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Abstract.  This paper presents the methods
developed by the Michigan Tech Univeristy and
University of Michigan (MTU-UoM) team in the
9t" GTOC along with the obtained results. Sev-
eral concepts were investigated, specially regard-
ing the selection of the sequence of debris to be
removed in each mission. These concepts will be
briefed in this paper and the concept that produced
this team’s best solution is presented in detail. A
genetic algorithm is used as an outer loop opti-
mization tool to determine the sequence of debris
to be removed. An inner loop optimizer is used to
tune the individual transfers in each mission. This
team’s best solution consists of 16 missions that re-
moves 122 debris with a cost of 1192.74 MEURs.

1 Introduction

The GTOCY problem description is detailed in refer-
ence [1], and it is not presented here to avoid duplica-
tion with other papers in this special issue of the jour-
nal. The overall goal is to remove 123 debris in a Low-
earth orbit (LEO); to avoid the Kessler effect [2]. Some
of the orbital elements of the debris are very close to
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each other, whereas the introduction of the .J5 perturba-
tion changes the right ascension of the ascending node
(RAAN) and argument of perigee of the orbits (see Ap-
pendix).

For two-body Kepler orbits, it is possible to use the
well known Lambert solver to compute the impulsive
maneuver needed to rendezvous with a debris, given the
initial position of the spacecraft, the final rendezvous
position, and the time of flight of the maneuver. Due
to the J, effect included in this competition, this tool
cannot be used to compute an exact transfer. As a re-
sult, this team has developed a modified Lambert solver
during this competition that results in solutions that
are closer to the exact solution compared to the two-
body Lambert solver. As a result this modified Lam-
bert solver enabled the optimizer to find better solu-
tions. This modified Lambert approach is described in
the Appendix. The search for the best combination of
missions resulting in the lowest value of the cost func-
tion was performed in two main steps. The first step
is a global search among the 123 debris to generate in-
dividual missions in a sequential manner. The number
of the remaining debris gets smaller as more missions
are constructed. Each mission consists of a number of
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legs; each leg defines a trajectory between two debris.
Few different strategies were investigated in this mis-
sions construction step.

In the strategy used in the submitted solution, the
launch date and flight times of all legs, for each mission,
are the design variables of an optimization problem, in
which the goal was to minimize the the total impulse
value. Later the goal was to find the most efficient mis-
sions defined by the ratio of the number of visited debris
to the consumed propellant. The optimization problem
exploits solutions to multi-revolution modified Lambert
problem.

The second step involves a local optimization which
is performed over the missions obtained in the first step.
Assuming a fixed sequence of debris, the design vari-
ables of the local optimization are the launch date and
the flight times of all legs of an individual mission.
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FIGURE 1. Plot of Q versus Q for the respective epoch time
of each debri.

2 Sequence of Debris

Given the large number of permutations of the sequence
of debris (large design space), it is vital to exploit very
rapid measures for conducting a broad search to find the
sequence of debris in each mission. Several concepts
were investigated; here the most significant of them are
briefed and the concept used to generate this team’s best
solution is detailed at the end.

Semi-Free Rides

Generally speaking, plane-change maneuvers are more
expensive compared to in-plane maneuvers. Two angles
determine the plane: the inclination and the RAAN. The
inclinations of the debris do not change due to the de-
bris motion while the RAAN changes due to the J; ef-
fect. So, the concept presented in this section utilizes
this change in the RAAN due to the J5 effect, to sched-
ule rendezvous times when the values of RAANs of
two debris are very close; hence the spacecraft can wait
with one debris until a good time (when another debris
has the same RAAN) and then start a maneuver to ren-
dezvous with the new debris. The spacecraft will then
wait with the new debris until a new debris achieves a
RAAN that is close to the spacecraft’s RAAN, and so
on.

This concept generated a nice sequence of debris
with very low cost maneuvers; however the time of
flight in each maneuver is significantly high violating
the 30 days constraint defined in the problem descrip-
tion. As a result the sequences generated using this ap-
proach were not submitted.

The planes of all the debris are changing over time.
We can compute the date at which two arbitrary planes
would have equal RAAN as follows:

Q) = Qo+ N (T - Tepol)s
QQ = QQO + Q2(T - Tepo2)a

(D
2
where T,,; is the epoch date of debris 7 and 7" is the

current time. If we solve for Q1 = Q9 + 2n7, we will
have:

Q90— Qo + N Topor — QTopon + 207

T - . 3
o — 0, 3)

The feasible range for the MJD of this problem is
from 23467 to 26419. For the cases when the date of
the intersection is out of the feasible range, the data is
overwritten by a big number.

