing in the primary cortex 
of mammalian brains [45], a CNN is a type of ANN that utilizes 
convolutional operations instead of general matrix multiplica-
tions in at least one of its layers to extract diverse features from 
an input tensor (e.g., an image or video). The convolutional 
operation involves sliding a small filter, also known as a kernel, 
over the input tensor and computing the dot product between 
the filter and the pixel block, namely, the patch, on which it is 
currently positioned. Therefore, CNNs adopt the multilayer hier-
archy of typical ANNs but introduce a succession of interlaying 
convolutional and pooling layers, followed by typical FCLs. 
While the convolutional layers aim to extract relevant features 

Fig. 1. Hybrid CNN structure for image classification. The first neural layers are implemented with an analog accelerator (electronic, photonic, etc.) with low power consumption 
and high processing bandwidth, whereas the last layers are implemented digitally with high precision and low complexity.
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from the input images, the pooling layers aim to compress the 
outputs of the convolutional layers, namely, the feature maps. 
This procedure reduces redundant spatial information and 
renders the network more robust to small deviations. Finally, 
the FCLs combine these features to form more complex pat-
terns that allow for data classification [1]. A characteristic 
example of such an architecture is depicted in Fig. 2, which 
presents the LeNet-5 network [3]. Its convolutional layer con-
sists of multiple kernels, each of which allows the extraction of 
different spatial features from the incoming images. The con-
volution process is illustrated in detail in Fig. 3. Each kernel is 
a small matrix that scans the image with a pixel step equal to 
S, known as the stride. At each position, the kernel values are 
multiplied element-wise by a patch, which is a matrix contain-
ing the pixel values of the underlying region. The elements of 
the resulting matrix were accumulated to produce a single 
value. In the context of neural networks, this value describes 
the correlation between the patch and the kernel [16]. The 
result is that each kernel filters the whole image with respect 
to a different visual pattern (feature). In detail, the application 
of K kernels with dimensions Nk × Nk and a stride S on a 
W × W image returns K lower-dimensional images with dimen-
sions 

(

W −Nk

S
+ 1

)

×

(

W −Nk

S
+ 1

)

. The resulting elements pass 
through a non-linear function, such as a rectified linear unit 
(ReLU), and the resulting outputs are called feature maps. This 
non-linear activation introduced non-linearity into the output, 
allowing the network to learn complex and abstract features from 
an input tensor. Thus, each feature map contains information 
regarding the different spatial features of the original image. As 
previously mentioned, the convolutional procedure was inspired 

by image processing in the primary virtual cortex (V1 region), 
which is the first section of the visual pathway. In the V1 region, 
groups of neurons have receptive fields that perform visual fil-
tering over different orientations [45], a process analogous to 
convolution between a kernel and an image [46–48].

Next, a pooling layer is applied to each feature map (the prod-
uct of the kernel and patch) to perform dimensionality reduc-
tion in the form of compression. A window similar to the kernel 
is defined; however, in contrast to the convolution procedure, 
either the maximum or the average of the underlying patch is 
computed. The first method is known as max pooling, and the 
second method is known as average pooling. Dimensionality 
reduction is important because it renders the network insensi-
tive to irrelevant variations and attributes with respect to 
inspected classes. The resulting output maps can either be driven 
to the next convolution-pooling stage to be filtered by a different 
set of kernels or to a typical FCL. The FCL(s) is typically located 
at the end of the CNN and is responsible for classifying the input 
image into several possible categories.

Spiking variations of CNNs follow the same architecture as 
their conventional counterparts; however, they use non-linear 
excitable systems such as LIF or SRM models. The major chal-
lenge with these networks is training because they do not 
directly support the backpropagation algorithm [23]. Spiking 
trains are described as a set of Dirac functions that are undiffer-
entiable and, consequently, incompatible with the computation 
of gradients in the backpropagation algorithm. Furthermore, 
backpropagation is considered biologically implausible in neu-
roscience, mainly because of the lack of symmetric backward 
flow in biological networks, which is present in all neural con-
nections [23]. A class of spiking CNNs performs unsupervised 

Fig. 2  . LeNet-5 CNN architecture. The network comprises convolutional, subsampling (pooling), and fully connected layers. The convolutional layers extract features from 
the input image using kernels, while the pooling layers reduce the spatial size of the feature maps. The fully connected layers classify the features into the desired output. 
Non-linear activation functions are used to introduce non-linearity in the output of the convolutional layers.
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local learning using a biologically plausible STDP rule [24,25,49]. 
This rule is a part of the Hebbian learning algorithms, which 
state that “neurons that fire together, wire together”. In particu-
lar, if a pre-synaptic spike arrives before the generation of a 
post-synaptic spike at the synapse, a causal connection is 
deduced and the synaptic weight is increased, an effect known 
as long-term potentiation. However, if the pre-synaptic spike 
arrives after the post-synaptic spike, then a low correlation 
between the 2 neurons is deduced, and the synaptic weight value 
is decreased, an effect known as long-term depression. However, 
the major drawback of STDP is that it constitutes an unsuper-
vised learning algorithm and, as a result, is incompatible with 
supervised learning methods.

A different class of spiking CNNs focuses on the direct appli-
cation of backpropagation using neural models, such as SRM, 
which provide the membrane potential at each node as the signal 
to be differentiated [50,51]. The best results in terms of accuracy 
are provided by spiking CNNs, which result from the conversion 
of pretrained conventional CNNs [21,52,53]. Although these 
converted networks are easier to train, they are restricted to a 
single encoding scheme—rate encoding—in which information 
is encoded at the firing rate of the neurons. This scheme is not 
as efficient as other encoding strategies in terms of sparsity, 
because information is carried by multiple spikes instead of one 
[20]. Additionally, this is not biologically plausible, because the 
firing rate cannot explain important processes in the visual path-
ways of mammals [17,54]. However, compared with conven-
tional CNNs, they are still more power-efficient and have lower 
computational latency.

Convolutional Neural Networks on Photonic 
Integrated Platforms
Integrated photonic CNNs employ a procedure that trans-
forms the convolution stage into a sequence of matrix vector 
multiplications. This method is inspired by the GPU imple-
mentations of CNNs [55] and is relevant in the case of resistive 

crossbar arrays [31]. In this algorithm, an image or feature map 
is projected onto a new matrix designed to contain a serialized 
patch in each row. The kernels were congregated in another 
matrix, with each column corresponding to the weight of each 
kernel. By multiplying the 2 matrices, the convolution between 
the input image and kernels is obtained. In photonics, this pro-
cedure is performed in a similar manner, where the patch/
vector is imprinted on an optical carrier through electro-optic 
modulation; thus, the image vector is mapped to an optical 
time series that, in turn, is injected into a PIC to achieve matrix 
multiplication. In the case of reprogrammable photonics, the 
PIC is fabricated or programmed [56,57] to implement a matrix 
containing kernel weights. For each time step, a point for each 
feature map was obtained, which corresponded to the interac-
tion between the patch and kernels. In this context, any PIC 
configured to perform multiplications can be considered a 
photonic CNN engine [42,58–60]. In the literature, 2 major 
categories of PICs implement such schemes: incoherent and 
coherent meshes [61].

