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Towards Detailed and Public Data on Croatian Soil as a 
Prerequisite for Sustainable Environmental Management  

and Nature Conservation 
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Abstract: Soil is an indispensable component of the 
terrestrial ecosystem. It is thus unimaginable to perform 
sustainable land management without information on the 
pedosphere, regularly collected by mapping 
pedocartographic units and/or sampling at typical 
locations for laboratory acquisition of physical and 
chemical parameters. Despite soil inventory having been 
done in Croatia for decades, complex interinstitutional 
relations with ohen poorly regulated jurisdiction, rights 
and obligations have led to the nonexistence of a public 
soil database to date, one that would assist in daily efforts 
of many stakeholders (farmers, foresters, conservationists, 
planners, consultants, authorities and various decision 
makers, among others), and would strongly improve 
environmental and natural resource management in our 
country. In a project implemented on behalf of the World 
Bank from 2020 to 2021, a 30 m resolution spatial dataset 
was produced with 16 standard pedological variables 
estimated by applying machine learning algorithms 
against satellite imagery alongside climatic, geological and 
geomorphometric indicators (for a total of 533 covariates), 
while unifying soil data from numerous sources, some of 
which are not publicly available, which limits the 
availability of the project results. However, subsequent 
analyses performed outside of the project and only on 
publicly available target data have yielded results of similar 
quality, providing new opportunity to many interested 
parties. 
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1 Introduction 
Open access to high-resolution spatial data in general, and 
to soil data in particular, has the potential to be highly 
transformative to a wide palette of human activity, but 
perhaps most notably to environmental management 
(extending to agronomy and to most other forms of 
cultivation) and to nature conservation. Thus, effort is 
widely being made to provide open spatial data at a global 
(through Copernicus and similar initiatives) or at least 
continental scale (e.g. the HORIZON programmes of the 
European Commission). However, public funding (e.g. 
through various European Commission programmes) is 
also ohen spent on compiling datasets which end up 
having a singular purpose to meet the objectives of the 
project at hand, and shelved aherwards with no means of 
outside access, despite their potential usefulness for other 
purposes. Such cases are ohen lost opportunities to bring 
added value to work already completed, as well as to 

prevent future duplication of work (and, by extension, 
funding). This is particularly observable at the national 
level, where public institutions ohen claim ownership of 
underlying data (despite the questionability of such claims 
upon any data which have invariably also been procured 
through public funding), and therefore prohibit any 
distribution of the derivatives thereof. 
One such occurrence was during the STARS-RAS project, 
the basis for Agro-Ecological Zoning of Croatian territories. 
Through the course of the project, we were hired to 
produce a complete digital soil map of Croatia, consisting 
of 16 soil physical and chemical properties and soil 
classification as per the World Reference Base taxonomical 
standard, mapped across the entire country at 30 m 
resolution. Due to various government agencies claiming 
ownership on some of the underlying data used to produce 
these layers (both soil samples and covariates), any use of 
the products outside the project was prohibited. With the 
goal of bringing any potential value of these products to 
the wider Croatian public for further application, we have 
reproduced the described data products at our own cost, 
with fully analogous methodology, but this time only using 
publicly available covariates and soil samples, and have 
made the data products publicly available via Zenodo. 
Physical and chemical soil properties and classification 
were modeled through ensemble machine learning (using 
gradient boosting trees, gradient boosting linear models 
and random forests). While the physical and chemical 
property models displayed mixed capability for 
generalization, many of the properties were modeled with 
sufficient quality to demonstrate usefulness (validation 
adjusted R2 above 0.8). Classification modeling, however, 
displayed poor generalization capacity (validation 
weighted f1 < 0.5), indicating a need for methodology 
revision. 

2 Materials and methods 
The methodology for predictive soil mapping was adopted 
from Hengl and MacMillan, 2019. An ensemble machine 
learning approach was used against an exhaustive set of 
spatial covariates to model a total of 16 soil physical and 
chemical properties: organic carbon content (oc), total NCS 
nitrogen (n_tot_ncs), Mehlich3 extractable calcium 
(ca_mehlich3), potassium (k_mechlich3), magnesium 
(mg_mehlich3) and phosphorus (p_mehlich3), summary 
cation exchange capacity (cec_sum), saturation extract 
electrical conductivity (ec_satp), carbonate content 
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(caco3), 1:1 soil-water (ph_h2o) and soil-KCl suspension pH 
(ph_kcl), total clay (clay_tot_psa), silt (silt_tot_psa) and 
sand content (sand_tot_psa), coarse fragment content 
(wpg2), < 2 mm fraction ovendry bulk density (db_od) and 
depth to bedrock up to 400 cm (dbr), as well as soil type 
classification as per the World Reference Base taxonomical 
standard (wrb_rsg). Additionally, soil texture classification 
was derived from the modeled clay, silt and sand content, 
using the method described in Radočaj et al. (2020). 