Although we have the best date to maneuver be-
tween the two planes, we still cannot guarantee the
spacecraft is exactly at the intersection point. In this
work, it is decided that a plane-change maneuver will
only be conducted when the spacecraft is close to the
intersection point of the two planes so that the cost of
the maneuver is lower. So then we compute the time of
wait unit the spacecraft can reach the intersection point.
The argument of latitude of the intersection and the ar-
gument of the spacecraft are computed:
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Ase = wset b, (4)

N = Qp —Q, (5)
COSQ = COSi;COSif

+sin¢; sin iy cos 6€2, (6)

sinA4;, = sinifsindQ/sine, @)

where Ag. is the argument of the position of the space-
craft, the A;, is the argument of latitude of the inter-
section. {1¢ and €Q; are the right ascension of the initial
plane and the final plane, respectively. 7; and ¢ ¢ are the
inclination of the initial plane and the final plane. « is
the angle of the plane change. When we find A;, = A,
we can start the maneuver. First a single-impulse plane
change maneuver is computed. Then an in-plane ma-
neuver is computed to rendezvous the spacecraft with
the debris. The combination of the previous two maneu-
vers is a two-impulse maneuver that will rendezvous the
spacecraft with the debris. The cost of the plane-change
maneuver can be computed as:

AV = 2V;sin(Aa/2), (8)
where Vj is the velocity of the spacecraft on the initial
orbit and A« is the difference in the inclination of the
orbits. The cost of the in-plane transfer can be com-
puted by solving Lambert problem. To have an ini-
tial guess for the real cost of the in-plane transfer, we
will hold the plane still, and assume the spacecraft has
the unperturbed Keplerian motion. Finally, the plane-
change maneuver and the departure cost of the in-plane
transfer will be combined. This combined maneuver
can also be obtained using the modified Lambert algo-
rithm presented in the Appendix.

Hidden Genes Genetic Algorithms

In this approach, a hidden genes genetic algorithm
(HGGA) was implemented to carry out a global search
as opposed to a sequential search. Details of the HGGA
can be found in [3, 4, 5].

To solve the problem, it can be divided into several
missions (m;) and in each mission some debris (/Ng;)
can be captured by a spacecraft. In general, m; and Ny,
are not known a priori. If we assume that each mis-
sion is solved at a time, the only variable that makes the
problem a Variable Size Design Space (VSDS) prob-
lem is the number of debris at each mission. The de-
sign variables in each mission are launch time, arrival

time, number of debris (/Ng;), debris IDs (debris that
are captured in the mission), wait time, and Deep Space
Maneuvers (DSMs) direction and magnitude.

The problem is solved in two phases. In the first
phase, the Js effect is ignored and launch/arrival time,
time of flight, number of debris, and debris IDs are op-
timized, and in the second step, the effect of J; is cor-
rected by adding a DSM in each leg. It is assumed that
there is no DSM in the first phase and there is only one
DSM in each leg in the second phase. In the first phase,
the Lambert problem is solved to find the trajectory be-
tween each two debris.

Assume that the current debris is D; and the next
debris is D;;;. At the end of the wait time at D; and
before the departure impulse, the position of the space-
craft is known (similar to the position of debris D).
Since the time of flight is known, the Lambert problem
can be solved to find the departure and arrival impulses.
This can be done for all the legs until the last debris of
the mission. After the first phase, the effect of the Js is
corrected by assuming a DSM in each leg. In this algo-
rithm, debris selection is done automatically and there
is no need to categorize them into groups. The solution
generated using HGGA was not competitive due to the
large design space that the HGGA needs to work with.

Sequential Search

Our broad search strategy uses the remaining fuel,
where trajectories are built in a sequential manner by
adding new legs. The maneuvers are already impulsive
for which Lambert problem with a bi-impulsive transfer
is considered in the preliminary phase. In the final step,
the missions are optimized individually using a local
optimizer while taking into account the J, perturbation
into the governing equations of the spacecraft motion.

