
Diagnostic_Plotting

January 23, 2018

Nick Featherstone (January, 2018)
NOTE: This document can be viewed in PDF or HTML (recommended) form. It can also be

run as an interactive Jupyter notebook.
The HTML and PDF versions are located in Rayleigh/doc/Diagnostic_Plotting.{html,pdf}

The Jupyter notebook is located in Rayleigh/etc/analysis/Diagnostic_Plotting.ipynb
Standalone Python example scripts for each output type may also found in
Rayleigh/etc/analysis/

1 Contents

1. Running a Benchmark with Sample Output
2. Configuring your Python environment
3. Overview of Rayleigh’s Diagnostic Package
4. Global Averages
5. Shell Averages
6. Azimuthal Averages
7. Simulation Slices
8. Spherical Harmonic Spectra
9. Point Probes

10. Modal Outputs

2 I. Running a Benchmark with Sample Output

Before you can plot data, you will need to generate data. The code samples in this notebook
assume that you have run the model described by the input file found in:

rayleigh/etc/input_examples/benchmark_diagnostics_input
This input file instructs Rayleigh to run the Christensen et al. (2001) hydrodynamic (case 0)

benchmark. Running this model with the prescribed outputs will generate approximately 70 MB
of data.

To run this model: 1. Create a directory for your simulation (e.g., mkdir my_test_run)
2. Copy the input file: cp rayleigh/etc/input_examples/benchmark_diagnostics_input
my_test_run/main_input 3. Copy or soft-link the rayleigh executable: cp
Rayleigh/bin/rayleigh.opt my_test_run/. 4. Run the code: mpiexec -np N ./rayleigh -nprow n
-npcol m (choose values of {N,n,m} such that n x m = N)

1

The code will run for 40,000 timesteps, or four viscous diffusion times. While it runs, Rayleigh
will perform an in-situ analysis of the accuracy benchmark. Reports are written once every 1,000
time steps and are stored in the Benchmark_Reports subdirectory. Examine file 00030000 and en-
sure that you see similar results to those below. Your exact numbers may differ slightly, but all
quantities should be under 1% difference.

Observable Measured Suggested % Difference Std. Dev.

Kinetic Energy 58.347827 58.348000 -0.000297 0.000000
Temperature 0.427424 0.428120 -0.162460 0.000101
Vphi -10.119483 -10.157100 -0.370356 0.013835
Drift Frequency 0.183016 0.182400 0.337630 0.007295

If necessary, copy the data to the system on which you intend to conduct your analysis. Before
you can plot, you will need to configure your Python environment.

3 II. Configuring Your Python Environment

Rayleigh comes packaged with a Python library (rayleigh_diagnostics.py) that provides data struc-
tures and methods associated with each type of diagnostic output in Rayleigh. This library relies
on Numpy and is compatible with Python 3.x or 2.x (The print function is imported from the future
module).

If you wish to follow along with the plotting examples described in this document, you will
need to have the Numpy, Matplotlib, and (optionally) Basemap Python packages installed. The
following versions of these packages were used when creating these examples: * Matplotlib v2.0.2
* Numpy v1.13.1 * Basemap v1.0.7

Unless you are experienced at installing and managing Python packages, I recommend setting
up a virtual environment for Python using Conda. You may also install the required packages
manually, but the advantage of this approach is that you maintain an entirely separate version of
Python and related packages for this project. Below are directions for setting up a Python/Conda
environment with Intel-optimized Python packages on a Linux system (Mac and Windows work
similarly).

3.1 Conda Installation on Linux Systems

Step 1: Download the appropriate Miniconda installation script from https://conda.io/

miniconda.html (choose Python 3.x)
Step 2: Make the shell script executable via: chmod +x Miniconda3-latest-Linux-x86_64.sh

(or similar script name)
Step 3: Run the installation script: ./Miniconda3-latest-Linux-x86_64.sh
NOTE: The default installation directory is your home directory. This is also where Python

packages for your Conda environments will be installed. Avoid installing to a disk with limited
space (user home directories on HPC systems are often limited to a few GB).

NOTE: Unless you have a specific reason not to do so, answer "yes" to the question concerning
prepending to PATH.

Step 5: Update your Conda: conda update conda
Step 6: Add the Intel Conda channel: conda config --add channels intel

2

https://conda.io/docs/
https://conda.io/miniconda.html
https://conda.io/miniconda.html

Step 7: Create a virtual environment for Intel’s Conda distribution: conda create -n idp
intelpython3_full python=3

NOTE: In this case, idp will be your virtual environment name. You are free to pick an alterna-
tive when running conda create.

NOTE: A number of Python packages will be downloaded, including Numpy and Matplotlib.
The process may appear to hang at the last step. Be patient.

Step 8: Activate your virtual environment: source activate idp
Step 9: Install the Basemap package: conda install -c intel basemap
Step 10: Verify your installation. Type python and then type the following commands at the

prompt: 1. import numpy 2. import matplotlib 3. import mpl_tookits.basemap
If those commands worked without error, you may close Python (type exit()). You can revert

to your native environment by typing source deactivate (or just close the terminal). Whenever
you wish to access your newly-installed Python, type source activate idp first, before running
python.

3.2 Preparing to Plot

All examples in this document rely on the rayleigh_diagnostics module. This module is located
in Rayleigh/etc/analysis, along with several standalone scripts copies from the individual sec-
tions of this document. For example, the script plot_G_Avgs.py contains the code from section IV
below. All python files you wish to use will need to reside in either your run directory (recom-
mended) or a directory within your PYTHONPATH.

We suggest copying all python files to your my_test_run directory: 1. cp
Rayleigh/etc/analysis/.py my_test_run/. 2. cp Rayleigh/etc/analysis/.ipynb my_test_run/.

3.3 The Jupyter Notebook

This document resides in three places: 1. Rayleigh/doc/Diagnostic_Plotting.pdf 2.
Rayleigh/doc/Diagnostic_Plotting.html 3. Rayleigh/etc/analysis/Diagnostic_Plotting.ipynb

The third file is a Jupyter notebook file. This source code was used to generate the html and
pdf documents. The notebook is designed to be run from within a Rayleigh simulation directory.
If you wish to follow along interactively, copy the Jupyter notebook file from etc/analysis into
your Rayleigh simulation directory (step 2 from Preparing to Plot). You can run the file in Jupyter
via: 1. source activate idp 2. jupyter notebook (from within your my_test_run directory) 3. select
Diagnostic_Plotting.ipynb in the file menu that presents itself.

When finished: 1. To close the notebook, type ctrl+c and enter "yes" when prompted to shut
down the notebook server. 2. type source deactivate

4 III. Overview of Diagnostics in Rayleigh

Rayleigh’s diagnostics package facilitates the in-situ analysis of a simulation using a variety of
sampling methods. Each sampling method may be applied to a unique set of sampled quanti-
ties. Sampling methods are hereafter referred to as output types and sampled quantities as output
variables.

Files of each output type are stored in a similarly-named subdirectory within the Rayleigh
simulation directory. Output files are numbered by the time step of the final data record stored in
the file. Output behavior for each simulation is controlled through the main_input file. For each

3

http://jupyter.org/

output type, the user specifies the output variables, cadence, records-per-file, and other properties
by modifying the appropriate variables in the output_namelist section of main_input.

4.1 Basic Output Control

Each output type in Rayleigh has at least three namelist variables that govern its behavior:
{OutputType}_values: comma-separated list of menu codes corresponding to the desired

output variables
{OutputType}_frequency: integer value that determines how often this type of output is

performed
{OutputType}_nrec: integer value that determines how many records are stored in each

output file.
All possible output variables and their associated menu codes are described in

rayleigh/doc/rayleigh_output_variables.pdf You may find it useful to have that document open
while following along with examples in this notebook.

As an example of how these variables work, suppose that we want to occasionally output
equatorial cuts (output type) of temperature, kinetic energy density, and radial velocity (output
variables). At the same time, we might wish to dump full-volume averages (output type) of kinetic
and magnetic energy (output variables) with a higher cadence. In that case, something similar to
the following would appear in main_input:

globalavg_values = 401, 1101
globalavg_frequency = 50
globalavg_nrec = 100

equatorial_values = 1, 401, 501
equatorial_frequency = 2500
equatorial_nrec = 2

This tells Rayleigh to output full-volume-averages of kinetic energy density (value code 401)
and magnetic energy density (value code 1101) once every 50 time steps, with 100 records per file.
Files are named based on the time step number of their final record. As a result, information from
time steps 50, 100, 150, ..., 4950, 5000 will be stored in the file named G_Avgs/00005000. Time steps
5050 through 10,000 will stored in G_Avgs/00010000, and so on.