2.1 Target dataset 
Target soil property data was compiled from the following 
sources: 1) data on Croatian soils collected by the former 
State Department for Environment and Nature Protection, 
consisting of 2199 pedological profiles sampled from 1963 
to 1966 (Martinović and Vranković 1997), further referenced 
as martinovic_1997, 2) data from the project Spatial 
variability of trace and toxic metals in agricultural soils of 
Croatia, provided by the Faculty of Agriculture, Zagreb, 
consisting of 811 samples acquired on a 8x8 km grid (Romić 
2013), further referenced as agricultural_2013, 3) data from 
the project Change in soil carbon stocks and calculation of 
soil total nitrogen and organic carbon trends and C:N ratios, 
consisting of 2519 samples collected from 1994 to 2004 (for 
the purpose of compiling the Geochemistry Atlas of 
Croatia) and 742 additional samples from locations 
revisited from 2015 to 2016 (URL-1), further referenced as 
azo_2013 and azo_2016. The depth to bedrock target 
dataset was further enhanced with national piezometric 
observations (Croatian Waters 2016), considering 
measurements of a minimum of 4 m, totaling in 812 
additional observations. Data from all sources were 
harmonized through unit consolidation and extraction of 
measurements equivalent to the topsoil (0–30 cm) depth 
horizon. As the source measurements were performed at 
varying depth horizons (of below 30 cm width), topsoil 
equivalent was obtained as a weighted average of 
measurements from all horizons which overlap with 
topsoil, with overlap fraction used as the weight. The total 
number of topsoil observations obtained per soil 
parameter is listed in Table 1. The spatial distribution of 
observations is shown in Figure 1. 
 
Table 1. Number of observations obtained per soil parameter. 

Parameter Samples Parameter Samples 

oc 3452 db_od 3148 

n_tot_ncs 5074 p_mehlich3 2598 

ca_mehlich3 726 ec_satp 685 

k_mehlich3 3364 caco3 2624 

mg_mehlich3 726 ph_h2o 2784 

clay_tot_psa 3408 ph_kcl 2041 

silt_tot_psa 3369 dbr 2576 

sand_tot_psa 3407 wrb_rsg 5025 

wpg2 2116   

 

 

 
Figure 1. Target observation coverage per source dataset 

(top), total sample density (bottom). 

2.2 Covariate set and preprocessing 
The covariates used for modeling soil properties and 
taxonomy were as follows: 1) a total of 16 terrain property 
layers derived from the official Croatian elevation dataset 
(URL-2), produced using GRASS GIS (GRASS Development 
Team 2017) and WhiteboxTools (Lindsay 2016), 2) Sentinel-
2 seasonal cloudless mosaics of 6 bands (blue, green, red, 
NIR, SWIR1, SWIR2) at 3 quantiles (P25, median and P75) 
from 2018 to 2020 for a total of 180 layers, 3) Sentinel-1 
monthly mosaics for 2018 and 2019 of the VV and VH bands, 
mosaicked as monthly mean over pixel, totaling 48 layers, 
4) Global surface water (GSW) dataset for 2019 (Pekel et al. 
2016), 6 layers, 5) Surface soil moisture (SSM) dataset for 
2018 and 2019 (URL-3), 6 layers, 6) CHELSA climate and 
bioclimatic data (URL-4), 50 layers, 7) 15-year global 1 km 
cloud cover (Wilson and Jetz 2016), 13 layers, 8) Long-term 
MODIS LST day-time and night-time temperatures (URL-5), 
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100 layers, 9) Long-term Aerosol thickness, monthly means 
and annual mean and standard deviation for period of 2000 
to 2017 (URL-6), 14 layers, 10) Monthly precipitation at 1 km 
resolution based on SM2RAIN-ASCAT 2007–2018, IMERGE, 
CHELSA Climate and WorldClim (URL-7), 25 layers, 11) 
Monthly mean water vapor content for period of 2000 to 
2017 (URL-8), 12 layers, 12) Geological map of Croatia 
(Croatian geological institute 2019), reclassified to 54 
classes representing lithological composition, resulting in 
54 layers representing pixel distance from nearest 
occurrence of each lithological class. All covariates were 
reprojected to ETRS89-extended / LAEA Europe and 
resampled in 30m resolution,  
with the considered data mask consisting of the landmask 
dictated by the coverage of the terrain layers 
(corresponding to land on Croatian territory), with pixels 
classified as built-up areas and water bodies (Pflugmacher 
et al. 2019) leh out of the mask. The total set of covariates 
resulted in over 400 individual layers, a very high number 
relative to the training sample size (as low as ~700 for some 
target variables). Furthermore, layers extracted from the 
same dataset were highly intercorrelated. To account for 
this, principal component analysis (PCA) was performed on 
the covariates to reduce the dimensionality of the input 
space. Predictors were divided into 10 groups and a 
separate PCA was performed on each group, such that the 
number of components accounted for 90% of cumulative 
variability of the group, resulting in under 70 total covariate 
layers across all groups. The PCAs were fitted on predictor 
values sampled at one million randomly chosen pixels 
within the data mask. 

