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Global Land Cover Mapping – Need for  
Discrete Global Grid System 

Frane Gilić1,*, Martina Baučić1, Samah Termos2 

Abstract: The quality of land cover maps is gradually 
advancing in terms of increased spatial and temporal 
resolution, and classification accuracy. However, the 
aspect of spatial referencing and techniques for 
representing land cover data has not been advancing. 
Representing land cover data in the form of a planar raster 
geospatial data model is still common, despite the various 
issues especially evident when working with global land 
cover data. This paper first analyses current approaches in 
georeferencing global LCLU datasets. Then it examines 
differences in areal calculations from raster data 
georeferenced in projected and geographic coordinate 
reference systems (CRSs). This analysis is performed for the 
case study of calculating built-up land cover change for the 
Lebanese 10-km coastal zone. Finally, this paper 
introduces the topic of discrete global grid systems 
(DGGSs) as a relatively new approach to handling global 
geospatial data. DGGSs manage spatial data on the surface 
of the ellipsoid, rather than in the flattened raster model 
and thus represent a step forward in managing global 
geospatial data. 
Keywords: land cover; land use; raster; map projection; 
DGGS. 

1 Introduction 
Satellite images and the development of methods for their 
automatic analysis made possible producing land cover / 
land use (LCLU) data covering large areas, even the whole 
surface of the Earth. These kinds of satellite-images-
derived LCLU products are almost exclusively delivered in 
a raster data format (Table 1) which is the reason why the 
analysis in this paper is limited only to the raster datasets. 
Well known problem that is related to handling geospatial 
data that cover large areas is the problem of distance, 
shape and area distortions associated with the traditional 
approach of flattening data from the Earth’s surface. In the 
case of LCLU data, this flattening is usually performed by 
equal-area map projections. 

The study elaborated by Steinwand et al. (1995) has 
identified the equal-area projections with the smallest 
distortions for raster data. In addition to distortions due to 
map projection, the authors analysed pixel distortion 
caused by reprojection. The study identified the 
interrupted Goode Homolosine, the interrupted 
Mollweide, the Wagner IV and Wagner VII as the best for 
global maps, the Lambert Azimuthal Equal-Area for 
hemispheric maps, and the oblated Equal-Area and the 
Lambert Azimuthal Equal-Area for continental maps. The 
interrupted map projections introduce computational 
issues and are not fully supported by today's sohware 
(Moreira de Sousa et al. 2019). However, by examining 
recent global LCLU products, the trend is to georeference 
global LCLU datasets in geographic coordinate reference 
systems (CRSs), rather than in projected ones. This can be 
observed from the data in Table 1 which lists some 
technical characteristics of five notable recent global LCLU 
products: ESA WorldCover (Zanaga et al. 2021), Esri’s 
Sentinel-2 LCLU (Karra et al. 2021), GLC_FCS30D (Zhang et 
al. 2024), Dynamic World (Brown et al. 2022), and GLAD 
(Global Land Analysis and Discovery laboratory) LCLU 
dataset (Potapov et al. 2022). Visualisations of these LCLU 
datasets over the Lebanese capital Beirut are shown in 
Figure 1. 
Georeferencing raster LCLU datasets in geographic CRS 
imposes various issues, including data replication due to 
meridian convergence (Figure 2a). This issue can be solved 
by keeping angular pixel size constant in a north-south 
direction and defining latitudinal zones with varying pixel 
sizes in an east-west direction (e.g., Defence Gridded 
Elevation Data standard (DGED, DGIWG 2020)). Another 
issue is related to performing areal calculations, which, 
although possible in modern GIS applications, is more 
complex in geographic CRSs than in projected ones. From 
the LCLU point of view, a particularly interesting class of 
DGGSs are equal-area ones that have cells with the same 
area on the same refinement level (i.e., hierarchical level). 
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Figure 1. Visualizations of recent global LCLU products over Beirut, capital of Lebanon: (a) ESA WorldCover, (b) Esri’s Sentinel-2 

LCLU, (c) GLC_FCS30D, (d) Dynamic World, and (e) GLAD LCLU. 
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Figure 2. Discretisation of the surface of the ellipsoid by (a) 

grid of meridians and parallels and discrete global grid with 
(b) quadrangle cells and (c) triangle cells. 