For the equatorial cuts, Rayleigh will output radial velocity (code 1), the kinetic energy
density (code 401) and temperature (code 501) in the equatorial plane once every 2,500 time
steps, storing two time steps per file. Data from time steps 2,500 and 5,000 will be stored
in Equatorial_Slices/00005000. Data from time steps 7,500 and 10,000 will be stored in Equato-
rial_Slices/00010000 , and so on.

This general organizational scheme for output was adapted from that developed by Thomas Clune for
the ASH code.

4.2 Positional Output Control

Many of Rayleigh’s output types allow the user to specify a set of gridpoints at which to sample
the simulation. A user can, for example, output spherical surfaces sampled at arbitrary radii, or a
meridional plane sampled at a specific longitude. This behavior is controlled through additional
namelist variables; we refer to these variables as positional specifiers. In the sections that follow,
positional specifiers associated with a given output type, if any, will be defined.

Positional specifiers are either indicial or normalized. In the main_input file, indicial specifiers

4

can be assigned a comma-separated list of grid indices on which to perform the output. For ex-
ample,

shellslice_levels = 1, 32, 64, 128
instructs Rayleigh to output shell slices at { radius[1], radius[32], radius[64], radius[128]}. Note

that radius[1] is the outer boundary.
While useful in some situations, specifying indices can lead to confusion if a simulations res-

olution needs to be changed at some point during a model’s evolution. For example if the radial
grid initially had 128 points, index 128 would correspond to the lower boundary. If the resolution
were to double, index 128 would correspond to mid-shell.

For this reason, all positional specifiers may also be written in normalized form. Instead of in-
tegers, the normalized specifier is assigned a comma separated list of real values in the range [0,1].
The value of zero corresponds to the lowest-value grid coordinate (e.g., the inner radial bound-
ary or theta=0 pole). The value 1 corresponds to the maximal coordinate (e.g., the outer radial
boundary or theta=pi pole). A value of 0.5 corresponds to mid-domain. Normalized coordinates
are indicated by adding *_nrm* to the indicial specifier’s name. For example,

shellslice_levels_nrm= 0, 0.5, 0.95
instructs Rayleigh to output shell slices at the lower boundary, mid-shell, and slightly below

the upper boundary. Rayleigh does not interpolate, but instead picks the grid coordinate closest to
each specified normalized coordinate.

We recommend using normalized coordinates to avoid inconsistencies between restarts. They
also overcome difficulties associated with the non-uniform nature of the radial and theta grids
wherein grid points cluster near the boundaries.

Positional Ranges Ranges of coordinates can be specified using shorthand, if desired. The
inclusive coordinate range [X,Y] is indicated by a positive/negative number pair appearing in the
indicial or normalized coordinate list. Multiple ranges can be specified within a list. For example,

shellslice_levels = 1,10,-15, 16, 20,-25, 128
would instruct Rayleigh to output shell slices at radial indices = { 1, 10, 11, 12, 13, 14, 15, 16, 20,

21, 22, 23, 24, 25, 128}
Similarly,
shellslice_levels_nrm = 0,-0.5, 1.0
instructs Rayleigh to output shells at all radii in the lower half of the domain, and at the outer

boundary.

4.3 IV. Global Averages

Summary: Full-volume averages of requested output variables over the full, spherical shell
Subdirectory: G_Avgs
main_input prefix: globalavg
Python Class: G_Avgs
Additional Namelist Variables:

None
Before proceeding, ensure that you have copied Rayleigh/etc/analysis/rayleigh_diagnostics.py to your

simulation directory. This Python module is required for reading Rayleigh output into Python.
Examining the main_input file, we see that the following output values have been denoted for

the Global Averages (see rayleigh_output_variables.pdf for the mathematical formulae):

Menu Code Description

401 Full Kinetic Energy Density (KE)

5

Menu Code Description

402 KE (radial motion)
403 KE (theta motion)
404 KE (phi motion)
405 Mean Kinetic Energy Density (MKE)
406 MKE (radial motion)
407 MKE (theta motion)
408 MKE (phi motion)
409 Fluctuating Kinetic Energy Density (FKE)
410 FKE (radial motion)
411 FKE (theta motion)
412 FKE (phi motion)

In the example that follows, we will plot the time-evolution of these different contributions to
the kinetic energy budget. We begin with the following preamble:

In [1]: from rayleigh_diagnostics import G_Avgs, build_file_list

import matplotlib.pyplot as plt

import numpy

The preamble for each plotting example will look similar to that above. We import the
numpy and matplotlib.pyplot modules, aliasing the latter to plt. We also import two items from
rayleigh_diagnostics: a helper function build_file_list and the GlobalAverage class.

The G_Avgs class is the Python class that corresponds to the full-volume averages stored in the
G_Avgs subdirectory of each Rayleigh run.

We will use the build_file_list function in many of the examples that follow. It’s useful when
processing a time series of data, as opposed to a single snapshot. This function accepts three
parameters: a beginning time step, an ending time step, and a subdirectory (path). It returns a list
of all files found in that directory that lie within the inclusive range [beginning time step, ending
time step]. The file names are prepended with the subdirectory name, as shown below.

In [2]: # Build a list of all files ranging from iteration 0 million to 1 million

files = build_file_list(0,1000000,path='G_Avgs')

print(files)

['G_Avgs/00010000', 'G_Avgs/00020000', 'G_Avgs/00030000', 'G_Avgs/00040000']

We can create an instance of the G_Avgs class by initializing it with a filename. The optional
keyword parameter path is used to specify the directory. If path is not specified, its value will
default to the subdirectory name associated with the datastructure (G_Avgs in this instance).

Each class was programmed with a docstring describing the class attributes. Once you created
an instance of a rayleigh_diagnostics class, you can view its attributes using the help function as
shown below.

In [3]: a = G_Avgs(filename=files[0],path='') # Here, files[0]='G_Avgs/00010000'

#a= G_Avgs(filename='00010000') would yield an equivalent result

help(a)

6

Help on G_Avgs in module rayleigh_diagnostics object:

class G_Avgs(builtins.object)

| Rayleigh GlobalAverage Structure

| ----------------------------------

| self.niter : number of time steps

| self.nq : number of diagnostic quantities output

| self.qv[0:nq-1] : quantity codes for the diagnostics output

| self.vals[0:niter-1,0:nq-1] : The globally averaged diagnostics

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='G_Avgs/')

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

Examining the docstring, we see a few important attributes that are common to the other out-
puts discussed in this document: 1. niter -- the number of time steps in the file 2. nq -- the number
of output variables stored in the file 3. qv -- the menu codes for those variables 4. vals -- the actual
data 5. time -- the simulation time corresponding to each output dump

The first step in plotting a time series is to collate the data.

In [4]: # Loop over all files and concatenate their data into a single array

nfiles = len(files)

for i,f in enumerate(files):

a = G_Avgs(filename=f,path='')

if (i == 0):

nq = a.nq

niter = a.niter

gavgs = numpy.zeros((niter*nfiles,nq),dtype='float64')

iters = numpy.zeros(niter*nfiles,dtype='int32')

time = numpy.zeros(niter*nfiles,dtype='float64')

i0 = i*niter

7

i1 = (i+1)*niter

gavgs[i0:i1,:] = a.vals

time[i0:i1] = a.time

iters[i0:i1] = a.iters

4.4 The Lookup Table (LUT)

The next step in the process is to identify where within the gavgs array our deisired output vari-
ables reside. Every Rayleigh file object possesses a lookup table (lut). The lookup table is a python
list used to identify the index within the vals array where a particular menu code resides. For
instance, the menu code for the theta component of the velocity is 2. The location of v_theta in the
vals array is then stored in lut[2].

Note that you should never assume that output variables are stored in any particular order.
Moreover, the lookup table is unique to each file and is likely to change during a run if you modify
the output variables in between restarts. When running the benchmark, we kept a consistent set
of outputs throughout the entirety of the run. This means that the lookup table did not change
between outputs and that we can safely use the final file’s lookup table (or any other file’s table)
to reference our data.

4.5 Plotting Kinetic Energy

Let’s examine the different contributions to the kinetic energy density in our models. Before we
can plot, we should use the lookup table to identify the location of each quantity we are interested
in plotting.

In [5]: #The indices associated with our various outputs are stored in a lookup table

#as part of the GlobalAverage data structure. We define several variables to

#hold those indices here:

lut = a.lut

ke = lut[401] # Kinetic Energy (KE)

rke = lut[402] # KE associated with radial motion

tke = lut[403] # KE associated with theta motion

pke = lut[404] # KE associated with azimuthal motion

#We also grab some energies associated with the mean (m=0) motions

mke = lut[405]

mrke = lut[406] # KE associated with mean radial motion

mtke = lut[407] # KE associated with mean theta motion

mpke = lut[408] # KE associated with mean azimuthal motion

#We also output energies associated with the fluctuating/nonaxisymmetric

#motions (e.g., v- v_{m=0})

fke = lut[409]

frke = lut[410] # KE associated with mean radial motion

ftke = lut[411] #KE associated with mean theta motion

fpke = lut[412] # KE associated with mean azimuthal motion

8

To begin with, let’s plot the total, mean, and fluctuating kinetic energy density during the
initial transient phase, and then during the equilibrated phase.