With respect to optically incoherent meshes, a PIC has 
recently been experimentally demonstrated to perform convo-
lutions at a high throughput by exploiting wavelength multi-
plexing [43]. A single convolutional layer was implemented 
with four 3 × 3 kernels followed by a digital FCL, providing 
a classification accuracy of 95% for the Modified National 
Institute of Standards and Technology (MNIST) dataset [62]. 
A frequency comb provides multiple wavelengths that are used 
to encode the patches, which are subsequently inserted into a 
photonic computational core. The core implements the corre-
sponding multiplications with 9 × 4 unit-based phase change 
materials (PCM), arranged in a crossbar topology. Each unit 
implements a tunable yet nonvolatile synaptic weight [63]. Each 
output of the crossbar array contains the element-wise multi-
plication product between the kernel and the patch, whereas 
the summation is achieved by a photodetector. In the experi-
ment, parallel processing was achieved by utilizing additional 
wavelengths generated by a frequency comb to simultaneously 
insert the 4 patches into the PIC. Parallel processing increased 
the number of required wavelengths from 9 to 36 in this case, 
along with the number of modulators and detectors needed at 
the front and back ends, respectively, that is, 36 modulators and 
16 analog-to-digital converters (ADCs). At a modulation rate 
of 14 GHz, this PIC achieved a processing speed of 2 TMAC/s 
and computed densities of up to 555 GMAC/s/mm2 with 5-bit 
precision. For comparison, Google’s tensor processing unit (TPU) 
has a computational density of up to 150 GMAC/s/mm2 and 
8-bit precision [64]. A similar type of network, based on a 
“broadcast and weight” architecture [58,65], has been proposed 
with numerical simulations showing 7–14 times faster pro-
cessing compared to GPUs, while consuming 60%–25% less 
power, respectively [66].

An alternative multi-wavelength CNN combines spatial, 
temporal, and spectral encoding strategies to boost performance 
[67]. A frequency comb was also used, but in contrast to [43,66], 
wavelengths were used to encode the kernel weights instead of 
patches. Subsequently, these wavelengths passed through an 
electro-optic modulator, where each patch was imprinted vector-
wise on them. The resulting signal was inserted into a dispersive 
fiber, which induced a time delay between adjacent wavelengths 
equal to the modulation rate. At the end of the fiber, a photo-
diode (PD) accumulated the received multicolor signal, which, 
owing to dispersion, arrived at the output as an element-wise 

Fig. 3 . Illustration of the convolutional process in a CNN with a 2 × 2 kernel and stride 
of 1. The kernel is applied to the input image in a sliding window manner, performing 
a dot product between the kernel and the input image pixels at each position. The 
resulting values are summed and produce a single output pixel in the feature map. D
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product between the patch and kernel. Multiple kernels could 
be implemented by using additional wavelengths. The collected 
feature maps were vectorized and inserted into an optical per-
ceptron using the same dispersion-based mechanism. Three 
5 × 5 kernels were used for the MNIST dataset, which required 
72 wavelengths. The stride used in this case was 5, and the fea-
ture maps produced after passing through an electrical pooling 
stage were vectorized and inserted into an optical FCL, which 
was implemented using the same setup [68]. The achieved accu-
racy was equal to 89.6% and the total computational speed of 
the convolutional stage was 4.7 TMAC/s. This setup required 
the same number of modulators and ADCs as in [41]. Although 
an optical fiber was used as the dispersive medium in this case, 
photonic crystals or chirped Bragg gratings can be used to min-
iaturize the scheme [67].

Finally, with respect to coherent meshes, a photonic CNN 
based on Mach–Zehnder interferometers (MZIs) was theoret-
ically proposed [69]. A matrix containing kernel weights was 
implemented using an MZI mesh [42]. A single laser injected 
the inputs as time traces into the mesh. This setup does not 
exploit multiplexing, and as a result, its computational density 
is inferior to that of incoherent methods. The power efficiency 
is similar to that of multi-wavelength PICs because single-
wavelength operation leads to fewer power-hungry electronic 
components at the output. However, an interesting implication 
in the case of MZI meshes is that, contrary to incoherent schemes, 
they can, in principle, support on-chip training through back-
propagation [41].

In addition to PICs, another major class of notable photonic 
CNNs includes implementations based on free-space optics 
[70]. An optical input propagating through a suitable lens con-
figuration can be mapped from the space domain to the Fourier 
domain and vice versa. If the input is transferred to the Fourier 
domain, it can be spatially modulated according to a kernel, 
followed by an inverse Fourier transform at the output, thereby 
deriving a convolution process. Experimental results have been 
demonstrated, accomplishing up to 4 peta-operations/s through-
put with classification accuracies for the MNIST and CIFAR-10 
datasets equal to 98% and 54%, respectively [71]. Although free-
space implementations can generate more operations than PICs, 
they are bulky by design, rendering them inappropriate for 
applications that demand a low physical footprint, such as edge 
computing. Moreover, spatial modulators exhibit low modula-
tion rates in the range of several hertz [72] to a few kilohertz 
[71], thus substantially limiting the reconfiguration speed of 
these CNNs.

In each of these studies, the primary objective was to directly 
transfer the CNN operation pipeline to a photonic platform, 
thereby substituting digital operations with discrete analog 
computations. In our study, we aim to explore a different route 
in which convolution is “replaced” by simple multiplication in 
the spectral domain. Convolution can be accomplished by 
propagating a time-dependent signal through conventional 
optical filters with specific transfer functions. In particular, 
recently we have proposed an alternative approach where mul-
tiple optical filters “slice” the optical spectrum [39], thus apply-
ing optical kernels of complex weights. Because an optical filter 
corresponds to a single kernel, the overall physical footprint is 
significantly reduced. By exploiting the free spectral range of 
the filters, this scheme was fully compatible with WDM tech-
niques. Therefore, multiple data streams loaded at different 
wavelengths can be processed simultaneously using the same 

filter kernel. This concept is further discussed in the following 
section.

Unconventional Convolutional Processing Based 
on Optical Spectrum Slicing

Presentation of the concept
In this section, we explore a new proposition for a passive all-
optical photonic convolutional accelerator that relies on an 
OSS technique that enables multiple convolutional kernels in 
the analog domain. The proposed scheme acts as an uncon-
ventional engine that exploits the convolutional operations of 
parallel bandpass optical filters to extract different spectrotem-
poral features from the input tensors (images), thus constitut-
ing a scalable photonic system with minimal complexity. In 
contrast to state-of-the-art photonic CNN implementations 
that are characterized by scalability limitations [66,68,69], sig-
nificant image preprocessing requirements [43,69], additional 
control circuitry [43,66,69], and sophisticated setups [43,66,67], 
the OSS-CNN accelerator offers a promising alternative. The 
proposed approach exhibits negligible power consumption 
only attributed to the photodetection and signal modulation 
stages, operates with zero latency, and demands lightweight 
image preprocessing, as will be discussed in the following 
paragraphs.

A recurrent OSS topology was first introduced in [39], 
in which passive OSS filters equipped with a feedback loop 
were exploited for the equalization of high-baud-rate optical 
signals, outperforming state-of-the-art digital processing 
approaches. We modified this architecture and used each 
filter as a convolutional kernel. Thus, sophisticated but cum-
bersome architectures, which aim to reproduce in the pho-
tonic domain what is implemented with the use of digital 
algorithms, were replaced. A widely used classification task 
based on the MNIST handwriting dataset was used as a bench-
mark test. The architecture of the OSS-based CNN is illus-
trated in Fig. 4. It consists of an analog photonic accelerator 
that implements the convolutional, non-linear activation, 
and pooling operations of the OSS accelerator and a digital 
back-end that maps the OSS outputs to MNIST image classes 
using an FCL. It should be stressed that typical training in 
the form of backpropagation can be performed only at the 
digital front-end stage. The parameters of the photonic back-
end that perform CNN acceleration can be trained to some 
extent with the proper configuration of each filter property. 
A simple filter can be tuned in terms of its central frequency, 
which affects the kernel’s properties. The bandwidth or order 
of the filter can also be modified if a photonic accelerator is 
developed on a programmable chip [57].