 
Table 1. Data format, CRS, and pixel size of recent global LCLU 
products. 

*listed data correspond to the default download options on the 
Google Earth Engine. 

Therefore, DGGSs solve the problem of distortions 
imposed by map projections by directly discretizing the 
surface of the ellipsoid (Figure 2b and 2c) and equal-area 
ones simplify the problem of areal calculations on the 
surface of the ellipsoid. DGGS can be viewed as a way of 
georeferencing spatial data, instead of using coordinates, 
and as a geospatial data format, along with vector and 
raster models (Kmoch et al. 2022). Differences between 

DGGS and traditional (i.e., flattened) GIS approaches are 
provided by Li and Stefanakis (2020). 
In this paper we examine differences in calculation 
procedures and obtained results from calculating change 
in an area of built-up land cover class from LCLU data 
georeferenced in projected and in geographic CRS. We also 
discuss what would be the benefits of referencing LCLU 
data with DGGSs. 

2 Materials and methods 
To illustrate the difference in processing procedure and 
obtained results when working with data georeferenced in 
the geographic and in projected CRSs, we decided to 
calculate the change in built-up area from 2015 to 2020 for 
the Lebanese 10-km coastal zone (i.e., zone that is 10 km 
inland from the coastline, hereaher 10-km CZ). We have 
chosen the GLC_FCS30D LCLU product for this calculation, 
which, as can be seen from Table 1, is delivered as a raster 
dataset georeferenced in the WGS 84 geographic CRS. 
Pixels are 0.97” wide in latitude and longitude direction. 
For the Lebanese 10-km CZ, which approximately spans 
from a latitude of 33°05’ N to 34°39’ N (WGS 84), 
GLC_FCS30D pixel sizes in east-west direction range from 
25.2 to 24.7 m. In the north-south direction, pixel sizes are 
more stable, ranging from 29.8 m at the equator to 30.1 m 
at the poles. Along with GLC_FCS30D, we used the coastline 
and administrative border of Lebanon to construct a 10-km 
CZ which we aherwards spatially intersected with the 
Lebanese governorates. Those data were exported from 
the OpenStreetMap vector data and are also georeferenced 
in WGS 84 geographic CRS. All calculations were performed 
in the QGIS (version 3.28.6) free and open-source GIS 
application (with GDAL library version 3.6.4 and GRASS GIS 
provider plugin version 2.12.99). 

2.1 Calculating area in projected CRS 
When there is a task to compute areal statistics from data 
georeferenced in geographic CRS, the traditional approach 
would be to first convert data from geographic CRS to 
projected CRS that is based on the equal-area map 
projection or projection that introduces a tolerable level of 
areal distortions. Aher this conversion, the area is 
calculated by simply counting the number of desired pixels 
and then multiplying it with the constant area of each pixel. 
However, the problem with this approach is that it requires 
reprojecting the LCLU raster dataset, which inevitably 
introduces data loss (Lu et al. 2018). In this research, we 
decided to reproject the GLC_FCS30D LCLU raster to the 
projected Universal Transverse Mercator (UTM) zone 36N 
CRS (EPSG: 32636) with target pixel sizes of 25x30 m. UTM 
is not an equal-area projection but for most applications 
level of deformations it introduces is negligible. 
Calculating area, in this case, is straightforward: with the 
Zonal statistics tool in QGIS, it is possible to count the 
number of pixels corresponding to the built-up class in 
each governorate within a 10-km CZ and then multiply it 
with 750 m2 (25x30 m2) for 2015 and 2020. 

