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Abstract: Automated plant species identification plays a 
crucial role in various ecological, agricultural, and 
environmental monitoring applications. This paper 
proposes an effective approach utilizing 3D LiDAR point 
clouds for automated plant species identification. LiDAR 
technology provides detailed and accurate spatial 
information about the vegetation canopy, enabling precise 
characterization of plant structures in three dimensions. 
Our methodology involves several key steps. Initially, raw 
3D LiDAR point cloud data is acquired from the two study 
areas (i.e., maize crop field and cabbage field). Next, 
preprocessing techniques are applied to filter noise and 
extract relevant features from the point cloud. Finally, 
plant volume, projected leaf area and plant heights of the 
two agricultural crops are estimated to differentiate the 
plant species on the basis of structural information. One of 
the significant advantages of our proposed approach is its 
ability to capture the intricate structural characteristics of 
different plant species with high accuracy and efficiency. 
By leveraging 3D LiDAR technology, our method transcends 
the limitations of traditional 2D imaging techniques, which 
ohen struggle to accurately differentiate between species 
with similar visual appearances. Experimental results 
demonstrate the effectiveness of our approach in 
accurately identifying plant species from 3D LiDAR point 
clouds. The proposed method shows promising 
performance across two types of vegetation and can 
further extended to other types of crops within the same 
field. 
Keywords: 3D point cloud; plant phenotyping; terrestrial 
laser scanning; total station. 

1 Introduction 
Plant phenotyping is essential for plant species 
identification (Verma and Yadav 2024). Automated plant 
species identification using LiDAR technology is a 
promising approach for precise forest management and 
phenotyping. Various studies have demonstrated the 
effectiveness of LiDAR data in classifying tree species based 
on features like roughness parameters (Ana et al. 2022), 
scan angles (Brindusa et al. 2022), deep learning models 
(Bingjie et al. 2022) and intensity and texture features (Ao 
et al. 2022). These methods utilize advanced techniques 
such as K-means clustering, convolutional neural networks 
(CNNs), and random forest (RF) algorithms to accurately 
classify different plant species. LiDAR data enables the 
extraction of 3D structural information, individual tree 
point clouds, and phenotypic traits like leaf area and stem 
position, contributing to high-throughput phenotyping 
and precision agriculture applications (Lombard et al. 

2020). By combining these diverse approaches, automated 
plant species identification using LiDAR proves to be a 
valuable tool for enhancing forest inventory, species 
discrimination, and plant phenotyping. We have 
developed methodology for the plant species 
identification using plant phenotyping parameters such as 
plant height, plant volume and projected leaf area using 
terrestrial laser scanner (TLS) and total station (TS) 
instruments. 

2 Materials and methods 

2.1 Study areas 
The study area 1 chosen for the experiment and 
performance assessment of proposed methodology was 
located in Narayani Ashram (25° 29' 49.16273" N, 81° 52' 
6.52379" E), a place in Govindpur area, Prayagraj, India. 

 

 
Figure 1. Data collection from study areas (a) study area 1 (b) 

study area 2. 
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The selected study area 1 was a cabbage field with sandy 
loam soil that covered an area of 450 m2 (30 m × 15 m). 
Another study area 2 was chosen near Sam Higginbottom 
University of Agriculture, Technology and Sciences (25° 24’ 
29.9945” N, 81o 49’ 56.6233”), Prayagraj, India. This study 
area 2 was an agricultural field having maize crop. Data 
collection was performed using TLS and TS. The maize crop 
in this study area was analyzed throughput its crop period 
and data collection were done at the tasseling stage of the 
maize crop. Figure 1 presents the study area 1 and 2. 

2.2 Data acquisition 
The data at two study areas were acquired using the 
experimental setup provided in the Figure 2. Five scan 
stations were setup to collect the complete 3D structure of 
the crops using FARO Focus3D Laser Scanner. The 
registration targets such as Spheres and Checkerboards are 
placed within the experimental setup to facilitates the 
registration process. The center of the checkerboards was 
also measured using the Trimble M3 Total Station. As 
center of checkerboards were measured using both the 
above instruments. Coordinate transformation is 
mandatory as we need the alignment of the z-axis towards 
the plumb line for the estimation of morphological 
parameters of the vegetable crops. 

 
Figure 2. Experimental setup for data collection from study 

area 1 and 2. 
The ground truth data was collected from the cabbage and 
maize crop field using measuring tape. The plant height, 
plant width and plant length were measured manually. 
And for maize crops the same parameters were measured. 
Projected leaf area and plant volume were calculated using 
the formulas given as equation (1) and (2) (Verma and 
Yadav 2024): 
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2.3 Proposed methodology 
The data was collected from the study area 1 and 2 using 
instruments FARO Focus3D Laser Scanner and Trimble M3 
Total Station. Aher the data collection based on the 
experimental setup in Figure 2, the raw point cloud data 
was merged and transformed using the FARO Scene 
sohware. Then, ground points were filtered using the 
methodology provided by Yadav et al. (2021). Then k-
means algorithm was implemented to segment each 
individual from the non-ground points. Figure 3 presents 
the methodology workflow for plant species identification. 