Some of the orbital elements of the debris are very
close to each other, whereas the introduction of the
Jo perturbation varies the RAAN and the argument of
perigee of the orbits (see Appendix). Therefore, the de-
bris have different values for 2.

Figure 1 depicts the distribution of the data points
on the Q — Q plot. A more important factor, though,
is the evolution of the RAAN over certain time inter-
vals for it is possible to glean closeness information (in
terms of RAAN) in order to form clusters of debris. The

evolution of the RAAN is a linear relation,
Q=00+ Q x (t—to), 9)

where () is the value of the RAAN at the epoch time

DOI: 10.5281/zenodo.1139284

101



Acta Futura 11 (2018) / 99-107

Taheri E. et al.

(to). This linear relation can be utilized to construct a
closeness criterion to be used for clustering debris. On
the other hand, the number of debris considered in this
problem is significantly smaller than the involved bod-
ies of the previous GTOC problems. While the RAAN
has a significant effect on the value of the impulses,
initially, we decided to look for generating a series of
missions that has the lowest value of cost. Then, we
would perform a post-analysis to switch the debris be-
tween missions based on the closeness of the RAAN.

Our primary broad search method was to construct
individual missions, in a sequential manner, by using a
branch-and-prune tree search algorithm. Each mission
is built by connecting a series of legs. The building up
of sequential legs consists of two main loops: the first
loop iterates over the departure debri ID and the second
loop iterates over the arrival debri ID.

To find an optimal solution between each pair of de-
bris, a hybrid optimization method is devised. First,
a standard genetic algorithm (GA) performs a broad
search over the departure time (M JDge,) and time
of flight (I'OF) within their defined ranges. The
departure time is defined in the range MJDg., €
[MJDpp, MJDypg] where the lower bound and up-
per bounds of the departure time are M JDrp =
MJIDgrrival + Staytime and MJDyp = MJDpp +
29, respectively. The Stayiime of 5 days is one of
the constraints necessary for deploying the de-orbiting
package. In addition, the transfer time between any two
debris should not take more than 30 days.

The time of flight of each leg is also defined in
the range of TOF € [TOFLp,TOFyp] where the
lower bound and upper bounds of the time of flight are
0.1 X Tyrp and 5 X T)pp. Semi-major axis of the debris
are relatively close to each other and the period of their
orbit is approximately the same. Therefore, we defined
the limits of the TOF in terms of the average orbital
period Ty,4;; and its value is set to 100 minutes. Two
important parameters of a GA are the number of gener-
ations and populations. We set those parameters to 20
and 50, respectively.

Eventually, the solution of the GA is used as an ini-
tial guess for a local optimizer to further reduce the cost
function. For each leg, the departure time (M J D))
and time of flight (TOF) are the two design variables,
and the optimization objective was to minimize the sum
of the two impulses,

Am + A’Ug, (10)

J = min
MJDygep, TOF

where Av; and Aw, are the magnitude for impulses at
departure and arrival instances, respectively. For the
hybrid optimization we did not define any constraint
mainly due the fact that the constraint handling is dealt
with at the final verification stage in which we use
a local optimizer. Each individual execution of GA-
Fmincon hybrid optimization takes on average 0.2 sec-
onds (running on 8-cores).

The solution to the Lambert problem is used exten-
sively in the hybrid optimization method, for which we
used a multiple-revolution Lambert solver [6] and set
the maximum number of revolutions to 5. In addition,
we used a compiled Mex file C++ implementation of
the Lambert solver. Note that the actual transfer occurs
during a short interval. This will simplify the local op-
timization step during which the accumulative effect of
Jo perturbation becomes small.

Once a solution, which consists of individual mis-
sions, was generated through the broad search algo-
rithm, we performed a post-analysis to modify the mis-
sions by performing two major changes. The first
change was to remove the last missions that may con-
sist of only one leg, i.e., single-leg missions and to re-
assign their debris to the previous missions. The second
change was to inspect all of the missions and remove
those legs that required significantly greater values of
impulse compared to the other legs, and re-assign those
debris to other missions.