First, each image is divided into non-overlapping n × n 
patches that are serialized and combined into a single uncom-
pressed vector containing all initial image pixel values flattened 
with a well-chosen orientation to reduce the temporal distance 
between pixels that are closer in the spatial domain (see Fig. 5). 
This arrangement requires lightweight preprocessing of data 
(rearranging the incoming image pixel values), which enhances 
the dimensionality reduction capabilities of the OSS accelerator. 
An optical modulator sequentially imprints the image vector 
values onto the amplitude of a continuous wave optical carrier. 
The optical power is then equally split among the OSS nodes. 
Each OSS node is a bandpass optical filter tuned at a different 
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central frequency to interact with different spectral components 
of the optical signal, and therefore extract different features. The 
transfer function of each filter performs equivalent temporal 
convolutions governed by its impulse response, which is defined 
by its order, bandwidth, and central frequency. Thus, each OSS 
node applies a different set of analog weights to each image 
patch. This operation is equivalent to the application of different 
kernels over a certain “receptive field” for each image in tradi-
tional CNNs. The differentiated time traces produced at the 
output of each node were eventually detected using a limited- 
bandwidth PD. The PD has a twofold mission: it implements a 
non-linear operation and simultaneously averages the con-
volved data. First, an element-wise squaring is performed by 
the PD at the OSS node output acting as a non-linear activation 
function on the “feature mapped” time traces, with effects sim-
ilar to those of a ReLU function [73]. If the bandwidth of each 
PD is set to be inversely proportional to the employed patch 
size (n2), the passage of the signal through the PD results in the 
extraction of an average value over a time slot corresponding 
to n2 initial pixels. In this context, an analog averaging operation 
was performed by mapping the initial image patches to a single 

value. This is equivalent to the average-pooling layer of a 
traditional CNN. Eventually, an ADC was placed after each PD 
to convert the bandwidth-limited analog time series into a 
sequence of digital samples. The digitized outputs of each node 
were serialized and fed into a software-based front-end com-
prising an FCL for classification completion.

Results and discussion
To assess the performance of the accelerator in terms of clas-
sification accuracy, throughput, and power consumption, we 
numerically investigated the impact of the critical hyperparam-
eters on its performance. The hyperparameters of interest are 
the number of OSS nodes (N), patch mapping size (n × n), 
input power of the optical signal, OSS filter-node properties, 
and sampling rate of the ADCs. The investigation was con-
ducted using the MNIST dataset of handwritten digits. In this 
study, we employed the full MNIST image database, which 
consists of 60,000 images for training and 10,000 images for 
testing. Each image was vectorized according to an n × n-pixel 
patch arrangement, with n taking values ranging from 2 to 5. 
As shown in Fig. 5, for a 3 × 3 patching scheme, the pixel values 

Fig. 4. Conceptual architecture of OSS-CNN: At the input, the image is transformed to a vector that superposes the pixels in the optical temporal domain with the use of an 
amplitude modulator. The signal is then inserted into the photonic chip, which consists of multiple optical bandpass filters. Each of them slices a specific portion of the input 
spectrum. Photodetection performs dimensionality reduction through average pooling per slice, and the ADC sends digital data to the FCL-softmax layers for the completion 
of classification.
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of each patch can be serialized with appropriate orientations 
to enhance the temporal correlations among adjacent pixels. 
Two basic orientations were adopted in this study (A and B, as 
depicted in Fig. 5), which resulted in data augmentation at the 
input and diversified features at the output of each OSS node. 
Hence, each MNIST image was flattened to an uncompressed 
vector twice the initial image size to accommodate the 2 
adopted orientations. The padding of zero values was applied 
around the edges of each image for the 3 × 3 and 5 × 5 patches. 
A digital-to-analog converter (DAC) was used to convert the 
MNIST data into an analog waveform. This waveform drives 
the simulated Mach–Zehnder modulator to imprint the input 
vector values onto the amplitude of the optical carrier at 1,550 nm. 
The optical signal was split into N OSS nodes using a 1 : N coupler. 
It should be noted here that because passive components are 
used for the convolutional function, the processing rate of the 
system is capped by state-of-the-art DAC technologies, which 
currently marginally surpass 100 Gsa/s [74]. In contrast, the 
modulation rate can scale up to 500 GHz on plasmonic platforms 
[75], whereas photodetection or ADC bandwidth is not an issue 
here because our technique intrinsically reduces the dimensions 
at the output, thus scaling down the bandwidth requirements 
by a factor of n2 with respect to the DAC bandwidth.

OSS nodal filters can be implemented using add/drop micro- 
ring resonators (MRRs), Mach–Zehnder delay interferometers, 
or more complex architectures. In this study, we numerically 
demonstrated that even a first-order filter can perform as 
an excellent analog convolutional kernel. In principle, the fre-
quency response of a first-order bandpass optical filter is 
described by a transfer function given by

where fm and fc correspond to the central and cutoff frequencies 
of the bandpass filter, respectively. This filter exhibits an impulse 
response equal to

Based on Eq. 2, first-order bandpass filters can provide 
diversified complex-valued kernels in the temporal domain, 
depending on the bandwidth (fc) and detuning (fm) of their 
central frequency with respect to the carrier frequency of the 
optical signal. These operations between the optical carrier and 
OSS nodes are performed instantaneously. In Fig. 6, the impulse 
responses of 2 arbitrary nodes are depicted, with each of them 
having fc = 3.2 GHz and detuning of fm1 = 3.2 GHz and fm2 = 
60.8 GHz with respect to the optical carrier’s central frequency. 
It was assumed that the pixels were fueled by the CNN accel-
erator at a rate of 128 GSa/s. The depicted impulse responses 
extend to a 16-pixel time duration and clearly show that they 
correlate adjacent pixels with an exponentially decaying fading 
memory depending on fc. They also exhibit their diversity due 
to their different fm values affecting the real part of h(t) (Fig. 
6A and B) and its complex representation (Fig. 6C and D). The 
order and bandwidth of the filters also determine the receptive 
fields of the OSS node kernels. Increasing the bandwidth fc of 
the bandpass filter corresponds to a faster exponential decay 
of the impulse response, which determines the number of tem-
poral values/pixels that participate in each convolutional oper-
ation. Therefore, filters with a narrower bandwidth exhibit a 
larger temporal memory and involve a wider range of pixels 
for each convolution, which is analogous to a kernel with a 
larger receptive field. The order of the filter defines the asymp-
totic decay of the weights within the time interval of interest. 
The OSS nodes in this numerical analysis were simulated as (1)

H
(

f
)

=
1

1 +
j(f − fm)

fc

(2)h(t) = 2𝜋fce
−t(2𝜋fc−j2𝜋fm), t > 0

Fig. 5. Division into 3 × 3 patches and serialization of the MNIST image pixel values. The 2 orientations A, B result in 2 vectors per image, and each of them is launched 
sequentially into each OSS filter to trigger diversified features at the output of the optical filters.
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first-order MRR filters, whose drop ports were used as the out-
put of the node.

The electric field at the output of the OSS nodes is directed 
to PDs that are simulated as square-law detectors affected by 
shot and thermal noise, followed by fourth-order Butterworth 
filters with a 3-dB bandwidth inversely proportional to the 
employed patch size given by

Here, PR is the pixel rate of the input signal and n2 is the 
number of total patch elements (patch size). An ADC with a 
fixed 8-bit precision was simulated after each PD with a sam-
pling rate (SR) that nominally should be set to SR = 2BWPD 
based on Nyquist; however, in this investigation, it varied from 
BWPD/5 to 2BWPD to control the degree of data compression. 

The ADC output is a digital sequence of averaged convolved 
data.