2.3 Model specification 
Physical and chemical soil properties were modeled with 
two-level stacked regressor ensembles. The bottom level 
of the ensemble stack consisted of three groups of models: 
1) gradient boosting trees, 2) gradient boosting linear 
models and 3) random forest models. For each target 
property, five models from each group were selected for 
the ensemble, through a random search over their 
respective hyperparameter space (consisting of learning 
rate, conservativity constraints and tree topology), 
spatially cross-validated with five folds consisting of 
samples grouped into discrete 10x10 km tiles over the 
spatial domain. At the top stack level, another gradient 
boosting tree model was fitted to predict the final output 
from the predictions of the fiheen bottom-level models, 
with output constrained to the value range of the training 
data. In order to normalize target distributions, all 
properties were modeled as the natural logarithms of the 
actual values, with the exceptions of sand_tot_psa, 
silt_tot_psa, clay_tot_psa, ph_h2o, ph_kcl and db_od, and 
were converted back during postprocessing.  
Additionally, uncertainty of the predictions was estimated 
through two additional top-level models, fitted to predict 
the 5% and 95% quantiles of the output. Soil type 
classification was modeled with a voting classifier 
ensemble, with individual estimators trained in the same 
manner as with the regression models. The final class 
probability was obtained as a weighted soh vote between 

the fiheen selected estimators, with the estimator weight 
equal to its mean f1 score over the validation fold, 
multiplied by the ratio of test to train scoring in order to 
additionally penalize overfitting. In addition to pixel-wise 
probability of each class, uncertainty of the classification 
was estimated as pixel-wise relative entropy (ratio of 
prediction entropy to maximum possible entropy for the 
given number of classes). Modeling was performed in a 
Python environment with XGBoost (Chen and Hestrin 2016) 
and scikit-learn (Pedregosa et al. 2011), on a workstation 
equipped with a 12-core AMD Ryzen Threadripper 2920X 
CPU, a single NVIDIA RTX 2060 GPU and 64 GiB of memory. 
Table 2. Regression metrics for physical and chemical soil 
properties, including R-squared, R-squared adjusted for 
number of predictors and observations, and concordance 
correlation coefficient (CCC), mean over training folds and 
validation folds. 