Debris Re-assignment

The re-assigning strategy that we considered exploits
the RAAN closeness which is explained in this section.
For any debri which is to be re-assigned, we calculated
the closeness criterion

= Do (Ui (ti) — Qaevra(t)?
n )

an

where Q7 _,., denotes the RAAN of the debri, which
is going to be re-assigned (evaluated at the descretized
points), and t; € [MJDpg, MJDyg]. Note that
MJDyp and MJDyp correspond to the lower and
upper bounds of the mission MJD time interval and are
known values. We adopted a simple equi-distant dis-
cretization of the mission time interval. n is the num-
ber of dicretization points (that depends on the step size
used for discretization) and €24.p,; is the RAAN of one
of the debri to which we compare the relative differ-
ences. The minimum value of the closeness criterion
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gives us a measure to assign any new debri to a particu-
lar mission.

For instance, if there is a mission which already
contains 10 debris, we calculate the above parameter
by comparing the closeness criterion between the new
debri and each of the 10 debris, and take the low-
est value. Then, we would repeat the same procedure
for the other missions and store the respective RAAN
closeness value, 7). Finally, the minimum value of n de-
termines the mission to which we should assign the new
debri. The above steps are followed for the other debris
until all of them are re-assigned. In addition, we can
avoid re-assigning new debris to the original missions
from which we picked them. This will ensure that the
debris are assigned to new missions.

After performing the above steps, some of the mis-
sions will be modified and a new tree-search optimiza-
tion is performed to achieve a minimum-cost mission
that visits all of the debris within each mission. Another
consideration is to modify the allowed duration interval
of a mission to make sure that there is enough time to
visit all of the derbi within each mission. The task of
modifying time is the tricky part of the re-assignment.
However, the optimization has to be performed over a
reduced number of debris within a mission (usually on
the order of 25 or less).

3 Results

The final solution consists of 16 missions that deorbits
122 debris with a total cost of 1192.743 MEURs.

Tables 1 to 16 summarizes the individual missions
of the submitted solution. Note that each row of the ta-
ble only reports the dates corresponding to the departure
and arrival impulse dates, M JD e, and M JD gy rival
respectively, between the departure debri ID and the ar-
rival debri ID. The spacecraft de-orbits a considerable
number of debris during the first three missions. De-
spite our efforts to remove the last two missions and
to re-assign their debris into the previous missions, our
tree-search algorithm was not capable of finding feasi-
ble missions after re-assigning them to other missions.

Figure 3 depicts the variation of the RAAN of the
debris visited in the first mission. Note that the apparent
separation of bands of lines with similar slope is due to
the fact that the angles are not brought into the interval
of [0, 27]

TABLE 1. Summary of mission #1

MIDgep MIDgrrivar  Dept. Deb#  Arri. Deb #
23680.147 23680.175 19 61
23704.058 23704.303 61 107
23727.367 23727.547 107 30
23736.618 23736.734 30 85
23764.976  23765.083 85 41
23782.362  23782.529 41 45
23789.213 23789.415 45 11
23801.012  23801.203 11 82
23816.460  23816.490 82 71
23844.768 23844.932 71 115
23867.137 23867.386 115 43
23873.892  23874.146 43 47
23900.408 23900.656 47 26
23918.438 23918.679 26 109
23929.680  23929.868 109 7
23958.427 23958.531 7 2

TABLE 2. Summary of mission #2

MIDgep MJDgrrivar  Dept. Deb#  Arri. Deb #
24007.834  24008.027 72 51
24014.289  24014.398 51 10
24020.713 24020.965 10 69
24037.514  24037.657 69 66
24046.992  24047.242 66 73
24074.129  24074.159 73 28
24099.494  24099.639 28 64
24115.494  24115.684 64 52
24144.436  24144.732 52 12
24166.146  24166.399 12 3
24193416  24193.677 3 31
24202.086  24202.332 31 65
24227.436  24227.702 65 91

TABLE 3. Summary of mission #3

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
24279.950  24279.998 81 13
24288.991  24289.174 13 32
24315.744  24316.037 32 22
24331.734  24331.777 22 17
24352.800  24353.076 17 105
24381.354  24381.452 105 59
24404.094  24404.245 59 98
24426367  24426.654 98 46
24444178 24444216 46 83
24467.346  24467.380 83 48
24495328  24495.623 48 99
24504.925  24505.101 99 96
24533.435  24533.635 96 114
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TABLE 8. Summary of mission #8