The effect of the number of OSS-CNN nodes was investi-
gated for  N = 2, 3, 5, 10,where N denotes the number of MRR 
filters. The bandwidth and central frequencies of the nodal 
bandpass filters were appropriately chosen to fully cover the 
spectrum of the input signal with a small overlap between adja-
cent filters. For instance, by employing 2 OSS nodes to fully 
cover the 64-GHz electrical bandwidth of the input signal, the 
cutoff frequencies of the filters were set at 16 GHz, while their 
central frequencies corresponded to 16 and 48 GHz. On the 
one hand, classification accuracy evidently improved with the 
use of more filters (more kernels) with a narrower bandwidth, 
reaching a maximum of 97.6% for 10 OSS nodes. Employing 
more than 10 filter nodes provided no additional improve-
ments. On the other hand, using fewer filters was beneficial in 
terms of the required minimum input power, given that the 

(3)BWPD =
PR

n2

Fig. 6. Real part of the discretized impulse response of 2 detuned OSS nodes with fc = 3.2 GHz and fm1 = 3.2 GHz (A) and fm2 = 60.8 GHz (B) illustrated over a 16-pixel time 
duration. Each filter node applies a different set of analog (complex) weights at the input signal and therefore implements a different convolutional kernel on the image patches. 
The corresponding complex weights are depicted in the scatterplots of (C) and (D).
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minimum power was required at each node to overcome the 
shot and thermal noise levels of the PD. Moreover, the fewer 
filters were used, the higher the dimensionality of the reduction 
achieved, which is expressed as the number of inputs of the 
FCL. The digitized outputs were merged and fed into the FCL. 
Table 1 summarizes how the inference accuracy is affected by 
all parameters involved.

In Fig. 7, the testing accuracy of a 5-node OSS-CNN with a 
4 × 4 patch size is plotted against the mean input power of each 
OSS node. It can be seen that the power above which the pro-
posed accelerator performs stably is −10 dBm/node. Hence, 
only 500 μW is required for a 5-node scheme and 1 mW is 
required for a 10-node scheme if no other losses are considered 
in the chip. These values correspond to a photodetector band-
width of 8 GHz.

A useful metric for assessing the efficacy of the OSS-CNN 
in parameter reduction is the compression ratio, defined as the 
ratio of the uncompressed data (28 × 28 per image in the 
MNIST case) to the total digital samples delivered to the input 
of the FCL (FCL input size) per image. In Fig. 8, the inference 
accuracy of a 5-node OSS-CNN is plotted against the compres-
sion ratio, which depicts the impact of the patch size. The accu-
racy values of a standalone FCL fed with raw MNIST image 
pixel values are also presented. A standalone FCL fed with full-
size MNIST images achieved accuracy on the order of 92%. It 
is obvious that an FCL assisted by an OSS-CNN accelerator 
outperforms a standalone FCL, even when the compression 
ratio is 4. The 4 × 4 patch arrangement served as the best solu-
tion for this classification task in all OSS-CNN cases, resulting 
in a maximum accuracy of 97.6% with a 10-node OSS acceler-
ator and a compression ratio of 0.8, which means that a slight 
increase in the inputs of FCL (from 784 to 980) enhanced accu-
racy by 5.5%.

Finally, the OSS-CNN accelerator, followed by FCL, was bench-
marked against a digitally implemented LeNet-5 architecture on 

the MNIST image classification task. As detailed in the Con
volutional Neural Networks—Background section, the LeNet-5 
architecture comprises 7 layers, featuring 3 convolutional lay-
ers, 2 subsampling layers, and 2 FCLs (as illustrated in Fig. 2). 
First, the input layer applied zero padding to the MNIST 
images, resulting in an input size of 32 × 32 for the images. The 
first convolutional layer generates 6 feature maps by utilizing 
6 kernels of size 5 × 5 and employing a ReLU activation func-
tion, followed by an average-pooling layer to reduce the feature 
map dimensions by half to 14 × 14. The second convolutional 
layer employs 16 kernels of size 5 × 5, which again uses a ReLU 
activation function, resulting in 16 feature maps of size 10 × 
10, followed by a second average-pooling layer that again halves 
their dimensions. The third convolutional layer comprises 120 
kernels of size 5 × 5 with ReLU activation, generating 120 fea-
ture maps of size 1 × 1. Subsequently, the subsampled outputs 
were flattened and fed through 2 consecutive FCLs with 120 
and 180 neurons equipped with ReLU activation functions. 
Finally, the output layer includes a 10-neuron softmax layer 
that produced the probability of a specific input belonging to 
a particular class. The number of employed FCLs, classification 
accuracy, and total floating-point operations per second (FLOPS) 
performed in the testing stage for the MNIST dataset are pre-
sented in Table 2 for the 2 different FCL implementations.

It is evident that the performance of both schemes using 
either conventional CNNs or OSS-CNN as front ends is boosted 
by the use of a deeper fully connected network. The OSS accel-
erator, followed by 2 FCLs, was able to achieve an accuracy of 
98.2%, slightly worse than that offered by LeNet-5. However, 
it simultaneously compressed the required FLOPS by almost a 
factor of 5 at the testing stage. In the case of a single FCL layer, 
LeNet outperformed OSS-CNN by 1.28% in accuracy, requir-
ing, however, 50 times more FLOPS than OSS-CNN.

The proposed accelerator performs the entire convolu-
tional stage in the analog domain; thus, metrics such as the 

Table 1. Testing accuracy as a function of diverse parameters (number of OSS nodes, fc fm, patch size, BWPD, SR, and FCL inputs).

OSS nodes fc (GHz) fm (GHz) Patch BWPD (GHz) SR (GSa/s) FCL inputs Accuracy (%)

Output Layer = Single FCL − Softmax layer 196 86.02

392 91.81

784 92.13

2 16 16, 48 4 × 4 8 8 196 93.95

16 392 95.15

3 10.66 10.66, 32, 53.33 4 × 4 8 5.33 196 92.53

16 588 96

5 6.4 6.4, 19.2, 32, 44.8, 57.6 4 × 4 8 3.2 196 94.16

6.4 392 96.08

12.8 784 96.76

16 980 96.85

10 3.2 3.2, 9.6, 16, 22.4, 28.8, 35.2, 41.6, 
48.0, 54.4, 60.8

4 × 4 8 1.6 196 93.46

3.2 392 96.07

6.4 784 97.27

8 980 97.6
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computation speed, power efficiency per computation, and 
computation density [34] can be approximated by considering 
a digital equivalent. If we assume that the continuous-time 
convolution is somehow equivalent to a discretized convolution 
with a time step dictated by the pixel time, then we can extract 
its computational efficiency as if it were operating in discrete 
time. Considering an optical filter with a memory capacity 
equal to M pixels determined by its bandwidth, it is obvious 
that for each pixel inserted in the filter, M MAC operations are 
carried out. Therefore, for N nodes, the input pixel rate is equal 
to PR and W wavelengths, and the computational speed (num-
ber of MACs per second) of the OSS-CNN is equal to W × M × 
N × PR. For a DAC of 128 GSa/s [74], 10 nodes, a single wave-
length, and a memory capacity of 16, matching the receptive 
field of a 4 × 4 kernel, the total setup performs approximately 
20.5 TMAC/s. Considering an MRR of a 108-μm radius, with 
a free spectral range (FSR) that matches the PR, and a distance 
Δh = 10 μm between the nodes, the total physical footprint 
of the OSS filters is approximately equal to (2.2 × 2 × R) × 
N × (2.2 × 2 × R + Δh) = 2.32 mm2. Thus, for a photonic chip 
containing 10 MRR nodes, the computational density was at 
least 8.82 TMAC/s/mm2. In terms of power efficiency, the total 
power consumption [34,43] is as follows:

Here, η = ηLηMRRηPD is the combined total quantum effi-
ciency, where ηL is the quantum efficiency of the laser, ηMRR is 
the efficiency of the MRR, and ηPD is the efficiency of the pho-
todetector. In addition, hv is the energy of a single photon, Nb 
is the required bit precision, Cd is the capacitance of the PD, Vr 
is the driving voltage of the PD, e is the charge of the electron, 
Emod is the energy per bit of the modulator, and EADC is the 
energy per bit of the ADC. It is assumed that Cd = 2.4 fF, Vr = 
1V, and nL = nPD = 0.1, whereas for R = 108 μm, losses are equal 
to −0.4 dB/cm and the coupling ratio is equal to 0.1, and the 
losses at the drop port are −3.5 dB, corresponding to an effi-
ciency of ηMRR = 0.45. Assuming a bit precision equal to Nb = 5, 
Emod = 1 pJ/bit [61], EADC = 2 pJ/bit [61], 128 GSa/s modulation 

rate, and 10 nodes, with 4 × 4 patches and a single wave-
length, the total power consumption for a carrier at 1,550 nm 
is approximately 1.47 W. Therefore, because this setup operates 
at 20.5 TMAC/s, the computational efficiency is equal to 
72 fJ/MAC for 5-bit precision and 127 fJ/MAC for 8-bit pre-
cision. For comparison, the multi-wavelength photonic core 
presented in [43] achieves, for a 64 × 64 optical mesh with 
the same front-end and back-end parameters and for a 
single-wavelength channel, a power efficiency equal to 426 fJ/
MAC for 5-bit precision and 2.05 pJ/MAC for 8-bit precision, 
indicating that the OSS-CNN scheme can be advantageous 
in terms of energy efficiency. In Table 3, we compare state-
of-the-art implementations of CNN architectures and show 
the important advantages of OSS-CNN in terms of power 
consumption.

It is worth mentioning that although our scheme can be 
benchmarked with typical CNN accelerators and outperforms 
them (as shown in Table 3), it provides an alternative route 
toward CNN acceleration. In particular, approaches such as 
[43] and other equivalents fully replicate the mathematical 
operations of a digital CNN, where all weights can be tuned 
arbitrarily during training. In our case, the CNN complex 
weights originate from the transfer function of an analog opti-
cal filter; thus, they are intertwined and cannot be arbitrarily 

(4)

Fig. 7. Testing accuracy as a function of the mean input power per node for a 5-node 
OSS-CNN with a 4 × 4 patch size and an 8-GHz bandwidth PD.

Fig.  8.  Comparison of the testing accuracy of a 5-node OSS-CNN with different 
patch sizes as a function of compression ratio, against a standalone FCL fed with 
compressed pixel data.

Table  2. Image classification scheme, number of FCLs at the 
front end, testing accuracy, and total floating-point operations 
per second at the inference stage.

Scheme
Number of FCLs 

(layer inputs)
Accuracy FLOPS

LeNet-5 2 (120,10) >99% 826,000

OSS-CNN 2 (120,10) 98.16% 178,000

LeNet-5 1 (10) 98.88% 736,000

OSS-CNN 1 (10) 97.6% 14,600
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tuned independently. Therefore, the above benchmark is based 
on equivalent FLOPs performed if a typical digital CNN imple-
mentation is assumed, as OSS-CNN does not perform discrete 
FLOPs with discrete weights but analog computations with 
continuous weight values.

Photonic Spiking Convolutional  
Neural Networks
In the literature, only 2 realizations of spiking CNN photonic 
accelerators exist; both share the same neuromorphic node 
implemented by a vertical-cavity surface-emitting laser (VCSEL) 
under external optical injection [78,79]. The first case focuses 
on the application of regular-edge detection kernels to images 
[80]. Although specific handcrafted kernels are used, the kernels 
of the pretrained software spiking CNN can also be used in 
the photonic setup [70]. In particular, the kernels perform edge 
detection in various orientations, namely, vertical, horizontal, 
and diagonal. The element-wise product between the kernel and 
patch was implemented in the digital domain, and the results 
were transferred sequentially to the photonic domain by mod-
ulating the strength of the optical injection. Sparsity was 
demonstrated with respect to the output of the VCSEL-neuron 
because only a single spike event was produced each time an 
edge was detected. This setup was used as an accelerator for 
classification of the MNIST dataset with six 2 × 2 kernels. The 
photonic spiking convolutional stage was followed by a software 
spiking CNN implementing 2 additional convolutional stages 
and an FCL for classification, with the total setup achieving 
an accuracy equal to 96.1%. Energy efficiency can decrease to 
0.4 pJ/spike. For comparison, digital neuromorphic hardware, 
such as True North, offers an efficiency of 2.5 pJ/spike, indicat-
ing the potential of photonic neurons.

The second case used a similar experimental setup to imple-
ment a special type of CNNs known as binarized CNNs [81]. 
In binarized CNNs, each weight is approximated by a binary 

value, thus increasing the computational speed by 58 times and 
decreasing the power consumption by 32 times [82]. Such a 
representation can significantly simplify the digital prepro
cessing stage that performs the element-wise product. To extract 
edge features, this scheme requires 4 convolutions using specific 
binary kernel matrices that focus on different orientations and 
specialized patches that constitute binary representations of 
the region around each pixel. This scheme was experimentally 
validated, and numerical simulations showed the robustness 
of the spiking scheme, which predicts correct answers even 
under a low signal-to-noise ratio. The aforementioned opera-
tion can also be achieved using a variety of photonic neurons, 
such as 2-section devices [83–87], optical injection schemes 
with different active materials [88], microdisk lasers [89], pho-
tonic crystals [90], PCM-based neuromorphic nodes [91], and 
graphene-enhanced silicon MRRs [92].

Photonic neural networks and SNNs share a common chal-
lenge: the implementation of a backpropagation algorithm owing 
to the required computation of gradients [23,70]. Identifying 
hardware-friendly processes that differentiate analog activation 
functions in photonics is not a trivial task. Even when derivatives 
are computed in the electronic domain, the sequential order in 
which backpropagation is performed complicates the required 
setup [93]. Although there are additional training strategies 
besides backpropagation, such as gradient approximation [42], 
genetic algorithms, and swarm particle optimization [57], they 
require a considerably higher number of computations and, as 
a result, do not scale well with the number of trainable parame-
ters. In SNNs, the adoption of backpropagation is a challenging 
procedure, which has led researchers to consider alternative 
biologically plausible schemes, such as STDP. As previously 
stated, this algorithm does not require the derivation of gradients 
but only tracks the temporal distance between the pre-synaptic 
and post-synaptic spike events. The training procedure for com-
puting the derivatives can also be shared by photonic spiking 
networks that encompass the STDP algorithm. As a result, there 

Table 3. Comparison between state-of-art digital and photonic CNN architectures with respect to maximum supported clock speed, bit 
precision, inference accuracy on the MNIST task, energy per MAC, compute density, and sampling rate of the front-end ADC.

CNN architecture Clock (GHz) Bit precision
MNIST accuracy 

(%)
Energy per MAC 

(pJ/MAC)
Compute density 

(TMAC/mm2)
ADC (Gsa/s)

Nvidia Tesla P40 
[76]

1.3 8 >99 10.64 0.05 -

Google TPU v4 [77] 1.05 8 >99 1.25 0.2 -

Photonic tensor 
core [43]

128 5 96.1 1.8 (3 × 3 kernels) 1.27 128

1.32 (4 × 4 kernels)

DEAP [66] 128 6 97.6 2 (3 × 3 kernels) - 128

1.51 (4 × 4 kernels)

Dispersive proces-
sor [67]

128 5 89 1.21 (3 × 3 kernels) - 128

0.68 (4 × 4 ker-
nels)

OSS-CNN 128 5 97.6 0.18 (3 × 3 kernels) 4.96 14.2

0.07 (4 × 4 ker-
nels)

8.82 8
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are numerous proposals for STDP photonic implementations 
in the literature that can allow on-chip training of photonic spik-
ing CNNs.