 
Figure 3. Methodology workflow. 

2.3.1 Plant height estimation 
The height of each plant was determined by averaging the 
distances between ten points located at both the top and 
bottom extremities of the plant. These averages were then 
subtracted to obtain the final height measurement, 
ensuring robustness against potential irregularities in 
plant morphology. Mathematically, the height (H) of each 
plant was calculated using the equation (3): 
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Where Pi
topand Pi

bottom represents the i-th point from the 
top and bottom of the plant, respectively. This meticulous 
approach ensured accurate and reliable height estimations 
for each individual plant, laying a solid foundation for 
subsequent analyses in our research. 
2.3.2 Projected Leaf Area and Volume 
The Quickhull algorithm offers an efficient method for 
computing the convex hull of a set of points in a plane. 
Initially, the algorithm identifies the lehmost (𝑃𝑃"#$%) and 
rightmost (𝑃𝑃&'()%) points as initial endpoints. These 
endpoints are then used to form a triangle encompassing 
all other points in the set. The process involves strategically 
partitioning the point set into subsets based on their 
position relative to the triangles formed by these initial 
endpoints and additional points. This partitioning is 
achieved by calculating the distance of each point (Pi) from 
the line segment connecting Pleh and Pright, represents 
the equation (4): 

Hdi = 
|(Pright – Ple9) * (Pi – Ple9)|

||Pright – Ple9||
 (4) 

Where × denotes the cross product and ||.|| denotes the 
Euclidean norm. Points with the maximum distance (dmax) 
are identified as the ones lying outside the current triangle. 
The process continues recursively until no points lie  
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outside the current triangle. The process continues 
recursively until no points lie outside the triangles, at 
which point the convex hull is formed by merging the hulls 
of the subsets. This can be mathematically represented as 
equation (5): 

ConvexHull	=	Merge(QuickHull(Ple9, Pright, Poutside)) (5) 

Where: 
Ple8: Points on the leh side of a dividing line or plane. 
Pright: Points on the right side of the same dividing line or 
plane. 
Poutside: Points that lie outside the current convex hull being 
considered. 
This iterative approach efficiently constructs the convex 
hull, making the Quickhull algorithm a valuable tool in 
computational geometry. Figure 4 presents the 2D convex 
hull of the crops. 

3 Results 
The plotted line graph (Figure 5) depicting cabbage plant 
height, projected leaf area, and volume, utilizing 3D point 
cloud data. At maturity, parameters were estimated to offer 
insights into plant development. These findings emphasize 
the complexity of cabbage plant growth and make evident 
the value of 3D point cloud analysis in understanding plant 
development dynamics. Figure 5 presents the variation in 
plant height, projected leaf area and volumes of the plants. 
The stressed plants from the above plots (Figure 5) can be 
detected if the height of the plant is large and volume is less 
or large area is giving the less volume comparatively. A 
healthy plant should have optimized values of height, area 
and volumes. By comparing the respective height, area and 
volume parameters the plant species can be identified 
automatically. The variation in the plant height, volume 
and area can be easily differentiated among the cabbage 
and maize crops to differentiate between cabbage and 
maize crops. This study is a case study using cabbage and 
maize crops, further this methodology can be extended to 
differentiate between the greater number of crops 
automatically. 

 

 
Figure 5. (a) Variation in the Plant Height, Projected Leaf Area 

and Volume of the individual cabbage plants (20 Sample 
Plants), (b) Variation in the Plant Height, Projected Leaf Area 

and Volume of the individual maize plants (20 Sample 
Plants). 

4 Discussion 
The study aimed to assess TLS data for mapping cabbage 
(low vegetation) and maize (high vegetation) by evaluating 
plant height, leaf area, and plant volume. TLS provided 
accurate estimations for cabbage but struggled with 
maize's complex foliage structure, impacting accuracy. 
Resolution influenced TLS's suitability, being 
advantageous for cabbage but insufficient for maize. 
Penetration depth into dense foliage, processing 
complexity, cost, and repeatability were significant 
considerations. Despite TLS's potential, challenges like 
resolution and processing complexity need addressing for 
effective monitoring. Future research should focus on 

 
Figure 4. 2D convex hull of the plants aPer projection. 
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improving TLS resolution, processing efficiency, and 
integrating it with other remote sensing technologies for 
comprehensive agricultural vegetation monitoring. 

5 Conclusions 
This study explores the potential of TLS for mapping 
vegetation in agricultural landscapes, focusing on cabbage 
and maize. TLS accurately estimates vegetation 
parameters in low vegetation like cabbage but faces 
challenges with high vegetation like maize due to 
resolution limitations. Despite hurdles, TLS offers 
advantages like rapid, non-destructive data acquisition, 
enhancing vegetation monitoring in agriculture. 
Integrating TLS with other remote sensing tech like LiDAR 
and multispectral imaging shows promise for 
comprehensive vegetation mapping. Addressing TLS 
limitations requires ongoing research and technology 
improvements. Overall, TLS is a valuable tool for 
agricultural vegetation monitoring, with continued 
innovation vital for addressing agriculture challenges like 
crop monitoring and ecosystem management. 
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