In [6]: sizetuple=(10,3)

fig, ax = plt.subplots(ncols=2, figsize=sizetuple)

ax[0].plot(time, gavgs[:,ke], label='KE')

ax[0].plot(time, gavgs[:,mke],label='MKE')

ax[0].plot(time, gavgs[:,fke], label='FKE')

ax[0].legend(loc='center right', shadow=True)

ax[0].set_xlim([0,0.2])

ax[0].set_title('Equilibration Phase')

ax[0].set_xlabel('Time')

ax[0].set_ylabel('Energy')

ax[1].plot(time, gavgs[:,ke], label='KE')

ax[1].plot(time, gavgs[:,mke], label = 'MKE')

ax[1].plot(time,gavgs[:,fke],label='FKE')

ax[1].legend(loc='center right', shadow=True)

ax[1].set_title('Entire Time-Trace')

ax[1].set_xlabel('Time')

ax[1].set_ylabel('Energy')

saveplot = False # Plots appear in the notebook and are not written to disk (set to True to save to disk)

savefile = 'energy_trace.pdf' #Change .pdf to .png if pdf conversion gives issues

plt.tight_layout()

plt.show()

We can also look at the energy associated with each velocity component. Note that we log scale
in the last plot. There is very little mean radial or theta kinetic energy; it is mostly phi energy.

In [7]: sizetuple=(5,10)

xlims=[0,0.2]

fig, ax = plt.subplots(ncols=1, nrows=3, figsize=sizetuple)

ax[0].plot(time, gavgs[:,ke], label='KE')

ax[0].plot(time, gavgs[:,rke],label='RKE')

ax[0].plot(time, gavgs[:,tke], label='TKE')

9

ax[0].plot(time, gavgs[:,pke], label='TKE')

ax[0].legend(loc='center right', shadow=True)

ax[0].set_xlim(xlims)

ax[0].set_title('Total KE Breakdown')

ax[0].set_xlabel('Time')

ax[0].set_ylabel('Energy')

ax[1].plot(time, gavgs[:,fke], label='FKE')

ax[1].plot(time, gavgs[:,frke], label='FRKE')

ax[1].plot(time, gavgs[:,ftke], label='FTKE')

ax[1].plot(time, gavgs[:,fpke], label='FPKE')

ax[1].legend(loc='center right', shadow=True)

ax[1].set_xlim(xlims)

ax[1].set_title('Fluctuating KE Breakdown')

ax[1].set_xlabel('Time')

ax[1].set_ylabel('Energy')

ax[2].plot(time, gavgs[:,mke], label='MKE')

ax[2].plot(time, gavgs[:,mrke], label='MRKE')

ax[2].plot(time, gavgs[:,mtke], label='MTKE')

ax[2].plot(time, gavgs[:,mpke], label='MPKE')

ax[2].legend(loc='lower right', shadow=True)

ax[2].set_xlim(xlims)

ax[2].set_title('Mean KE Breakdown')

ax[2].set_xlabel('Time')

ax[2].set_ylabel('Energy')

ax[2].set_yscale('log')

plt.tight_layout()

plt.show()

10

11

5 V. Shell Averages

Summary: Spherical averages of requested output variables. Each output variable is stored as a
1-D function of radius.

Subdirectory: Shell_Avgs
main_input prefix: shellavg
Python Class: Shell_Avgs
Additional Namelist Variables:

None
The Shell-Averaged outputs are useful for examining how quantities vary as a function of

radius. They are particularly useful for examining the distribution of energy as a function of
radius, or the heat flux balance established by the system.

Examining the main_input file, we see that the following output values have been denoted for
the Shell Averages (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description

1 Radial Velocity
2 Theta Velocity
3 Phi Velocity
501 Temperature Perturbation
1438 Radial Convective Heat Flux
1468 Radial Conductive Heat Flux

In the example that follows, we will plot the spherically-averaged velocity field as a function of
radius, the mean temperature profile, and the radial heat flux. We begin with a preamble similar
to that used for the Global Averages. Using the help function, we see that the Shell_Avgs data
structure is similar to that of the G_Avgs. There are three important differences: * There is a radius
attribute (necessary if we want to plot anything vs. radius) * The dimensionality of the values
array has changed; radial index forms the first dimension. * The second dimension of the values
array has a length of 4. In addition to the spherical mean, the 1st, 2nd and 3rd moments are stored
in indices 0,1,2, and 3 respectively.

In [8]: from rayleigh_diagnostics import Shell_Avgs, build_file_list

import matplotlib.pyplot as plt

import numpy

Build a list of all files ranging from iteration 0 million to 1 million

files = build_file_list(0,1000000,path='Shell_Avgs')

a = Shell_Avgs(filename=files[0], path='')

help(a)

Help on Shell_Avgs in module rayleigh_diagnostics object:

class Shell_Avgs(builtins.object)

12

| Rayleigh Shell Average Structure

| ----------------------------------

| self.niter : number of time steps

| self.nq : number of diagnostic quantities output

| self.nr : number of radial points

| self.qv[0:nq-1] : quantity codes for the diagnostics output

| self.radius[0:nr-1] : radial grid

|

| For version 1:

| self.vals[0:nr-1,0:nq-1,0:niter-1] : The spherically averaged diagnostics

|

|

| For version 2:

| self.vals[0:n-1,0:3,0:nq-1,0:niter-1] : The spherically averaged diagnostics

| 0-3 refers to moments (index 0 is mean, index 3 is kurtosis)

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='Shell_Avgs/', ntheta=0)

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

While it can be useful to look at instaneous snapshots of Shell Averages, it’s often useful to
examine these outputs in a time-averaged sense. Let’s average of all 200 snapshots in the last file
that was output. We could average over data from multiple files, but since the benchmark run
achieves a nearly steady state, a single file will do in this case.

In [9]: nfiles = len(files)

nr = a.nr

nq = a.nq

13

nmom = 4

niter = a.niter

radius = a.radius

savg=numpy.zeros((nr,nmom,nq),dtype='float64')

for i in range(niter):

savg[:,:,:] += a.vals[:,:,:,i]

savg = savg*(1.0/niter)

lut = a.lut

vr = lut[1] # Radial Velocity

vtheta = lut[2] # Theta Velocity

vphi = lut[3] # Phi Velocity

thermal = lut[501] # Temperature

eflux = lut[1438] # Convective Heat Flux (radial)

cflux = lut[1468] # Conductive Heat Flux (radial)

5.1 Velocity vs. Radius

Next, we plot the mean velocity field, and its first moment, as a function of radius. Notice that
the radial and theta velocity components have a zero spherical mean. Since we are running an
incompressible model, this is a good sign!

In [10]: sizetuple = (7,7)

fig, ax = plt.subplots(nrows=2, ncols =1, figsize=sizetuple)

ax[0].plot(radius,savg[:,0,vr],label=r'v_r')

ax[0].plot(radius,savg[:,0,vtheta], label=r'v_θ')

ax[0].plot(radius,savg[:,0,vphi], label=r'v_ϕ')

ax[0].legend(shadow=True,loc='lower right')

ax[0].set_xlabel('Radius')

ax[0].set_ylabel('Velocity')

ax[0].set_title('Spherically-Averaged Velocity Components')

ax[1].plot(radius,savg[:,1,vr],label=r'v_r')

ax[1].plot(radius,savg[:,1,vtheta], label=r'v_θ')

ax[1].plot(radius,savg[:,1,vphi], label=r'v_ϕ')

ax[1].legend(shadow=True,loc='upper left')

ax[1].set_xlabel('Radius')

ax[1].set_ylabel('Velocity')

ax[1].set_title('Velocity Components: First Spherical Moment')

plt.tight_layout()

plt.show()

14

5.2 Radial Temperature Profile

We might also look at temperature ...

In [11]: fig, ax = plt.subplots()

ax.plot(radius,savg[:,0,thermal],label='Temperature (mean)')

ax.plot(radius,savg[:,1,thermal]*10, label='Temperature (standard dev.)')

ax.legend(shadow=True,loc='upper right')

ax.set_xlabel('Radius')

ax.set_ylabel('Velocity')

ax.set_title('Temperature')

15

plt.show()

5.3 Heat Flux Contributions

We can also examine the balance between convective and conductive heat flux. In this case, before
plotting these quantities as a function of radius, we normalize them by the surface area of the
sphere to form a luminosity.