The STDP rule has been demonstrated mainly in photonic 
platforms containing active materials, such as cross-gain mod-
ulation in SOAs [94] and vertical-cavity SOAs [95]. These plat-
forms split the pre-synaptic and post-synaptic spikes of the 
pump and probe signals injected into the 2 SOAs. The 2 spikes 
were encoded at different wavelengths. In the first SOA, the tim-
ing between the post-synaptic and pre-synaptic spikes was deter-
mined by inspecting the amplitude of a probe pre-synaptic spike. 
Its power is influenced by the carrier variations originating from 
a strong pump post-synaptic spike. The second SOA tracked the 
time difference between the pre-synaptic and post-synaptic 
spikes in a similar fashion. The derived probe signals deter-
mine whether the weight must be increased (potentiation) or 
decreased (depression). The STDP based on active materials 
require multiple wavelengths. Power consumption at SOAs can 
also inhibit scalability and power efficiency [36]. An alternative 
platform based on passive MRRs has been proposed, in which 
a single wavelength can be used by exploiting the noninteractive 
clockwise and counterclockwise propagation modes of the ring 
cavity [96]. This was achieved by coupling the pump and probe 
signals in the anticlockwise mode. The pump mode modifies 
the resonance of the ring cavity by changing the refractive index 
through Kerr and 2-photon absorption effects. This resulted in 
a modification of the transmissivity of the probe signal, thus 
mapping the time difference between the 2 spikes on its ampli-
tude. This suggestion can be scaled well with larger photonic 
SNNs because they do not require multiple wavelengths or sig-
nificant power consumption. Another passive implementation 
of the STDP rule has been demonstrated experimentally in the 
case of a PCM-based neuromorphic perceptron using a feedback 
loop connecting the output with PCM weights [91].

In this paper, we present numerical results regarding end-
to-end unsupervised training of a deep photonic spiking CNN 
based on the STDP local learning rule. This study uses 2-section 
VCSEL devices as neurons, which, apart from high fan-in/fan-out 
capabilities owing to carrier regeneration and low power con-
sumption, perform both inhibitory and excitatory dynamics 
through electro-optic conversions [97]. Inhibitory dynamics 
are crucial in the first bioinspired convolutional stage that emu-
lates the receptive field in ganglion cells to extract spatial fea-
tures [45,46]. The entire setup is a photonic adaptation of the 
spiking CNN presented in [24]. A time-multiplexed scheme 
was introduced in the proposed setup, which exploits the ultra-
fast dynamics of lasers to mimic multiple spiking neurons. 
Thus, given a physical photonic platform, the option of sacri-
ficing part of its large computational throughput for imple-
menting more complex neural networks is provided.

Generic Spiking Convolutional Neural Network 
for Image Classification
In this section, we describe the hardware-friendly spiking CNN 
proposed by Thorpe et al. [24], where training was a bioinspired 
unsupervised version of STDP. This implementation-agnostic 
approach is based on an architecture comprising multiple layers 
of neurons. All neurons were non-leaky integrate-and-fire neu-
rons. In the first layer, the digital image was converted into a 
set of spikes using multiple differences in Gaussian filters. Each 
pixel was processed by a set of ON and OFF neurons that could 

detect both positive and negative contrasts in the target image. 
The contrast of each pixel was imprinted on the firing time of 
each neuron using rank encoding. Consequently, pixels with 
high contrast fired earlier than pixels with low contrast.

The first (encoding) layer was followed by a set of multiple 
convolutional and pooling layers that are used to extract features 
from the incoming images. Each neuron in the convolutional 
layer had its own synaptic weight, which was used to multiply the 
corresponding inputs. The values of synaptic weights determined 
the pattern that a neuron was trained to detect. Consequently, 
each neuron multiplied the received spikes by the corresponding 
synaptic weights and accumulated them (MAC equivalent oper-
ation). Depending on the outcome, the firing of a neuron deter-
mined the correlation between the input and the target patterns. 
In the convolutional layers, neurons were organized into Neural 
Maps, each targeting the same pattern but at different locations. 
As the generated spikes propagated toward deeper layers, more 
complex features were extracted, which were combinations of 
simpler patterns extracted from the previous layers.

Each convolutional layer was followed by a pooling layer, 
whose task was to detect the pattern most highly correlated to 
the corresponding processing area and propagate it to the next 
convolutional layer. The pooling operation was completed by 
propagating only the first incoming spike because it had the 
highest correlation and ignoring the following ones. In this way, 
the winner-takes-all mechanism was implemented and simul-
taneously discarded redundant information. After the last pool-
ing layer, which performed a global pooling operation, the 
outputs were driven to a support vector machine classifier that 
determined the neuron output.

Training occurred only on the neurons of the convolutional 
layers. To start training a specific convolutional layer, all pre-
vious convolutional layers must have completed their training. 
The training algorithm was an unsupervised STDP, which was 
formulated using the following rule:

where a+ is the learning rate for the spikes that arrive earlier 
than the post-synaptic spike, a− is the learning rate for the 
spikes that arrive after the post-synaptic spike, dt is the time 
difference between the pre-synaptic and post-synaptic spikes, 
and wi is the weight of the ith synapse. From Eq. 1, it is clear 
that dt does not affect the weight update (dwi), whereas at the 
same time, the terms wi and 1 − wi constrain the weights to 
remain between 0 and 1.

Deep Photonic Spiking Convolutional Neural 
Networks (Deep Spiking CNN)

Presentation of the concept
As previously mentioned, there have been few photonic attempts 
to implement spiking CNNs; more importantly, they only trans-
fer a single layer in the optical domain, while avoiding the use 
of optical training. Recently, we presented a deep (5-layer) 
time-multiplexed network, in which spiking neurons were real-
ized using 2-section (gain absorber) VCSELs. Our intention 
was not to emulate a single layer, but to fully adapt the software-
based spiking CNN presented above. The main objective of our 

(5)dwi =

{

a+wi

(

1−wi

)

dt>0

a−wi

(

1−wi

)

dt<0
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network was to extract features from incoming images for suc-
cessful classification. The network was trained in a purely unsu-
pervised manner via STDP, and its performance was evaluated 
by classifying four 12 × 12-pixel images that depicted digits 5, 
6, 7, and 8.

The photonic spiking CNN comprised 5 layers: a contrast 
detection layer (CDL), 3 convolutional layers, and a classifica-
tion layer. In addition, there were synchronization layers 
among the CDL, convolutional layers, and a classification layer, 
whose task was to synchronize the output spikes of each layer. 
The setup is illustrated in Fig. 9. The CDL computed the con-
trast of each pixel and imprinted its value on the firing time of 
the corresponding spike (time encoding). The operation and 
architecture of the CDL partially mimic those of biological 
retinal ganglion cells (RGC). Every RGC has a receptive field 
that is divided into 2 separate regions: the central and sur-
rounding areas. The output of the RGC is dictated by the 
amount of incident light in the 2 areas. In the absence of exter-
nal stimuli, RGC produces spikes at a constant rate, fr. When 
the central area receives an external stimulus (the surrounding 
area is not illuminated), the firing rate of the RGC increases 
(fC > fr). Consequently, the central area has an excitatory effect 
on RGC. However, when the surrounding area is illuminated 
(the center area is kept dark), the firing rate of the RGC decreases, 
and for a high input power, it ceases firing completely (fs < fr < fc). 
Therefore, stimuli that are incident on the surrounding area have 
an inhibitory effect on RGC. Lastly, in case the light illuminates 
both areas (center and surround) of the receptive field, the RGC 
produces spikes with a frequency fCS ≈ fr because the excitatory 
effect of the center and the inhibitory effect of the surround 
cancel each other out.