Target R2 
train 

R2 
val 

R2_adj 
train 

R2_adj 
val 

CCC 
train 

CCC 
val 

oc 0.98 0.92 0.98 0.91 0.99 0.96 

ln(oc) 0.96 0.91 0.95 0.91 0.98 0.95 

n_tot_ncs 0.86 0.75 0.86 0.74 0.92 0.85 

ln(n_tot_ncs) 0.85 0.74 0.85 0.74 0.91 0.85 

ph_h2o 0.94 0.85 0.94 0.85 0.97 0.92 

ph_kcl 0.93 0.81 0.93 0.80 0.96 0.89 

clay_tot_psa 0.93 0.86 0.93 0.86 0.96 0.93 

silt_tot_psa 0.74 0.52 0.74 0.51 0.83 0.68 

sand_tot_psa 0.87 0.74 0.86 0.74 0.92 0.85 

db_od 0.79 0.70 0.78 0.70 0.88 0.82 

dbr 0.99 0.94 0.99 0.94 0.99 0.97 

ln(dbr) 0.98 0.93 0.98 0.93 0.99 0.96 

caco3 0.95 0.74 0.95 0.73 0.97 0.85 

ln(caco3) 0.93 0.81 0.93 0.80 0.96 0.90 

wpg2 0.97 0.77 0.97 0.76 0.99 0.88 

ln(wpg2) 0.98 0.87 0.98 0.87 0.99 0.93 

p_mehlich3 0.96 0.70 0.96 0.69 0.98 0.84 

ln(p_mehlich3) 0.90 0.78 0.90 0.77 0.94 0.87 

k_mehlich3 0.94 0.82 0.94 0.81 0.97 0.90 

ln(k_mehlich3) 0.92 0.83 0.92 0.83 0.95 0.91 

ca_mehlich3 0.99 0.80 0.98 0.78 0.99 0.89 

ln(ca_mehlich3) 0.99 0.88 0.99 0.86 0.99 0.93 

mg_mehlich3 0.98 0.67 0.98 0.63 0.99 0.81 

ln(mg_mehlich3) 0.97 0.76 0.97 0.73 0.99 0.86 

ec_satp 0.99 0.73 0.99 0.69 1.00 0.83 

ln(ec_satp) 0.99 0.78 0.98 0.75 0.99 0.87 

cec_sum 0.88 0.73 0.88 0.72 0.93 0.84 

ln(cec_sum) 0.89 0.74 0.88 0.73 0.94 0.85 
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3 Results and discussion 
Soil property regression yielded mixed results overall, with 
the worst performing model achieving mean validation 
adjusted R2 of 0.51 (soil silt content), while the top 
performer scored as high as 0.91 (organic carbon content), 
indicating that the methodology described, while capable 
of sufficient of even very good generalization for some soil 
properties, may not be uniformly applicable to the entire 
parameter space, at least with respect to the order of 
magnitude of the number of available target samples. 
Regression metrics for all targets are listed in Table 2. 
Classification modeling yielded poor overall 
generalization, with a weighted f1 score over the validation 
fold of 0.46, while the score over the entire sample space 
was 0.81, indicating high overfitting. Classification metrics 
are shown in Table 3, while the relative confusion matrix of 
the classifier, scatter plots for two of the regressors, as well 
as the soil texture map produced from the modeled silt, 
sand and clay contents are shown in Figure 2. 

Table 3. Classification metrics over the validation fold and 
across the entire target dataset, including precision, recall, 
and f1 score, weighted with class sample size.  

precision recall f1 

validation 0.47 0.50 0.46 

All 0.85 0.81 0.81 

A notable deficiency in the described methodology is the 
static nature of modeling soil properties without regard for 
the temporal dimension. Soil changes slowly relative to 
human perception, but it does indeed change, mainly 
through human activity and increasing change in climate. 
However, it is difficult to account for time variation when 
modeling soil at a local (national) level as described, due to 
low total number of available samples (which is why only a 
single, static layer was produced for each soil property, 
even though the target soil samples were collected over a 
span of 53 years). Consequently, efforts have been made 
(or are underway) at a continental or wider level (such as 
the soil layers listed at URL-9) in order to take advantage of 

 
Figure 2. Soil pH prediction scatter and metrics (top leP), organic carbon content prediction scatter and metrics - values 

unpacked from modeled logarithmic target (top right), soil taxonomy prediction relative confusion matrix (bottom leP), soil 
texture classification map (bottom right). 
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the higher amount of available soil samples over such 
areas of interest. Additionally, there is notable temporal 
mismatch between the target data (collected from 1966 to 
2016) and covariates (spanning 2000 onward) even in the 
context of producing a single, current-state dataset. While 
this was unavoidable due to availability of public soil 
sampling data in Croatia and the goal of the work to 
describe the current state of soils nationally, it is 
reasonable to assume that this affects the overall quality of 
the results. Further improvement, however, in contexts of 
both producing a current-state dataset and incorporating 
temporal dynamics, might come from utilising public soil 
samples collected in pedological and climatological 
conditions similar to those in Croatia. Nevertheless, we 
believe that this approach, which yielded the first public 
Croatian soil dataset in high spatial resolution, represents 
a step towards building national capacity for increasingly 
challenging environmental management. 

4 Annex 1: Source code and data products 
Source code used to produce the described layers is 
publicly available at: 
https://gitlab.com/jkrizan/dsmcroatia, all of the described 
data products are publicly available at: 
https://zenodo.org/records/10065971, and a small map 
portal was built for quick overview of the data products 
and made available at: http://hrsoil.multione.hr. 
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