In [12]: fpr=4.0*numpy.pi*radius*radius

elum = savg[:,0,eflux]*fpr

clum = savg[:,0,cflux]*fpr

tlum = elum+clum

fig, ax = plt.subplots()

ax.plot(radius,elum,label='Convection')

ax.plot(radius,clum, label='Conduction')

ax.plot(radius,tlum, label='Total')

ax.set_title('Flux Balance')

ax.set_ylabel(r'Energy Flux ($\times 4\pi r^2$)')

ax.set_xlabel('Radius')

ax.legend(shadow=True)

plt.tight_layout()

plt.show()

16

6 VI. Azimuthal Averages

Summary: Azimuthal averages of requested output variables. Each output variable is stored as a
2-D function of radius and latitude.

Subdirectory: AZ_Avgs
main_input prefix: azavg
Python Class: AZ_Avgs
Additional Namelist Variables:

None
Azimuthally-Averaged outputs are particularly useful for examining a system’s mean flows

(i.e., differential rotation and meridional circulation).
Examining the main_input file, we see that the following output values have been denoted for

the Azimuthal Averages (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description

1 Radial Velocity
2 Theta Velocity
3 Phi Velocity
201 Radial Mass Flux
202 Theta Mass Flux
501 Temperature Perturbation

17

In the example that follows, we demonstrate how to plot azimuthal averages, including how
to generate streamlines of mass flux. Note that since the benchmark is Boussinesq, our velocity
and mass flux fields are identical. This is not the case when running an anelastic simulation.

We begin with the usual preamble and also import two helper routines used for displaying
azimuthal averages.

Examining the data structure, we see that the vals array is dimensioned to account for latitudi-
nal variation, and that we have new attributes costheta and sintheta used for referencing locations
in the theta direction.

In [13]: from rayleigh_diagnostics import AZ_Avgs, build_file_list, plot_azav, streamfunction

import matplotlib.pyplot as plt

import pylab

import numpy

#from azavg_util import *

files = build_file_list(30000,40000,path='AZ_Avgs')

az = AZ_Avgs(files[0],path='')

help(az)

Help on AZ_Avgs in module rayleigh_diagnostics object:

class AZ_Avgs(builtins.object)

| Rayleigh AZ_Avgs Structure

| ----------------------------------

| self.niter : number of time steps

| self.nq : number of diagnostic quantities output

| self.nr : number of radial points

| self.ntheta : number of theta points

| self.qv[0:nq-1] : quantity codes for the diagnostics output

| self.radius[0:nr-1] : radial grid

| self.costheta[0:ntheta-1] : cos(theta grid)

| self.sintheta[0:ntheta-1] : sin(theta grid)

| self.vals[0:ntheta-1,0:nr-1,0:nq-1,0:niter-1] : The phi-averaged diagnostics

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='AZ_Avgs/')

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

18

|

| __weakref__

| list of weak references to the object (if defined)

Before creating our plots, let’s time-average over the last two files that were output (thus sam-
pling the equilibrated phase).

In [14]: nfiles = len(files)

tcount=0

for i in range(nfiles):

az=AZ_Avgs(files[i],path='')

if (i == 0):

nr = az.nr

ntheta = az.ntheta

nq = az.nq

azavg=numpy.zeros((ntheta,nr,nq),dtype='float64')

for j in range(az.niter):

azavg[:,:,:] += az.vals[:,:,:,j]

tcount+=1

azavg = azavg*(1.0/tcount) # Time steps were uniform for this run, so a simple average will suffice

lut = az.lut

vr = azavg[:,:,lut[1]]

vtheta = azavg[:,:,lut[2]]

vphi = azavg[:,:,lut[3]]

rhovr = azavg[:,:,lut[201]]

rhovtheta = azavg[:,:,lut[202]]

temperature = azavg[:,:,lut[501]]

radius = az.radius

costheta = az.costheta

sintheta = az.sintheta

Before we render, we need to do some quick post-processing: 1. Remove the spherical mean
temperature from the azimuthal average. 2. Convert v_phi into omega 3. Compute the magnitude
of the mass flux vector 4. Compute stream function associated with the mass flux field

In [15]: #Subtrace the ell=0 component from temperature at each radius

for i in range(nr):

temperature[:,i]=temperature[:,i] - numpy.mean(temperature[:,i])

#Convert v_phi to an Angular velocity

omega=numpy.zeros((ntheta,nr))

for i in range(nr):

19

omega[:,i]=vphi[:,i]/(radius[i]*sintheta[:])

#Generate a streamfunction from rhov_r and rhov_theta

psi = streamfunction(rhovr,rhovtheta,radius,costheta,order=0)

#contours of mass flux are overplotted on the streamfunction PSI

rhovm = numpy.sqrt(rhovr**2+rhovtheta**2)*numpy.sign(psi)

Finally, we render the azimuthal averages.
NOTE: If you want to save any of these figures, you can mimic the saveplot logic at the bottom of
this example.

In [16]: # We do a single row of 3 images

Spacing is default spacing set up by subplot

figdpi=300

sizetuple=(5.5*3,3*3)

tsize = 20 # title font size

cbfsize = 10 # colorbar font size

fig, ax = plt.subplots(ncols=3,figsize=sizetuple,dpi=figdpi)

plt.rcParams.update({'font.size': 14})

#temperature

#ax1 = f1.add_subplot(1,3,1)

units = '(nondimensional)'

plot_azav(fig,ax[0],temperature,radius,costheta,sintheta,mycmap='RdYlBu_r',boundsfactor = 2,

boundstype='rms', units=units, fontsize = cbfsize)

ax[0].set_title('Temperature',fontsize=tsize)

#Differential Rotation

#ax1 = f1.add_subplot(1,3,2)

units = '(nondimensional)'

plot_azav(fig,ax[1],omega,radius,costheta,sintheta,mycmap='RdYlBu_r',boundsfactor = 1.5,

boundstype='rms', units=units, fontsize = cbfsize)

ax[1].set_title(r'ω',fontsize=tsize)

#Mass Flux

#ax1 = f1.add_subplot(1,3,3)

units = '(nondimensional)'

plot_azav(fig,ax[2],psi,radius,costheta,sintheta,mycmap='RdYlBu_r',boundsfactor = 1.5,

boundstype='rms', units=units, fontsize = cbfsize, underlay = rhovm)

ax[2].set_title('Mass Flux',fontsize = tsize)

saveplot=False

if (saveplot):

p.savefig(savefile)

else:

plt.show()

20

7 VII. Simulation Slices

7.1 VII.1 Equatorial Slices

Summary: 2-D profiles of selected output variables in the equatorial plane.
Subdirectory: Equatorial_Slices
main_input prefix: equatorial
Python Class: Equatorial_Slices
Additional Namelist Variables:

None
The equatorial-slice output type allows us to examine how the fluid properties vary in longi-

tude and radius.
Examining the main_input file, we see that the following output values have been denoted for

the Equatorial Slices (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description

1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

In the example that follows, we demonstrate how to create a 2-D plot of radial velocity in the
equatorial plane (at a single time step).

We begin with the usual preamble. Examining the data structure, we see that the vals array is
dimensioned to account for longitudinal variation, and that we have the new coordinate attribute
phi.

In [17]: from rayleigh_diagnostics import Equatorial_Slices

import numpy

21

import matplotlib.pyplot as plt

from matplotlib import ticker, font_manager

istring = '00040000'

es = Equatorial_Slices(istring)

tindex =1 # Grab second time index from this file

help(es)

Help on Equatorial_Slices in module rayleigh_diagnostics object:

class Equatorial_Slices(builtins.object)

| Rayleigh Equatorial Slice Structure

| ----------------------------------

| self.niter : number of time steps

| self.nq : number of diagnostic quantities output

| self.nr : number of radial points

| self.nphi : number of phi points

| self.qv[0:nq-1] : quantity codes for the diagnostics output

| self.radius[0:nr-1] : radial grid

| self.vals[0:phi-1,0:nr-1,0:nq-1,0:niter-1] : The equatorial_slices

| self.phi[0:nphi-1] : phi values (in radians)

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='Equatorial_Slices/')

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

In [18]: ################################

Equatorial Slice

#Set up the grid

remove_mean = True # Remove the m=0 mean

nr = es.nr

22

nphi = es.nphi

r = es.radius/numpy.max(es.radius)

phi = numpy.zeros(nphi+1,dtype='float64')

phi[0:nphi] = es.phi

phi[nphi] = numpy.pi*2 # For display purposes, it is best to have a redunant data point at 0,2pi

#We need to generate a cartesian grid of x-y coordinates (both X & Y are 2-D)

radius_matrix, phi_matrix = numpy.meshgrid(r,phi)

X = radius_matrix * numpy.cos(phi_matrix)