In our spiking CNN, the RGC dynamics were implemented 
using 10 VCSELs and 2 PDs. The pixels of the images were 
inserted in the CDL via amplitude-modulated electrical pulses: 
white pixels were inserted via a radiofrequency pulse with 
0.2 mW amplitude, whereas black pixels were inserted via 
2 μW amplitude pulses. The receptive area of the RGC was 
implemented using a set of 9 VCSELs placed in a 3 × 3 layout 
(Fig. 10A). The center VCSEL (C-VCSEL) simulated the behav-
ior of the excitatory center area, whereas the 8 surrounding 
VCSELs (S-VCSELs) simulated the inhibitory effect of the sur-
roundings. The outputs of the C-VCSEL and S-VCSELs were 
monitored using 2 separate PDs. The first PD was driven by the 
output of the C-VCSEL and recorded excitatory stimuli, whereas 
the second received input from the 8 S-VCSELs and was respon-
sible for inhibitory stimuli. The signals of the excitatory and 
inhibitory PDs were weighted and summed before entering the 
RGC-VCSEL, which encoded the contrast value of the firing 
time of the spike. In detail, the RGC-VCSEL was biased to fire 
a spike at 3.9 ns under no external stimuli. To implement excit-
atory and inhibitory effects, the output of the excitatory PD was 
weighted with a positive weight (w+) and that of the inhibitory 
PD was weighted with a negative one (w−). Moreover, to fully 
simulate the effects of the center and surround area for all pos-
sible cases, the weight of the excitatory PD must be 8 times 
higher than that of the inhibitory one (w+ = 8w−).

The reason for this modification was that the excitatory PD 
was driven by one VCSEL, whereas the inhibitory PD was 
driven by 8 VCSELs. The weighted sum of the signals from the 
PDs drove the RGC-VCSEL and, depending on its sign, dic-
tated the latency of the spike. Specifically, if the weighted sum 
was positive, the RGC fired earlier, whereas if the weighted sum 

Fig. 9. Architecture of the time-multiplexed convolutional SNN trained with unsupervised STDP. Firstly, the image is processed by the contrast detection layer (CDL) in a 
serial manner. Then, the spikes are inserted into the synchronization layer that synchronizes the spikes before entering the convolutional layer. This procedure is followed in 
subsequent layers, and the final data are classified in a fully connected layer.
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was negative, the RGC fired with an enhanced delay. Figure 
10B shows the firing time of the RGC-VCSEL for the various 
input patterns presented in Fig. 10C.

The CDL is followed by a synchronization layer (Fig. 11), 
whose purpose is to synchronize and align the incoming 
pulses in a specific time slot. Specifically, each pixel is pro-
cessed by the CDL inside a specific time slot with duration 
Tpix = 5 ns. Each timeslot starts at (k − 1)Tpix and ends at kTpix 
(k denotes the number of processed pixels). Due to the applied 
time-multiplexed processing, each pixel has its own time ref-
erence, which is the beginning of its time slot ((k − 1)Tpix). 
Different time references would render the application of the 
STDP algorithm and the convolution operation ineffective, 
because the spikes that originate from a specific area do not 
enter the convolutional layer within a common time frame. 
This would render the computation of the time differences 
(dt) between the pre-synaptic (tpre) and post-synaptic spikes 
(tpost) useless because they do not express the real relationship 
between them. Therefore, a synchronization layer is necessary, 
and its role is to impose an (m − l)Tpix delay for the kth spike, 
where m is the size of the convolutional window (CW) in each 
layer, and l is the remainder of k divided by m. Using this tech-
nique, the spikes of a specific m-pixel area acquire a common 
time reference that allows the proper use of the STDP algorithm 
and convolutional processing. In electro-optic synapses, the 
synchronization layer can be easily implemented using a pre-
determined static electrical delay line. It is worth mentioning 
that the Synch Layer is necessary only when the TDM scheme 
is employed, in which case a single neuron processes multiple 

patches of the image, thus relaxing the hardware requirements. 
If TDM is omitted, the number of neurons would increase, but 
STDP would be implemented directly.

Each convolutional layer comprises multiple neurons (VCSELs) 
that detect patterns in incoming spike trains. In classical spiking 
CNNs, a neuron detects a specific pattern in a restricted area of 
an image. However, a neuron in the photonic spiking CNN detects 
the same pattern in the entire image using TDM processing. This 
enables a radical reduction in neuron count, which has a direct 
impact on the power consumption of the network.

The convolutional layer differs during the training and test-
ing procedures. During training, incoming spikes were inserted 
into the first neuron of the convolutional layer, and the usual 
weighted addition was performed. If a neuron fired a spike, the 
incoming pattern was recognized successfully. This triggers 2 
additional procedures. The first is the update of the weights of 
the first neuron, whereas the second is the transmission of a 
lateral inhibition signal to all other neurons. This signal lowered 
the bias of the neurons, driving them outside the spiking 
regime, rendering spiking impossible. If the first neuron did 
not recognize the incoming neuron, the spikes were directed 
to the second neuron with a delay TD and the same procedure 
was repeated for all subsequent neurons. Time interval TD must 
be at least equal to the time required by a neuron to successfully 
recognize a pattern. The same procedure was repeated until the 
pattern was successfully recognized by a neuron. When the 
convolutional layer completed its training, the TD delays were 
omitted along with the lateral inhibition signal, and the testing 
of the photonic spiking CNN could begin. During the testing 

Fig. 10. (A) Architecture of the CDL. Each pixel is sequentially inserted into the CDL. The surround pixels are electrically injected into the S-VCSELs, while the center pixel is 
inserted into the C-VCSEL. (B) Spiking output of the RGC neuron. Positive contrast (cases 1, 2, and 3) produces fast spikes, while negative contrast (cases 5, 6, and 7) produces 
spikes with high latency. (C) The input patterns that produce the spikes in the diagram in (B). The C-VCSEL is designated with green color due to its excitatory effect, while 
S-VCSELs are designated with red color due to their inhibitory effect.
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phase, the incoming synchronized spikes were simultaneously 
transmitted to all the neurons of the convolutional layer.

With regard to the training algorithm, the first convolu-
tional layer was trained using the classical unsupervised STDP, 
whereas the second and third convolutional layers were trained 
using a slightly modified version. In particular, if the corre-
sponding synapses carried a spike, their weight increased by 
0.1. If the synapses did not carry a spike, their weight decreased 
by 0.1. The following learning rules are summarized in the 
following formula:

The classification layer is an FCL, as described above, which 
classifies incoming images based on the extracted features of 
the previous layers.

Results and discussion
In this section, the numerical results of the training and infer-
ence operations of the photonic spiking CNN are presented. 
The proposed network was trained to classify four 12 × 12-pixel 
images depicting digits 5 to 8. Consequently, the training set 
consisted of 4 images repeatedly inserted into the network. It 
is worth mentioning that no labeling was needed to train the 
network. First, the first convolutional layer (CL1) was trained. 
Its processing area, designated as convolutional window 1 
(CW1), consisted of a 3 × 3-pixel layout. Therefore, the number 
of inputs to the first layer was 9 (one input for each pixel of 
CW1), whereas the stride of CW1 was equal to one pixel. With 
this meticulous scanning, CL1 was able to detect most features 
and learned 33 patterns (Fig. 12B). When the learning of CL1 
was completed, the training of CL2 began. The processing area 
of the second layer (CW2) consisted of 4 CW1 or a total area of 
6 × 6 pixels. By considering that each CW1 may match one of 
the 33 learned patterns, then the total number of inputs for the 
CL2 must be 4 ∙ 33 = 132 inputs, where the inputs 1 to 33 cor-
responded to the first CW1, the inputs 34 to 66 corresponded 
to the second CW1, and so on. Because of the detailed scanning 
in the training of CL1, no overlap was required during the train-
ing of CL2. Therefore, the stride for CL2 was set to 6 pixels. In 
CL2, 9 patterns were learned, which were combinations of the 
simpler patterns learned in CL1. Finally, when CL2 completes 
its training, CL3 may start training. Following the principles 
governing the training of CL1 and CL2, CL3 has a scanning 
window CW3 that consists of 2 CW2 or 6 × 12 pixels. The 

number of inputs was 2 ∙ 9 = 18 and no overlap was required. 
With this configuration, CL3 learned 6 patterns, which were 
combinations of patterns learned by CL2.