 

LCLU 
product 

Data format CRS Pixel 
size 

ESA 
WorldCover 

Raster, 
GeoTIFF 

(unsigned 8-
bit integer, 
DEFLATE 

compression) 

Geographic, 
WGS 84 

(EPSG:4326) 

0.30” 
(≈ 9.3 m 

at the 
equato) 

Esri’s 
Sentinel-2 

LCLU 

Raster, 
GeoTIFF 

(unsigned 8-
bit integer, 

LZW 
compression) 

Projected, 
WGS 84 / 

UTM 
10.0 m 

GLC_FCS30D 

Raster, 
GeoTIFF 

(unsigned 8-
bit integer, 

LZW 
compression) 

Geographic, 
WGS 84 

(EPSG:4326) 

0.97” 
(≈ 30.0 

m at the 
equator) 

Dynamic 
World* 

Raster, 
GeoTIFF 

(unsigned 8-
bit integer, 

LZW 
compression) 

Geographic, 
WGS 84 

(EPSG:4326) 

0.32” 
(≈ 10.0 

m at the 
equator) 

GLAD LCLU 

Raster, 
GeoTIFF 

(unsigned 8-
bit integer, 

LZW 
compression) 

Geographic, 
WGS 84 

(EPSG:4326) 

0.90” 
(≈ 27.8 

m at the 
equator) 
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2.2 Calculating area in geographic CRS 
Another approach is to keep GLC_FCS30D data in 
geographic CRS. Pixels in this case are quadrangles 
bounded by meridians and parallels and it is possible to 
determine their area with a direct formula (Lapaine and 
Lapaine 1991). GRASS GIS provider, which is a QGIS plugin, 
enables using tools from the GRASS GIS application. One 
such tool is a r.mapcalc.simple tool that implements an 
area() expression. This expression enables generating a 
new raster in which pixel values correspond to the area of 
each GLC_FCS30D pixel on the surface of the ellipsoid. 
Then, with a common Raster calculator tool in QGIS, it is 
needed to generate a new raster with extracted pixels that 
correspond to the built-up class for each year. Finally, to 
calculate the final built-up areas, a Zonal statistics tool is 
required to summarize pixel values (i.e., their areas) within 
each Lebanese governorate. 

3 Results 
Table 2 lists areas of built-up land cover class calculated 
from GLC_FCS30D raster data georeferenced in WGS 84 
geographic CRS (section 2.2) and from GLC_FCS30D data 
that were reprojected to the UTM projected CRS (section 
2.1). These areas in Table 2 are given for 2015 and 2020, 
along with changes in built-up area and corresponding 
percentages. Percentages express built-up area change 
relative to the built-up area in 2015. 

When comparing percentages of built-up area changes 
calculated from data georeferenced in geographic CRS, and 
in projected one, the largest difference is 0.03% for the 
Nabatieh governorate. For all other governorates, there is 
either no difference or the difference is 0.01%, which can 
partly be attributed to the rounding-related issues. When 
comparing built-up areas for each year calculated from 
data in different CRSs, differences go up to 0.05 km2 (Akkar 
and Mount Lebanon Governorates). 

4 Discussion 

From the results listed in Table 2, it can be concluded that 
when a change in the built-up area has to be calculated, 
reprojecting data georeferenced in WGS 84 CRS to UTM CRS 
does not introduce significant differences from changes 
directly calculated from the data in WGS 84. Although this 
difference is not significant, traditionally common 
reprojection step is, as we have shown, obsolete, since 
modern GIS applications provide a way to make 
calculations from data georeferenced in geographic CRS. 
All geospatial raster data have some level of uncertainty 
associated with them and reprojecting them further 
increases those uncertainties. Therefore, reprojecting 
should, if possible, be avoided. 
On the other hand, when comparing areas (not changes) in 
Table 2 that are calculated from data in WGS 84 and in UTM 
CRS, larger differences can be observed. It is interesting to 
notice that for both years differences in areas calculated 

Table 2. Areas of built-up land cover class calculated from data in different CRSs for 2015 and 2020 and their change for the 10-km 
coastal zone of Lebanon. 