Y = radius_matrix * numpy.sin(phi_matrix)

qindex = es.lut[1] # radial velocity

field = numpy.zeros((nphi+1,nr),dtype='float64')

field[0:nphi,:] =es.vals[:,:,qindex,tindex]

field[nphi,:] = field[0,:] #replicate phi=0 values at phi=2pi

#remove the mean if desired (usually a good idea, but not always)

if (remove_mean):

for i in range(nr):

the_mean = numpy.mean(field[:,i])

field[:,i] = field[:,i]-the_mean

#Plot

sizetuple=(8,5)

fig, ax = plt.subplots(figsize=(8,8))

tsize = 20 # title font size

cbfsize = 10 # colorbar font size

img = ax.pcolormesh(X,Y,field,cmap='jet')

ax.axis('equal') # Ensure that x & y axis ranges have a 1:1 aspect ratio

ax.axis('off') # Do not plot x & y axes

Plot bounding circles

ax.plot(r[nr-1]*numpy.cos(phi), r[nr-1]*numpy.sin(phi), color='black') # Inner circle

ax.plot(r[0]*numpy.cos(phi), r[0]*numpy.sin(phi), color='black') # Outer circle

ax.set_title(r'v_r', fontsize=20)

#colorbar ...

cbar = plt.colorbar(img,orientation='horizontal', shrink=0.5, aspect = 15, ax=ax)

cbar.set_label('nondimensional')

tick_locator = ticker.MaxNLocator(nbins=5)

cbar.locator = tick_locator

cbar.update_ticks()

cbar.ax.tick_params(labelsize=cbfsize) #font size for the ticks

t = cbar.ax.xaxis.label

t.set_fontsize(cbfsize) # font size for the axis title

23

plt.tight_layout()

plt.show()

7.2 VII.2 Meridional Slices

Summary: 2-D profiles of selected output variables sampled in meridional planes.
Subdirectory: Meridional_Slices
main_input prefix: meridional
Python Class: Meridional_Slices
Additional Namelist Variables:

• meridional_indices (indicial) : indices along longitudinal grid at which to output meridional
planes.

24

• meridional_indices_nrm (normalized) : normalized longitudinal grid coordinates at which
to output

The meridional-slice output type allows us to examine how the fluid properties vary in latitude
and radius.

Examining the main_input file, we see that the following output values have been denoted for
the Meridional Slices (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description

1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

In the example that follows, we demonstrate how to create a 2-D plot of radial velocity in a
meridional plane. The procedure is similar to that used to plot an azimuthal average.

We begin with the usual preamble and import the plot_azav helper function. Examining the
data structure, we see that it is similar to the AZ_Avgs data structure. The vals array possesses an
extra dimension relative to its AZ_Avgs counterpart to account for the multiple longitudes that
may be output, we see attributes phi and phi_indices have been added to reference the longitudinal
grid.

In [19]: #####################################

Meridional Slice

from rayleigh_diagnostics import Meridional_Slices, plot_azav

import numpy

import matplotlib.pyplot as plt

from matplotlib import ticker, font_manager

Read the data

istring = '00040000'

ms = Meridional_Slices(istring)

tindex =1 # All example quantities were output with same cadence. Grab second time-index from all.

help(ms)

Help on Meridional_Slices in module rayleigh_diagnostics object:

class Meridional_Slices(builtins.object)

| Rayleigh Meridional Slice Structure

| ----------------------------------

| self.niter : number of time steps

| self.nq : number of diagnostic quantities output

| self.nr : number of radial points

| self.ntheta : number of theta points

| self.nphi : number of phi points sampled

| self.qv[0:nq-1] : quantity codes for the diagnostics output

| self.radius[0:nr-1] : radial grid

| self.costheta[0:ntheta-1] : cos(theta grid)

| self.sintheta[0:ntheta-1] : sin(theta grid)

25

| self.phi[0:nphi-1] : phi values (radians)

| self.phi_indices[0:nphi-1] : phi indices (from 1 to nphi)

| self.vals[0:nphi-1,0:ntheta-1,0:nr-1,0:nq-1,0:niter-1] : The meridional slices

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='Meridional_Slices/')

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

In [20]: radius = ms.radius

costheta = ms.costheta

sintheta = ms.sintheta

phi_index = 0 # We only output one Meridional Slice

vr_ms = ms.vals[phi_index,:,:,ms.lut[1],tindex]

units = 'nondimensional'

Plot

sizetuple=(8,5)

fig, ax = plt.subplots(figsize=(8,8))

tsize = 20 # title font size

cbfsize = 10 # colorbar font size

ax.axis('equal') # Ensure that x & y axis ranges have a 1:1 aspect ratio

ax.axis('off') # Do not plot x & y axes

plot_azav(fig,ax,vr_ms,radius,costheta,sintheta,mycmap='RdYlBu_r',boundsfactor = 4.5,

boundstype='rms', units=units, fontsize = cbfsize)

ax.set_title('Radial Velocity',fontsize=tsize)

plt.tight_layout()

plt.show()

26

7.3 VII.3 Shell Slices

Summary: 2-D, spherical profiles of selected output variables sampled in at discrete radii.
Subdirectory: Shell_Slices
main_input prefix: shellslice
Python Class: Shell_Slices
Additional Namelist Variables:

• shellslice_levels (indicial) : indices along radial grid at which to output spherical surfaces.

• shellslice_levels_nrm (normalized) : normalized radial grid coordinates at which to output
spherical surfaces.

The shell-slice output type allows us to examine how the fluid properties vary on spherical
surfaces.

27

Examining the main_input file, we see that the following output values have been denoted for
the Shell Slices (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description

1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

In the examples that follow, we demonstrate how to create a 2-D plot of radial velocity: *
on a Cartesian, lat-lon grid * projected onto a spherical surface using Basemap (MUST set use
Basemap=True below)

Plotting on a lat-lon grid is straightforward and illustrated below. The shell-slice data structure
is also displayed via the help() function in the example below and contains information needed to
define the spherical grid for plotting purposes.

It is worth noting the slice_spec keyword (described in the docstring) that can be passed to the
init method. When reading large shell slices, a user can save time and memory during the read
process by specifying the slice they want to read.

In [21]: #####################################

Shell Slice

from rayleigh_diagnostics import Shell_Slices

import numpy

import matplotlib.pyplot as plt

from matplotlib import ticker, font_manager

Read the data

istring = '00040000'

ss = Shell_Slices(istring)

help(ss)

ntheta = ss.ntheta

nphi = ss.nphi

costheta = ss.costheta

theta = numpy.arccos(costheta)

#help(ss)

tindex =1 # All example quantities were output with same cadence. Grab second time-index from all.

rindex = 0 # only output one radius

sizetuple=(8,8)

vr = ss.vals[:,:,rindex,ss.lut[1],tindex]

fig, ax = plt.subplots(figsize=sizetuple)

img = plt.imshow(numpy.transpose(vr), extent=[0,360,-90,90])

ax.set_xlabel('Longitude')

ax.set_ylabel('Latitude')

ax.set_title('Radial Velocity')

28

plt.tight_layout()

plt.show()

Help on Shell_Slices in module rayleigh_diagnostics object:

class Shell_Slices(builtins.object)

| Rayleigh Shell Slice Structure

| ----------------------------------

| self.niter : number of time steps

| self.nq : number of diagnostic quantities output

| self.nr : number of shell slices output

| self.ntheta : number of theta points

| self.nphi : number of phi points

| self.qv[0:nq-1] : quantity codes for the diagnostics output

| self.radius[0:nr-1] : radii of the shell slices output

| self.inds[0:nr-1] : radial indices of the shell slices output

| self.costheta[0:ntheta-1] : cos(theta grid)

| self.sintheta[0:ntheta-1] : sin(theta grid)

| self.vals[0:nphi-1,0:ntheta-1,0:nr-1,0:nq-1,0:niter-1]

| : The shell slices

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='Shell_Slices/', slice_spec=[], rec0=False)

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

| slice_spec : Optional list of [time index, quantity code, radial index]. If

| specified, only a single shell is read. time indexing and radial

| indexing start at 0

| rec0 : Set to true to read the first timestep's data only.

|

| print_info(self, print_costheta=False)

| Prints all metadata associated with the shell-slice object.

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

29

Plotting with Basemap If you wish to project your data onto a spherical grid, we recommend
using the Basemap package. If you have not installed this package yet, recall that you can do so
by activating your conda environment and then running:
conda install -c intel basemap

The example that follows illustrates how to use Basemap. So that this notebook will run for
those without Basemap installed, we have nested the plotting code in a try/except statement. If
Basemap fails to import, the code will report an error message instead of crashing.