TABLE 4. Summary of mission #4 MIDgep  MIDgurrivar  Dept. Deb#  Arri. Deb #

MJD4ep  MIDurrivar  Dept. Deb#  Arri. Deb # 25327.371  25327.669 60 103
24593.279 24593.535 0 122 25341.232 25341.436 103 39
24622.047 24622337 122 74 25346.811  25347.072 39 5
24640.378  24640.552 74 119 25371.826  25372.103 5 53
24667.886  24668.010 119 104 25377.357  25377.602 53 101
24674.232  24674.284 104 24 25400.698  25400.955 101 78
24680.834  24681.046 24 108
24707.583  24707.619 108 37

TABLE 9. Summary of mission #9

TABLE 5. Summary of mission #5

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
24769.598  24769.714 55 93
24779.413  24779.534 93 100
24801.111 24801.140 100 90
24807.694  24807.994 90 9
24815556  24815.841 9 33
24842.602  24842.728 33 21
24853.887  24854.082 21 106
24871.127  24871.394 106 68
24893.691 24893.833 68 118
24917.925  24918.101 118 113

MIJDgep MJDgrrivar Dept. Deb#  Arri. Deb #
25447.187  25447.477 110 79
25473.209  25473.464 79 34
25485.266  25485.520 34 97
25510.400  25510.575 97 50
25535.869  25536.150 50 86
25542.053 25542.285 86 6

TABLE 10. Summary of mission #10

TABLE 6. Summary of mission #6

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
25584.694  25584.991 25 94
25594.707  25594.828 94 120
25618.420  25618.691 120 38
25623.691 25623.839 38 42
25641.463 25641.636 42 56
25653.755 25653.820 56 111

TABLE 11. Summary of mission #11

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
24966.805  24967.058 76 27
24974.934  24975.190 27 20
24996.868  24997.089 20 102
25021.045  25021.332 102 80
25033.293  25033.326 80 121
25062.310  25062.567 121 116
25087.865  25088.165 116 4
25115.532  25115.757 4 15

MIDgep MIDgrrivat Dept. Deb#  Arri. Deb #
25710.022  25710.291 95 8
25734.377  25734.542 8 49
25739.921  25740.060 49 84
25746.989  25747.024 84 36
25769.358  25769.460 36 75

TABLE 12. Summary of mission #12

TABLE 7. Summary of mission #7

MIDgep MIDgrrivat Dept. Deb#  Arri. Deb #
25871.606  25871.896 88 117
25877.672  25877.972 117 18
25884.791  25885.050 18 70

TABLE 13. Summary of mission #13

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
25159.145  25159.411 35 1
25167.633  25167.878 1 40
25173.101  25173.358 40 62
25187.643  25187.861 62 54
25212934  25213.041 54 89
25239.149  25239.255 89 112
25263.523  25263.714 112 87

MIJDgep MJDgrrivar Dept. Deb#  Arri. Deb #
25933.550  25933.729 14 58
25962.043 25962.246 58 63

TABLE 14. Summary of mission #14

MIDgep MJDgrrivar Dept. Deb#  Arri. Deb #
26098.760  26099.087 57 67
26107.636  26107.911 67 44
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TABLE 15. Summary of mission #15

MIJDgrrivar Dept. Deb#  Arri. Deb #
26151.788 77 29

MIDc,
26151.463

TABLE 16. Summary of mission #16

MJDgrrivar  Dept. Deb#  Arri. Deb #
26206.085 23 16

MIDac,
26205.748
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FIGURE 2. Evolution of the RAAN of the debris in the first
mission M JD2000 € [23672.248, 23963.531].
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4 Conclusion

Team MTU-UoM employed a set of tools which were
sufficient to find a good solution to GTOC9 problem.
A major enhancement would have been to utilize an ef-
ficient tree-search algorithm. In addition, it would be
ideal to perform, early on, a clustering strategy in terms
of the right-ascension of the ascending node, and then
focus on visiting the debris within each cluster. In ad-
dition, for each mission, plot of € — € is helpful in fix-
ing the sequence of debris (transfers) and consider only
the stay time and the time of transfer as design vari-
ables. The debri re-assignment strategy that we con-
sidered during the competition time can be performed
more efficiently.

Although we made progress in GTOCY, there is a
considerable gap between our solution and the solutions
submitted by the top-rank teams. There are still a lot of
works for us to do in trajectory design and optimiza-
tion. We have only used personal desktop computers
and exploited parallel capability of MATLAB running
our codes on eight cores. It is reasonable to run our
codes on clusters with access to a greater number of
cores. We should also consider developing our codes
on compiled programming languages, such as C or For-
tran. In addition, developing a capable local optimizer
(other than MATLAB?’s fimincon is quite important for
achieving improved solutions.

