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Quantifying Total Imperviousness from Building Footprint Area 
and Very High Resolution Air Photographs 
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Abstract: Imperviousness is the sealing of the soil surface 
by artificial materials that inhibit water transfer between 
the surface and soil. It has become a major environmental 
indicator of land cover change due to its impacts on 
hydrological and energy fluxes in the environment. 
Quantifying imperviousness has improved in the past 
decades with remote sensing technologies, but several 
challenges remain due to classification errors. We 
developed an innovative method based on vector building 
and road layers to quantify total imperviousness with 
greater accuracy when compared to current methods. 
Imperviousness was predicted with an accuracy 
approaching or surpassing 90% depending on the method 
(random forest, regression): with building footprint alone, 
R² value is about 0.88 when comparing simulated to 
observed values, and this increases to 0.94 when a road 
layer is added. 
Keywords: imperviousness; building footprint area; 
machine learning. 

1 Introduction 
The conversion of agricultural or natural land covers to 
urban/suburban uses represents one of the fastest land 
cover transitions occurring globally. As cities expand onto 
agricultural and natural soils, the surface is overlain with 
impervious materials that inhibit water flow into the soil. 
Imperviousness therefore lowers groundwater recharge 
and increases flood risk by increasing peak discharge and 
total storm runoff (Arnold and Gibbons 1996, Jacobson 
2011). In addition, imperviousness aggravates urban heat 
island effects (Hua et al. 2020, Shi et al. 2023) among other 
impacts. Imperviousness is therefore a key environmental 
indicator that is evolving rapidly both spatially and 
temporally throughout the world. The objective of this 
study is to improve imperviousness estimates by using 
vector building footprint and road layers in combination 
with very high resolution (20 cm) ortho-rectified aerial 
photographs. 

2 Materials and methods 
Quantifying imperviousness was carried out in 2 steps. 
Firstly, imperviousness was quantified for a selection of 
cities in France; secondly, statistical methods were used to 
relate imperviousness to building footprint and road vector 
layers. 

2.1 Quantifying imperviousness 
For 37 main cities located throughout France, 100 x 100 m 
polygons were created over a range of apparent building 
density conditions. Cities from all 13 regions were 
included. The number of polygons per city ranged from 4 
to 20 with a total of 230 polygons in all. For each polygon, 
100 random points were generated. The points were 
overlain on high resolution (20 cm) aerial photographs, and 
the surface of each point was visually classed as 
impervious (building, road, parking lot or other) or 
pervious (vegetation, agricultural field). In all, 23,000 
points were visually identified and manually inputted into 
an attribute table. These observations provided the 
reference or “Observed” imperviousness values. 

2.2 Creating the imperviousness model 
Observed imperviousness was related to 3 potential 
predictors: 1 – building area alone, 2 – building area and 
cumulative road length, 3 – building area and road area. 
Hence, for each of the 230 polygons, the building area, road 
length, and road area were extracted automatically from 
the National Geographic Information (IGN) BD-TOPO 
database; road area was calculated as the product of road 
length * road width. To predict imperviousness, several 
techniques were initially tested to relate imperviousness to 
the predictors described above. These were progressively 
reduced to the following methods: random forest, non-
linear regression, and linear regression on transformed 
(square root) variables. For each method, the total sample 
of 230 observations was divided into 160 calibration 
polygons (70%) and 70 validation polygons (30%). Metrics 
used to evaluate model performance were the following: 
R², Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE). For a selection of 68 polygons located in the central 
region of France, imperviousness values were categorized 
as Urban continuous or Urban discontinuous (Suburban). 

3 Results 
Results are presented in two sub-sections: the first 
provides basic descriptive statistics of the variables used in 
the analysis and the second deals with the prediction 
results. 

3.1 Polygon data characteristics 
In theory, the random point method should provide 
representative distributions of building area in the 
polygons. However, the distributions shown in Figure 1 (leh 
and middle) are not identical. Both distributions show a 
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first mode in the 0-5% range, but the random numbers 
method shihs the second mode to greater values than the 
BD-TOPO footprint area data. Mean and median random 
number building footprint areas are 31.2% and 30.5%, 
respectively; corresponding values for the BD-TOPO data 
are 25.7% and 20.8%, respectively. The random numbers 
method therefore has slightly greater building area values 
than the BD-TOPO method. Figure 1 (right) plots random 
numbers percentage building area versus BD-TOPO 
percentage building area, and the curve shows that the 
initial imperviousness values, in the range of about 0-10% 
fall on the 1:1 line, but that most of the remaining values 
are slightly greater with the greatest spread in the 10–50% 
range. Visual examination shows that the building 
footprint in the BD-TOPO layer is based on ground level 
contours whereas the air photo random number method 
includes overhanging roohops, so values are greater. The 
Pearson-r correlation coefficient for this plot is 0.94. 

   
Figure 1. Frequency histogram of building area from random 
point data (leP), Frequency distribution of building area from 
BD-TOPO (middle), Building area from random points versus 

building area from polygon layer (right). 
Road length unit (m) (Figure 2 leh) is different from the 
other values, so comparing distributions has limited 
meaning. The frequency histogram is provided 
nonetheless for other modelers; mean and median road 
length values are 212.8 m and 202.6 m per 10,000 m² 
polygon, respectively. Road area (middle) values are 
presented in the same % unit as building area values, and 
percentage road area rarely surpasses 20% of the total 
polygon area. Mean and median values are 8.4% and 8.1%, 
respectively. This corresponds roughly to about 25% to 
30% of the percentage building area within a polygon. 