In [22]: try:

from mpl_toolkits.basemap import Basemap, addcyclic

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import ticker

from rayleigh_diagnostics import Shell_Slices

tsize = 20 # title font size

cbfsize = 10 # colorbar font size

#Specify which data to plot

istring='00040000'

rec_spec = [1,1,0] # grab time index 1, quantity code 1, and radial index 0

ss = Shell_Slices(istring,slice_spec = rec_spec)

nphi = ss.nphi

ntheta = ss.ntheta

save_figure = False # Set to true to save to a figure_file (below)

30

https://matplotlib.org/basemap/

figure_file = 'shell_slice_basemap.png'

#The resolution of the png file or the view window in pixels

xpixels = 1024

ypixels = 1024

Initialize the projection.

lon_0, lat_0 are the center point of the projection.

resolution = 'l' means use low resolution coastlines.

m = Basemap(projection='ortho',lon_0=-20,lat_0=35,resolution='l')

#Read in the data

data = ss.vals[:,:,0,0,0].reshape(nphi,ntheta)

data = np.transpose(data)

maxabs = 3*np.std(data) # saturate data at +/- 3 sigma

dlon = 360.0/(nphi)

dlat = 180.0/ntheta

#Scale the data

for i in range(ntheta):

for j in range(nphi):

if (data[i,j] > maxabs):

data[i,j] = maxabs

if (data[i,j] < -maxabs):

data[i,j] = -maxabs

data[i,j] = data[i,j]/maxabs

#Generate 1-D grids of latitude and longitude

lons = np.zeros(nphi)

for i in range(nphi):

lons[i] = dlon*i-180.0

lats = np.zeros(ntheta)

for i in range(ntheta):

lats[i] = 90.0-np.arccos(ss.costheta[i])*180.0/np.pi

lats[i] = i*dlat-90

Convert to 2-D grids

llons, llats = np.meshgrid(lons, lats)

Get x-y projection points on the plane

x, y = m(llons, llats)

Do some interpolation

31

This is necessary for moderately-sized and large shell slices (ell_max >= 255)

nx = int((m.xmax-m.xmin)/2000.)+1; ny = int((m.ymax-m.ymin)/2000.)+1

nx = 1024

ny = 1024

print('interpolating...')

topodat,x,y =\

m.transform_scalar(data,lons,lats,nx,ny,returnxy=True,masked=True,order=1)

print ('...complete...')

#Initialize the window

plt.figure(figsize=(xpixels/100.0, ypixels/100.0))

#View the data

my_cmap = plt.cm.RdYlBu_r

img=m.pcolormesh(x,y,topodat,cmap=my_cmap)

draw parallels and meridians.

m.drawparallels(np.arange(-90.,120.,30.))

m.drawmeridians(np.arange(0.,420.,60.))

m.drawmapboundary(fill_color='white')

#colorbar ...

cbar = m.colorbar(img) # ,shrink=0.5, aspect = 15)

cbar.set_label('nondimensional')

tick_locator = ticker.MaxNLocator(nbins=5)

cbar.locator = tick_locator

cbar.update_ticks()

cbar.ax.tick_params(labelsize=cbfsize) #font size for the ticks

t = cbar.ax.xaxis.label

t.set_fontsize(cbfsize) # font size for the axis title

plt.title('Radial Velocity')

if (save_figure):

plt.savefig(figure_file, fontsize=tsize)

else:

plt.show()

except:

print('Basemap module is not installed.')

interpolating...

...complete...

/custom/software/miniconda3/envs/idp3/lib/python3.6/site-packages/mpl_toolkits/basemap/__init__.py:3413: MatplotlibDeprecationWarning: The ishold function was deprecated in version 2.0.

b = ax.ishold()

32

/custom/software/miniconda3/envs/idp3/lib/python3.6/site-packages/mpl_toolkits/basemap/__init__.py:3422: MatplotlibDeprecationWarning: axes.hold is deprecated.

See the API Changes document (http://matplotlib.org/api/api_changes.html)

for more details.

ax.hold(b)

/custom/software/miniconda3/envs/idp3/lib/python3.6/site-packages/mpl_toolkits/basemap/__init__.py:1623: MatplotlibDeprecationWarning: The get_axis_bgcolor function was deprecated in version 2.0. Use get_facecolor instead.

fill_color = ax.get_axis_bgcolor()

8 VIII. Spherical Harmonic Spectra

Summary: Spherical Harmonic Spectra sampled at discrete radii.
Subdirectory: Shell_Spectra
main_input prefix: shellspectra
Python Classes:

• Shell_Spectra : Complete data structure associated with Shell_Spectra outputs.

33

• PowerSpectrum : Reduced data structure -- contains power spectrum of velocity and/or
magnetic fields only.

Additional Namelist Variables:

• shellspectra_levels (indicial) : indices along radial grid at which to output spectra.

• shellspectra_levels_nrm (normalized) : normalized radial grid coordinates at which to out-
put spectra.

The shell-spectra output type allows us to examine the spherical harmonic decomposition of
output variables at discrete radii.

Examining the main_input file, we see that the following output values have been denoted for
the Shell Spectra (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description

1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

Spherical harmonic spectra can be read into Python using either the Shell_Spectra or Power-
Spectrum classes.

The Shell_Spectra class provides the full complex spectra, as a function of degree ell and
azimuthal order m, for each specified output variable. It possesses an attribute named lpower that
contains the associated power for each variable, along with its m=0 contributions separated and
removed.

The Power_Spectrum class can be used to read a Shell_Spectra file and quickly generate a
velocity or magnetic-field power spectrum. For this class to work correctly, your file must contain
all three components of either the velocity or magnetic field. Other variables are ignored (use
Shell_Spectrum’s lpower for those).

We illustrate how to use these two classes below. As usual, we call the help() function to
display the docstrings that describe the different data structures embodied by each class.

In [23]: import matplotlib.pyplot as plt

from matplotlib import ticker

import numpy

from rayleigh_diagnostics import Shell_Spectra, Power_Spectrum

istring = '00040000'

tind = 0

rind = 0

#help(ss)

vpower = Power_Spectrum(istring)

help(vpower)

power = vpower.power

34

fig, ax = plt.subplots(nrows=3, figsize=(6,6))

ax[0].plot(power[:,rind,tind,0])

ax[0].set_xlabel(r'Degree ℓ')

ax[0].set_title('Velocity Power (total)')

ax[1].plot(power[:,rind,tind,1])

ax[1].set_xlabel(r'Degree ℓ')

ax[1].set_title('Velocity Power (m=0)')

ax[2].plot(power[:,rind,tind,2])

ax[2].set_xlabel(r'Degree ℓ')

ax[2].set_title('Velocity Power (total - {m=0})')

plt.tight_layout()

plt.show()

fig, ax = plt.subplots()

ss = Shell_Spectra(istring)

help(ss)

mmax = ss.mmax

lmax = ss.lmax

power_spectrum = numpy.zeros((lmax+1,mmax+1),dtype='float64')

for i in range(1,4): # i takes on values 1,2,3

qind=ss.lut[i]

complex_spectrum = ss.vals[:,:,rind,qind,tind]

power_spectrum = power_spectrum+numpy.real(complex_spectrum)**2 + numpy.imag(complex_spectrum)**2

power_spectrum = numpy.transpose(power_spectrum)

tiny = 1e-6

img=ax.imshow(numpy.log10(power_spectrum+tiny), origin='lower')

ax.set_ylabel('Azimuthal Wavenumber m')

ax.set_xlabel(r'Degree ℓ')

ax.set_title('Velocity Power Spectrum')

#colorbar ...

cbar = plt.colorbar(img) # ,shrink=0.5, aspect = 15)

cbar.set_label('Log Power')

tick_locator = ticker.MaxNLocator(nbins=5)

cbar.locator = tick_locator

cbar.update_ticks()

cbar.ax.tick_params() #font size for the ticks

plt.show()

35

Help on Power_Spectrum in module rayleigh_diagnostics object:

class Power_Spectrum(builtins.object)

| Rayleigh Power Spectrum Structure

| ----------------------------------

| self.niter : number of time steps

| self.nr : number of radii at which power spectra are available

| self.lmax : maximum spherical harmonic degree l

| self.radius[0:nr-1] : radii of the shell slices output

| self.inds[0:nr-1] : radial indices of the shell slices output

| self.power[0:lmax,0:nr-1,0:niter-1,0:2] : the velocity power spectrum. The third

| : index indicates (0:total,1:m=0, 2:total-m=0 power)

| self.mpower[0:lmax,0:nr-1,0:niter-1,0:2] : the magnetic power spectrum

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.magnetic : True if mpower exists

|

| Methods defined here:

|

| __init__(self, infile, dims=[], power_file=False, magnetic=False, path='Shell_Spectra')

| Initialize self. See help(type(self)) for accurate signature.

|

| blank_init(self, dims)

|

| power_file_init(self, pfile)

|

| set_pars(self, iters, time, inds, radius)

|

| spectra_file_init(self, sfile)

|

| write_power(self, ofile)

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

36

Help on Shell_Spectra in module rayleigh_diagnostics object:

class Shell_Spectra(builtins.object)

| Rayleigh Shell Spectrum Structure

| ----------------------------------

| self.niter : number of time steps

| self.nq : number of diagnostic quantities output

| self.nr : number of shell slices output

| self.nell : number of ell values

| self.nm : number of m values

| self.lmax : maximum spherical harmonic degree l

| self.mmax : maximum spherical harmonic degree m

| self.qv[0:nq-1] : quantity codes for the diagnostics output

37

| self.radius[0:nr-1] : radii of the shell slices output

| self.inds[0:nr-1] : radial indices of the shell slices output

| self.vals[0:lmax,0:mmax,0:nr-1,0:nq-1,0:niter-1]

| : The complex spectra of the shells output

| self.lpower[0:lmax,0:nr-1,0:nq-1,0:niter-1,3] : The power as a function of ell, integrated over m

| : index indicates (0:total,1:m=0, 2:total-m=0 power)

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='Shell_Spectra/')

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

|

| print_info(self)

| Prints all metadata associated with the shell-spectra object.