Appendix: Modified Lambert Solver

The Lambert solver finds the bi-impulse maneuver nec-
essary to rendezvous with a debris given the initial
spacecraft position, the final rendezvous position, and
the time of flight of the maneuver, assuming Keplerian
motion. Due to the oblateness of the Earth, the keple-
rian motion will be perturbed by the J, effect. The J,
effect will influence the right ascension, the argument
of the perigee and the mean anomaly. The latter was
neglected in GTOC 9.

0= %JQ(%)%COSL (12)

Jz(%)%@ cos?i — 1). (13)
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The change rate of () and w is linear.

Q- Qo = Qt — to), (14)

W — Wy :O:}(tfto). (15)

To solve the two-body transfer problem with the J, ef-
fect, the following strategy is developed. For a two-
body transfer problem without J» effect and with the
date of the departure, the arrival and the fixed time of
flight (TOF), usually Lambert problem is used to find
the transfer orbit. The required impulse for the depar-
ture Av? and the arrival Av? can be calculated. How-
ever, the problem under study takes into account the .J,
effect. Here, the solution obtained from Lambert is used
as initial guess. An optimization algorithm will be in-
troduced here for solving the perturbed transfer orbit.
The objective function is constructed as:

J = H,Fgc - %ebris”7 (16)
where 72, is the position vector of the spacecraft at the
final time which is also the arrival time. ©,_,,.;, is the
position vector of the debris at the arrival time. The goal
of the optimization is to minimize the objective function
which means we want to satisfy the rendezvous condi-
tion. The variables to be optimized is 7%, the velocity
of the spacecraft at departure time. The optimization
algorithm is setup as:

Min J = 75 = Thebrisll;

s.t

R A}
o= Masinlepa sy,
o ey g sh)

||F?c - ’F%ebris” < 017

where the first three constraints represent the perturbed
Keplerian motion. The last constraint is for the ren-
dezvous condition - the difference between the position
of the spacecraft and the position of the debris cannot
be bigger than 0.1 km. Due to the J, effect, if we
propagate the perturbed trajectory with the 7%, obtained
from original Lambert solution, the final position of the
spacecraft does not reach %,_,,,.. To take advantage
of J; effect, the Lambert problem can be used to solve
the transfer orbit between 7%, and Tiemp- A temporary

position 77,,,,, is computed from a modified set of or-
bital elements. Assume the orbital elements at the ar-
rival time are [a?, €%, i%, Q% w? M¢T. The modi-
fied orbital elements are computed from:
Qiemp = Q% — QT

a .
Wtemp = W~ — wT,

A7)
(18)

where 7' is the time of flight. So the temporary posi-
tion is computed from the modified orbital elements:
[a®, €, i% Qiemp, Wiemp, M7, In this competition,
Qs always a positive number while w is always neg-
ative. If Q% is greater than Q¢ which is the right as-
cension of the orbit before we apply the departure im-
pulse which means we have the possibility to take ad-
vantage of Jp effect. After we compute Qepyp, if
we found Qenp > Q9 then we are able to apply
the modification for the orbital elements, otherwise we
will apply Qiemp = Q4. If Q2 is smaller than Q9,
which means we are moving against Jo effect, the
modification for the orbital elements would not be ap-
plied, we will have e, > Q2. Since w is nega-
tive, so the opposite algorithm will be applied to com-
pute Weemp. The description above can be summarized
as
if Q% < Q7 then
Qtemp =0
else
if Qiemp > Q7 then
Qiemp = Eq. (17)
else
Qtemp =
end if
end if
if w* > w then
Wtemp = w*®

else
if Wiemp > w? then
Wtemp = wd
else
Weemp = Eq. (18)
end if
end if

So the above logic along with the Eqs. (17) and (18)
will be applied to compute the temporary position. The
Lambert problem will be solved between the initial po-
sition and the temporary position. The solution from
Lambert problem will be taken as the initial condition
of the optimization. Finally, we can use Eq. ((17)) to
optimize the velocity of the spacecraft at the departure
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point to reach the final position. The solution will be the
real cost of the perturbed transfer between two points.
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