With regard to the inference stage, the proposed photonic 
spiking CNN accurately classified all 4 digits. To ensure the 
proper functioning of the network, a different training set con-
sisting of digits 1 to 4 was utilized, resulting in successful training 
because the network could extract new features and label the 
input images. To examine the limitations of the network, 2 types 
of noise were introduced: white additive Gaussian noise, which 
affects the instant power level of the inserted rectangular pulses, 
and noise affecting the intensity of the pixels, which subsequently 
affects the mean power level of the rectangular pulses. The first 
type of noise had no impact on the network performance 
because of the integration attribute of the neurons, which 
negated the effects of instant power changes. However, the sec-
ond noise type had a detrimental impact as the network was 
highly susceptible to it, with a standard deviation of 12%, ren-
dering the network incapable of classifying incoming images 
(Fig. 13A). The primary advantage of the photonic spiking CNN 
was its ability to tune the neuron count, an ability made possible 
by the time-multiplexing technique, which resulted in a signifi-
cant reduction in the number of neurons from 2,020 to only 52 
(Fig. 13B). This exponential decrease was because each neuron 
detected a specific pattern in the entire image. The reduction in 
the number of actual neurons also had a beneficial impact on 
power consumption, although it came at the cost of lower pro-
cessing rates, with image processing latencies ranging from 5 ns 
for 2,020 neurons to 720 ns for 52 neurons (Fig. 12B). By incor-
porating multiple layers, including CDLs, synchronization 
layers, and convolutional layers, the images were processed in 
parallel, thereby decreasing the processing latency of the network 
by up to 5 ns, which is the time required for the network to 
process a single pixel. Consequently, the processing rate of the 
network can be adjusted according to the specific requirements 
of the task. This clearly demonstrates the trade-off between the 
processing rate of the network and the neuron count.

In Table 4., the performance of the proposed network is com-
pared with that of other spiking implementations in terms of 
neuron count, number of synapses, energy efficiency, addressed 
task, and type of implementation. The key property of our pro-
posed network is its low energy consumption (0.16 pJ/spike), 
which originates from 2 main characteristics of the implemen-
tation: the low power consumption of the VCSEL-neuron (1 
mW per neuron) and the time-multiplexing technique, which 
radically decreases the actual neuron count. In general, the 

(6)dw =

{

0.1 spike

−0.1 no spike

Fig. 11. Architecture of a convolutional layer during the training phase. During inference, the delays TD and the cancelling signals are omitted.
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decrease of actual neurons permits the substantial decrease of 
power consumption as the energy per spike is reduced by a 
factor that ranges from 2.5 at [80] to 15.26 times [27], whereas 
its accuracy is similar to other implementations [91,95]. The 
energy efficiency of the proposed method was evaluated using 
the following formula [27]:

where Ep is the energy per spike, P is the total power consump-
tion, f is the frequency of the spikes produced, and Ntot is the 
total number of synapses. To estimate Ep, a power consumption 
of 1 mW per neuron was assumed, which is typical for VCSELs.

Conclusion
This study highlights that the use of photonic technologies in 
the neuromorphic arena is a critical step toward minimizing 
power consumption and boosting processing speed in artificial 
intelligence applications based on CNNs. The fruits of this effort 

are ripe in terms of J/MAC or MAC/s that have driven a signif-
icant part of the photonic community to strive for precise rep-
lication of the “algorithmic” neural network in the photonic 
hardware. Nonetheless, we believe that this effort, although 
interesting, has 3 generic limitations that could impede its evo-
lution. The first key drawback is scalability. Application-wise, 
even basic CNNs (i.e., the MNIST dataset) demand matrices of 
28 × 28, a task that is not straightforward to achieve even with 
MZI architectures, owing to the accumulation of optical losses 
and, more importantly, the complexity of the electro-optic driv-
ing circuits. A deep architecture makes this problem even more 
challenging. The solution of multiplexing is a route to circum-
vent this issue; however, it comes with an elevated cost/footprint 
because it requires sophisticated hardware. Secondly, one of the 
most prominent features of a neural network is its ability to 
represent unknown data using training procedures. Unfortunately, 
in optics, only basic training schemes have been realized 
(e.g., gradient descent), whereas the holy grail of neural training, 
backpropagation, still lacks a realistic on-chip implementation. 
This limits the applicability of photonic circuits for inference, 

(7)Ep =
P

fNtot

Fig. 12. (A) Training image of digit 7. (B) Features learned in CL1. (C) Features learned in CL2. (D) Features learned in CL3. (E) The abstract version of the digits that the network 
identifies.

Fig. 13. (A) Performance of the photonic spiking CNN for different standard deviation values of the noise source. The noise is drawn from a normal distribution whose standard 
deviation is expressed as a percentage of the nominal input power for white pixels (PIN = 0.2 mW [x-axis]). In this figure, digit “5” is presented as an indicative example of the 
intensity noise’s impact. The left image of digit “5” represents the case of no intensity noise while the right one corresponds to an intensity noise of 12%. (B) The processing 
latency of the incoming 12 × 12-pixel image for different numbers of neurons.
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hindering real neural operations. Consequently, digital electron-
ics, and their desired data-storage capabilities, remain irreplace-
able for real-life applications. Third, the nature of light itself 
changes the basic principles of CNNs; that is, instead of analog 
negative/positive values propagating in the network, we have 
complex optical values. This changes the basic rules for the net-
work design and can affect the type of non-linear activation 
function required. Therefore, we believe that strict replication 
efforts limit the true potential of neuromorphic photonics.

Alternatively, a viable route is the use of photonics as accel-
erators. PICs either replace a well-chosen part of digital pro-
cessing or provide an unconventional operation that, although 
not present in the digital embodiment of CNNs, can provide 
equivalent functionality accompanied by critical performance 
enhancement. This enhancement is either an accuracy boost or 
a parameter reduction with minimal impact on accuracy. In this 
context, OSS-CNN does not act as a conventional CNN layer, 
meaning that it provides a convolution of the signal with arbi-
trary weights, but these weights are not fully regulated, whereas 
at the same time, spectral decomposition and dimensionality 
reduction are offered. Although such a layer is not present in a 
typical CNN pipeline, our results demonstrate a significant 
improvement through optical preprocessing. This boost is man-
ifested either compared to a simple FCL resulting in both accu-
racy enhancement and parameter reduction or compared to a 
full-scale CNN (LeNet-5), where a radical parameter reduction 
is achieved with a marginal impact on accuracy. This work also 
highlighted that isomorphism to biological neural networks can 
also be achieved by using excitable artificial neurons with iden-
tical dynamics, synapses with weighting plasticity, etc. In this 
framework, innovative work has been conducted, starting from 
a simple 2-neuron system and moving toward a more realistic 
neural system with a collaborative interaction of hundreds of 
neurons. In this field, our proposition exceeds the state of the 
art by demonstrating the first-time simulation results of a full-
scale photonic spiking network incorporating neural dynamics, 
biocompatible STDP training, retina-like preprocessing, and 
hybrid information encoding (event-based). In this context, we 
fuse biological efficiency with photonic performance, and the 
aforementioned scalability problem is partially addressed using 
TDM schemes.

Our midterm objective was to develop a true hybrid platform 
that embeds all 3 aspects: photonic acceleration, isomorphic 

spiking efficiency, and lightweight digital training. Toward this 
direction, we started designing a reconfigurable silicon photonic 
platform able to offer “plastic,” low-loss synapses that intercon-
nect III–V lasers acting as TDM neurons generating events. 
Laser neurons receive preprocessed images offered through 
OSS-CNN schemes that spectrally decompose incoming digital 
data, whereas the readout layer is maintained in the digital 
domain to unlock applicability. This vision was accomplished 
in the context of the Horizon Europe Project PROMETHEUS 
(https://prometheus-he.eu).
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