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

38

9 IX. Point Probes

Summary: Point-wise sampling of desired output variables.
Subdirectory: Point_Probes
main_input prefix: point_probe
Python Class: Point_Probes
Additional Namelist Variables:

• point_probe_r : radial indices for point-probe output

• point_probe_theta : theta indices for point-probe output

• point_probe_phi : phi indices for point-probe output

• point_probe_r_nrm : normalized radial coordinates for point-probe output

• point_probe_theta_nrm : normalized theta coordinates for point-probe output

• point_probe_phi_nrm : normalized phi coordinates for point-probe output

• point_probe_cache_size : number of time-samples to save before accessing the disk

Point-probes allow us to sample a simulation at an arbitrary set of points. This output type
serves two purposes: 1. It provides an analog to laboratory measurements where slicing and

39

averaging are difficult, but taking high-time-cadence using (for example) thermistors is common-
practice. 2. It provides an alternative method of slicing a model (for when equatorial, meridional,
or shell slices do yield the desired result).

9.1 IX.1 Specifying Point-Probe Locations

Point-probe locations are indicated by specifying a grid. The user does not supply a set of ordered
coordinates (r,theta,phi). Instead, the user specifies nodes on the grid using the namelist variables
described above. Examples follow.

Example 1: 4-point Coarse Grid
point_probe_r_nrm = 0.25, 0.5

point_probe_theta_nrm = 0.5
point_probe_phi_nrm = 0.2, 0.8

This example would produce point probes at the four coordinates { (0.25, 0.5, 0.2), (0.25, 0.5,
0.8), (0.5, 0.5, 0.2), (0.5,0.5,0.8) } (r,theta,phi; normalized coordinates).

Example 2: "Ring" in Phi
point_probe_r_nrm = 0.5

point_probe_theta_nrm = 0.5
point_probe_phi_nrm = 0.0, -1.0

This example describes a ring in longitude, sampled at mid-shell, in the equatorial plane. We
have made use of the positional range feature here by indicating normalized phi coordinates of
0.0, -1.0. Rayleigh intreprets this as an instruction to sample all phi coordinates.

** Example 3: 2-D Surface in (r,phi) **
point_probe_r_nrm = 0, -1.0

point_probe_theta_nrm = 0.25
point_probe_phi_nrm = 0, -1.0

This example uses the positional range feature along with normalized coordinates to generate
a 2-D slice in r-phi at theta = 45 degrees (theta_nrm = 0.25). Using the syntax 0,-1.0 instructs
Rayleigh to grab all r and phi coordinates.

** Example 4: 3-D Meridional "Wedges" **
point_probe_r_nrm = 0.0, -1.0

point_probe_theta_nrm = 0.0, -1.0
point_probe_phi_nrm = 0.20, -0.30, 0.7, -0.8

This example generates two 3-D wedges described by all r,theta points and all longitudes in
the ranges [72 deg, 108 deg] and [252 deg, 288 deg].

9.2 IX.2 Point-Probe Caching

When performing sparse spatial sampling using point-probes, it may be desireable to output with
a high-time cadence. As this may cause disk-access patterns characterized by frequent, small
writes, the point-probes are programmed with a caching feature. This feature is activated by
specifing the point_probe_cache_size variable in the output namelist.

This variable determines how many time-samples are saved in memory before a write is
performed. Its default value is 1, which means that the disk is accessed with a frequency of
point_probe_frequency. If the cache size is set to 10 (say), then samples are still peformed at
point_probe_frequency but they are only written to disk after 10 have been collected in memory.

NOTE: Be sure that point_probe_cache_size divides evenly into point_probe_nrec.

40

9.3 IX.3 Example: Force-Balance with Point Probes

Our example input file specifies a coarse, six-point grid. Examining the main_input file, we see
that all variables necessary to examine the force balance in each direction have been specified.
(see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description

1 Radial Velocity
2 Theta Velocity
3 Phi Velocity
1201 Radial Advection (v dot grad v)
1202 Theta Advection
1203 Phi Advection
1216 Buoyancy Force (ell=0 component subtracted)
1219 Radial Coriolis Force
1220 Theta Coriolis Force
1221 Phi Coriolis Force
1228 Radial Viscous Force
1229 Theta Viscous Force
1230 Phi Viscous Force

Note that the pressure force appears to be missing. This is not an oversight. The di-
agnostic nature of the Pressure equation in incompressible/anelastic models, coupled with the
second-order Crank-Nicolson time-stepping scheme, means that the pressure field can exhibit an
even/odd sawtoothing in time. The effective pressure force (as implemented through the Crank-
Nicolson scheme) is always a weighted average over two time steps and is always well-resolved
in time.

When sampling at regular intervals as we have here, if we directly sample the pressure force,
we will sample either the high or low end of the sawtooth envelope, and the force balance will be
off by a large factor. The easiest fix is to output the velocity field and compute its time derivative.
This, in tandem with the sum of all other forces, can be used to calculate the effective pressure
as a post-processing step. The (undesireable) alternative is to output once every time step and
compute the effective pressure using the Crank-Nicolson weighting.

We demonstrate how to compute the effective pressure force via post-processing in the exam-
ple below.

In [24]: from rayleigh_diagnostics import Point_Probes, build_file_list

import numpy

from matplotlib import pyplot as plt

#Decide which direction you want to look at (set direction = {radial,theta, or phi})

#This is used to determine the correct quantity codes below

radial = 0

theta = 1

phi = 2

direction=radial

Build a list of all files ranging from iteration 0 million to 1 million

files = build_file_list(0,1000000,path='Point_Probes')

41

nfiles = len(files)-1

for i in range(nfiles):

pp = Point_Probes(files[i],path='')

if (i == 0):

nphi = pp.nphi

ntheta = pp.ntheta

nr = pp.nr

nq = pp.nq

niter = pp.niter

vals=numpy.zeros((nphi,ntheta,nr,nq,niter*nfiles),dtype='float64')

time=numpy.zeros(niter*nfiles,dtype='float64')

vals[:,:,:,:, i*niter:(i+1)*niter] = pp.vals

time[i*niter:(i+1)*niter]=pp.time

istring='00040000' # iteration to examine

help(pp)

##

We choose the coordinate indices **within**

the Point-Probe array that we want to examine

These indices start at zero and run to n_i-1

where n_i is the number of points sampled in

the ith direction

Use help(pp) after loading the Point-Probe file

to see the Point-Probe class structure

pind = 0 # phi-index to examine

rind = 0 # r-index to examine

tind = 0 # theta-index to examine

pp = Point_Probes(istring)

lut = pp.lut

nt = pp.niter

###

Grab velocity from the point probe data

u = vals[pind,0,rind,pp.lut[1+direction],:]

dt=time[1]-time[0]

###

Use numpy to compute time-derivative of u

(necessary to compute a smooth effective pressure without outputing every timestep)

42

#Depending on Numpy version, gradient function takes either time (array) or dt (scalar)

try:

dudt = numpy.gradient(u,time)

except:

dt = time[1]-time[0] # Assumed to be constant...

dudt = numpy.gradient(u,dt)

##

Forces (modulo pressure)

Note the minus sign for advection. Advective terms are output as u dot grad u, not -u dot grad u

advec = -vals[pind, tind, rind, lut[1201 + direction], :]

cor = vals[pind, tind, rind, lut[1219 + direction], :]

visc = vals[pind, tind, rind, lut[1228 + direction], :]

forces = visc+cor+advec

if (direction == radial):

buoy = vals[pind, tind, rind, lut[1216], :]

forces = forces+buoy

##3

Construct effective pressure force

pres = dudt-forces

forces = forces+pres

##

Set up the plot

yfsize='xx-large' # size of y-axis label

ustrings = [r'u_r', r'u_\theta', r'u_\phi']

ustring=ustrings[direction]

dstring = r'$\frac{\partial '+ustring+'}{\partial t}$'

fstrings = [r'$\Sigma\,F_r$' , r'$\Sigma\,F_\theta$' , r'$\Sigma\,F_\phi$']

fstring = fstrings[direction]

diff_string = dstring+' - '+fstring

pstring = 'pressure'

cstring = 'coriolis'

vstring = 'viscous'

bstring = 'buoyancy'

fig, axes = plt.subplots(nrows=2, figsize=(7*2.54, 9.6))

ax0 = axes[0]

ax1 = axes[1]

##

Upper: dur/dt and F_total

#mpl.rc('xtick', labelsize=20) --- still trying to understand xtick label size etc.