   
Figure 2. Frequency histogram of cumulative road length 

(leP), Frequency histogram of road area (middle), Frequency 
Distribution of observed imperviousness values (right). 

The distribution of observed imperviousness (right) 
reflects the cumulative impervious surfaces within a 
polygon. Where building area never surpassed 80%, 
imperviousness can reach 100%. For a selection of 68 
polygons, mean and median impervious values for Urban 
were 88.6% and 89.5%, respectively. As expected, 
corresponding values for the Suburban category were 
lower at 70.3% and 73.0%, respectively. The range in 
imperviousness values was greater for Suburban (from 
20.0% to 99.0%, std. dev 19.1%) compared to Urban, which 
ranged from 47.0% to 100.0% (std. dev. 10.3%), so in terms 

of imperviousness, the Urban category represents a less 
heterogenous environment than Suburban where 
imperviousness can be quite low to very high. 

3.2 Predicting imperviousness from building and road 
layers 

Prediction results will be presented according to the 
explanatory variables used, from the simplest (building 
area alone) to the most elaborate (building area and road 
area). Accuracy metrics for all the prediction methods are 
summarized in Table 1. 
Figure 3 shows results for building area alone. Although the 
results are globally less good than when road length is 
included, the accuracy metrics shown in Table 1 remain 
high. Non-linear regression gives the best results, ahead of 
random forest, and linear regression has the lowest 
accuracy. This order is maintained throughout the results 
regardless of the explanatory variables used. In addition, 
residuals are clearly not randomly distributed in the linear 
regression model used. 
Table 1. Accuracy metrics for the different predictive models 
from validation data (bold numbers represent best results). 

Method R² MAE RMSE 
RF Bldg. Area 0.83 8.37 11.69 

Non-Lin., Bldg. 
Area1 

0.90 6.25 8.97 

Linear, Bldg. Area2 0.84 9.40 12.06 
RF Bldg. Area & Road 

length 
0.90 7.25 10.47 

Non-Lin., Bldg. Area 
& Road length3 

0.93 5.63 7.59 

Linear, Bldg. Area & 
Road length4 

0.87 9.22 11.52 

RF Bldg. Area & Road 
area 

0.90 6.32 8.81 

Non-Lin., Bldg. Area 
& Road area5 

0.93 5.41 7.39 

Linear, Bldg. Area & 
Road area6 

0.88 8.91 11.08 

1 imperv.=(8.661+3.982*x)/(1+0.025*x);  
x=percentage building area;  
2 sqrt. imperv.=2.760+0.954*x; 
x=sqrt. percentage building area; 
3 imperv.=(-1.431+4.033*x1+2.322*x2)/(1+0.030*x1 +0.009*x2); 
x1=percentage building area, 
x2=road length; 
4 sqrt. Imperv.=1.595+0.820*x1+0.651*x2; 
5 imperv.=(-1.148+4.224*x1+0.082*x2)/(1+0.033*x1); x1=percentage 
building area, x2=percentage road area; 
6 sqrt.Imperv.=1.752 + 0.825 *x1 +0.115*x2; 
x1=sqrt. building area, 
x2=sqrt. road area 
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Metrics improve as road length is added to percentage 
building area as an explanatory variable (Figure 4). The 
improvement is greatest for random forest which increases 
by 0.07 units in the R² value and the MAE decreases by 
about 1.1%. Corresponding values for non-linear 
regression are 0.03 and 0.62%. 

Using road area (Figure 5) instead of road length to predict 
imperviousness did not change the R2 values for random 
forest or non-linear regression, but it improved both the 
MAE and the RMSE substantially (Table 1). When all three 
accuracy metrics are taken into account, the best 
performance is the non-linear regression using 
percentage building and road areas, non-linear regression 
using percentage building area and road length, and 
finally, random forest using percentage building and road 
areas. 

4 Discussion 
The methods described above provide a quick and efficient 
means of estimating imperviousness accurately from 
building and road vector layers. The most frequent cases of 
outliers (e.g. the 2 points in the lower right corner of Figure 
3) arise in the presence of large parking lots where there are 
few buildings and roads but a high impervious surface 
(Figure 6). 
When the observed values are compared to the values in 
the 100-m Copernicus Imperviousness Density 2018, the 
Pearson R-value is high (0.90), but Figure 7 shows that 
Copernicus tends to underpredict imperviousness below 
an imperviousness threshold of about 40% compared to 
our observed results. Similar results were also observed in 
Norway (Strand 2022). 

5 Conclusions 
Imperviousness was estimated accurately from building 
and road vector layers. Explained variance for the best 
models  
was greater than 90% and MAE values were less than 6%. 
Where national building layers are available, quantifying 
the entire national coverage can take only a few hours 
versus several weeks or months of extensive image 
classification. Most countries are currently elaborating 
their own building footprint layers, so we can expect data 

   
Figure 3. Imperviousness predicted from Random Forest on 
building area alone (leP), non-linear regression on building 

area alone (middle), linear regression on building area alone 
(right). 

   
Figure 4. Imperviousness predicted from Random Forest on 
building area and road length (leP), non-linear regression 

(middle), linear regression (right). 

   
Figure 5. Imperviousness predicted from Random Forest on 
building area and road area (leP), non-linear regression on 
building area and road area (middle), linear regression on 

building area and road area (right). 

  
Figure 6. Example of high imperviousness and low 

building/road areas. 
Figure 7. Copernicus imperviousness versus Observed 

imperviousness. 
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availability to grow exponentially. We are currently starting 
to explore the potential of extrapolating our results to 
other countries with freely available building polygon data. 
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