Governorate 
(area in 10–km CZ) 

Built–up area (km2) 
CRS 2015 2020 Change* 

Akkar 
(207.04 km2) 

WGS 84 32.22 36.49 4.27 (13.25%) 
UTM 32.27 36.54 4.28 (13.25%) 

Difference (abs.) 0.05 0.05 0.01 (0.00%) 

North 
(450.65 km2) 

WGS 84 70.10 71.74 1.64 (2.33%) 
UTM 70.10 71.74 1.64 (2.34%) 

Difference (abs.) 0.00 0.00 0.00 (0.01%) 

Keserwan–Jbeil 
(305.99 km2) 

WGS 84 46.94 46.47 –0.47 (–0.99%) 
UTM 46.98 46.52 –0.47 (–1.00%) 

Difference (abs.) 0.04 0.05 0.00 (0.01%) 

Beirut 
(21.47 km2) 

WGS 84 17.11 17.03 –0.08 (–0.47%) 
UTM 17.10 17.02 –0.08 (–0.46%) 

Difference (abs.) 0.01 0.01 0.00 (0.01%) 

Mount Lebanon 
(492.97 km2) 

WGS 84 115.24 114.91 –0.33 (–0.29%) 
UTM 115.28 114.94 –0.34 (–0.28%) 

Difference (abs.) 0.04 0.03 0.01 (0.01%) 

South 
(582.70 km2) 

WGS 84 83.58 85.73 2.15 (2.56%) 
UTM 83.62 85.76 2.14 (2.57%) 

Difference (abs.) 0.04 0.03 0.01 (0.01%) 

Nabatieh 
(35.21 km2) 

WGS 84 3.33 3.53 0.20 (6.02%) 
UTM 3.34 3.54 0.20 (6.05%) 

Difference (abs.) 0.01 0.01 0.00 (0.03%) 
 

* change is calculated as: (area in 2020) – (area in 2015); percentages as: [(area in 2020) – (area in 2015)] / (area in 2015) 
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from data in UTM and in WGS 84 are larger than 
corresponding differences built-up area change. This 
means that approximately the same level of difference was 
introduced in areal calculations for each year, but 
differences were almost nullified when calculating the 
change. Although we do not find observed differences to be 
significant, it must be emphasized that the presented 
analysis was limited to a relatively small geographical area. 
If the analysis was performed globally, the calculation 
procedure would either be notably more complex, or 
differences would be much larger. Previously stated issues 
related to georeferencing LCLU data in geographic or 
projected CRS can be mitigated by georeferencing them 
with DGGS. By referencing global LCLU products in equal-
area DGGS, the process of calculating the area of each LCLU 
class would be as simple as calculating it from raster data 
in equal-area projection, while keeping data georeferenced 
directly on the surface of the ellipsoid. LCLU data 
production workflow can also benefit from DGGS since it is 
particularly suitable for ‘vertically’ integrating data that are 
linked to a specific location (Li and Stefanakis 2020). This 
means that all input data that are used for generating LCLU 
data can first be converted to DGGS and then classification 
can be performed. However, it should be noted that there 
are still various issues related to the implementation and 
acceptance of DGGSs by the GIS community. As Goodchild 
(2019) states, DGGS is computationally more demanding 
than current flattened data models and it is conceptually 
more complex than rasters. From the LCLU data 
perspective, one issue is the fact that cell size in DGGSs is 
predetermined by a specific DGGS implementation. This 
means that DGGS cell size might not match the pixel size of 
satellite images from which land cover data were extracted. 

5 Conclusions 
In this paper, we compared two methods of calculating the 
area of built-up land cover change from LCLU data delivered 
in raster format. The same raster datasource was used in 
both methods, but in one method raster was georeferenced 
in geographic CRS, and in another it was transformed to the 
projected CRS before calculations. Because of the relatively 
small geographical scope of the analysis (Lebanese 10-km 
CZ), no significant differences were observed. However, we 
showed that it is quite easy to make calculations directly 
from data in geographic CRS, which is a traditionally avoided 
approach. We also discussed the benefits of using DGGS in 
relation to representing LCLU data, especially global ones. 
One of the main reasons for the potential of the DGGS 
becoming more widely used is the fact that it represents 
geographic reality in a way that is more adapted to the actual 
shape of the Earth, as compared to the current flattened 
approaches. 
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