43

#mpl.rc('ytick', labelsize=20)

ax0.plot(time,forces, label = fstring)

ax0.plot(time,pres,label=pstring)

ax0.plot(time,cor,label=cstring)

ax0.plot(time,visc,label=vstring)

if (direction == radial):

ax0.plot(time,buoy,label=bstring)

ax0.set_xlabel('Time', size=yfsize)

ax0.set_ylabel('Acceleration', size=yfsize)

ax0.set_title('Equilibration Phase',size=yfsize)

ax0.set_xlim([0,0.1])

leg0 = ax0.legend(loc='upper right', shadow=True, ncol = 1, fontsize=yfsize)

##

Lower: Numpy Gradient Approach

ax1.plot(time,forces,label=fstring)

ax1.plot(time,pres,label=pstring)

ax1.plot(time,cor,label=cstring)

ax1.plot(time,visc,label=vstring)

if (direction == radial):

ax1.plot(time,buoy,label=bstring)

ax1.set_title('Late Evolution',size=yfsize)

ax1.set_xlabel('Time',size=yfsize)

ax1.set_ylabel('Acceleration', size =yfsize)

ax1.set_xlim([0.2,4])

leg1 = ax1.legend(loc='upper right', shadow=True, ncol = 1, fontsize=yfsize)

plt.tight_layout()

plt.show()

Help on Point_Probes in module rayleigh_diagnostics object:

class Point_Probes(builtins.object)

| Rayleigh Point Probes Structure

| ----------------------------------

| self.niter : number of time steps

| self.nq : number of diagnostic quantities output

| self.nr : number of radial points

| self.ntheta : number of theta points

| self.nphi : number of phi points sampled

| self.qv[0:nq-1] : quantity codes for the diagnostics output

| self.radius[0:nr-1] : radial grid

| self.costheta[0:ntheta-1] : cos(theta grid)

| self.sintheta[0:ntheta-1] : sin(theta grid)

| self.phi[0:nphi-1] : phi values (radians)

44

| self.phi_indices[0:nphi-1] : phi indices (from 1 to nphi)

| self.vals[0:nphi-1,0:ntheta-1,0:nr-1,0:nq-1,0:niter-1] : The meridional slices

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='Point_Probes/')

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

10 X. Modal Outputs

Summary: Spherical Harmonic Spectral Coefficients sampled at discrete radii and degree ell.

45

Subdirectory: SPH_Modes
main_input prefix: sph_mode
Python Classes: SPH_Modes
Additional Namelist Variables:

• sph_mode_levels (indicial) : indices along radial grid at which to output spectral coefficients.

• sph_mode_levels_nrm (normalized) : normalized radial grid coordinates at which to output
spectral coefficients.

• sph_mode_ell : Comma-separated list of spherical harmonic degree ell to output.

The Modal output type allows us to output a restricted set of complex spherical harmonic
coefficients at discrete radii. For each specified ell-value, all associated azimuthal wavenumbers
are output.

This output can be useful for storing high-time-cadence spectral data for a few select modes.
In the example below, we illustrate how to read in this output type, and we plot the temporal
variation of the real and complex components of radial velocity for mode ell = 4, m = 4.

Examining the main_input file, we see that the following output values have been denoted for
the Shell Spectra (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description

1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

We also see that ell=2,4,8 have been selected in the main_input file, leading to power at the
following modes:

ell-value m-values

2 0,1,2
4 0,1,2,3,4
8 0,1,2,3,4,5,6,7,8

In [25]: from rayleigh_diagnostics import SPH_Modes, build_file_list

import matplotlib.pyplot as plt

import numpy

qind = 1 # Radial velocity

rind = 0 # First radius stored in file

files = build_file_list(0,1000000,path='SPH_Modes')

nfiles = len(files)

for i in range(nfiles):

spm = SPH_Modes(files[i],path='')

if (i == 0):

46

nell = spm.nell

nr = spm.nr

nq = spm.nq

niter = spm.niter

lvals = spm.lvals

max_ell = numpy.max(lvals)

nt = niter*nfiles

vr = spm.lut[qind]

vals=numpy.zeros((max_ell+1,nell,nr,nq,nt),dtype='complex64')

time=numpy.zeros(nt,dtype='float64')

vals[:,:,:,:, i*niter:(i+1)*niter] = spm.vals

time[i*niter:(i+1)*niter]=spm.time

help(spm)

###3

Print some information regarding the bookkeeping

print('...........')

print(' Contents')

print(' nr = ', nr)

print(' nq = ', nq)

print(' nt = ', nt)

for i in range(nell):

lstring=str(lvals[i])

estring = 'Ell='+lstring+' Complex Amplitude : vals[0:'+lstring+','+str(i)+',0:nr-1,0:nq-1,0:nt-1]'

print(estring)

print(' First dimension is m-value.')

print('...........')

######################################

Create a plot of the ell=4, m=4 real and imaginary amplitudes

radius = spm.radius[rind]

lfour_mfour = vals[4,1,rind,vr,:]

fig, ax = plt.subplots()

ax.plot(time,numpy.real(lfour_mfour), label='real part')

ax.plot(time,numpy.imag(lfour_mfour), label='complex part')

ax.set_xlabel('Time')

ax.set_ylabel('Amplitude')

rstring = "{0:4.2f}".format(radius)

ax.set_title(r'Radial Velocity ($\ell=4$, m=4, radius='+rstring+') ')

ax.legend(shadow=True)

ax.set_xlim([0.5,4.0])

plt.show()

Help on SPH_Modes in module rayleigh_diagnostics object:

class SPH_Modes(builtins.object)

| Rayleigh Shell Spectrum Structure

| ----------------------------------

| self.niter : number of time steps

47

| self.nq : number of diagnostic quantities output

| self.nr : number of shell slices output

| self.nell : number of ell values

| self.qv[0:nq-1] : quantity codes for the diagnostics output

| self.radius[0:nr-1] : radii of the shell slices output

| self.inds[0:nr-1] : radial indices of the shell slices output

| self.lvals[0:nell-1] : ell-values output

| self.vals[0:lmax,0:nell-1,0:nr-1,0:nq-1,0:niter-1]

| : The complex spectra of the SPH modes output

| : (here lmax denotes the maximum l-value output; not the simulation lmax)

| self.iters[0:niter-1] : The time step numbers stored in this output file

| self.time[0:niter-1] : The simulation time corresponding to each time step

| self.version : The version code for this particular output (internal use)

| self.lut : Lookup table for the different diagnostics output

|

| Methods defined here:

|

| __init__(self, filename='none', path='SPH_Modes/')

| filename : The reference state file to read.

| path : The directory where the file is located (if full path not in filename

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

...

Contents

nr = 3

nq = 3

nt = 400

Ell=2 Complex Amplitude : vals[0:2,0,0:nr-1,0:nq-1,0:nt-1]

Ell=4 Complex Amplitude : vals[0:4,1,0:nr-1,0:nq-1,0:nt-1]

Ell=8 Complex Amplitude : vals[0:8,2,0:nr-1,0:nq-1,0:nt-1]

First dimension is m-value.

...

48

In []:

49

	Contents
	I. Running a Benchmark with Sample Output
	II. Configuring Your Python Environment
	Conda Installation on Linux Systems
	Preparing to Plot
	The Jupyter Notebook

	III. Overview of Diagnostics in Rayleigh
	Basic Output Control
	Positional Output Control
	IV. Global Averages
	The Lookup Table (LUT)
	Plotting Kinetic Energy

	V. Shell Averages
	Velocity vs. Radius
	Radial Temperature Profile
	Heat Flux Contributions

	VI. Azimuthal Averages
	VII. Simulation Slices
	VII.1 Equatorial Slices
	VII.2 Meridional Slices
	VII.3 Shell Slices

	VIII. Spherical Harmonic Spectra
	IX. Point Probes
	IX.1 Specifying Point-Probe Locations
	IX.2 Point-Probe Caching
	IX.3 Example: Force-Balance with Point Probes

	X. Modal Outputs

