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Abstract. This paper presents the methods

developed by the Michigan Tech Univeristy and

University of Michigan (MTU-UoM) team in the

9th GTOC along with the obtained results. Sev-

eral concepts were investigated, specially regard-

ing the selection of the sequence of debris to be

removed in each mission. These concepts will be

briefed in this paper and the concept that produced

this team’s best solution is presented in detail. A

genetic algorithm is used as an outer loop opti-

mization tool to determine the sequence of debris

to be removed. An inner loop optimizer is used to

tune the individual transfers in each mission. This

team’s best solution consists of 16 missions that re-

moves 122 debris with a cost of 1192.74 MEURs.

1 Introduction

The GTOC9 problem description is detailed in refer-

ence [1], and it is not presented here to avoid duplica-

tion with other papers in this special issue of the jour-

nal. The overall goal is to remove 123 debris in a Low-

earth orbit (LEO); to avoid the Kessler effect [2]. Some

of the orbital elements of the debris are very close to

*Corresponding author. E-mail: ooabdelk@mtu.edu

each other, whereas the introduction of the J2 perturba-

tion changes the right ascension of the ascending node

(RAAN) and argument of perigee of the orbits (see Ap-

pendix).

For two-body Kepler orbits, it is possible to use the

well known Lambert solver to compute the impulsive

maneuver needed to rendezvous with a debris, given the

initial position of the spacecraft, the final rendezvous

position, and the time of flight of the maneuver. Due

to the J2 effect included in this competition, this tool

cannot be used to compute an exact transfer. As a re-

sult, this team has developed a modified Lambert solver

during this competition that results in solutions that

are closer to the exact solution compared to the two-

body Lambert solver. As a result this modified Lam-

bert solver enabled the optimizer to find better solu-

tions. This modified Lambert approach is described in

the Appendix. The search for the best combination of

missions resulting in the lowest value of the cost func-

tion was performed in two main steps. The first step

is a global search among the 123 debris to generate in-

dividual missions in a sequential manner. The number

of the remaining debris gets smaller as more missions

are constructed. Each mission consists of a number of
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legs; each leg defines a trajectory between two debris.

Few different strategies were investigated in this mis-

sions construction step.

In the strategy used in the submitted solution, the

launch date and flight times of all legs, for each mission,

are the design variables of an optimization problem, in

which the goal was to minimize the the total impulse

value. Later the goal was to find the most efficient mis-

sions defined by the ratio of the number of visited debris

to the consumed propellant. The optimization problem

exploits solutions to multi-revolution modified Lambert

problem.

The second step involves a local optimization which

is performed over the missions obtained in the first step.

Assuming a fixed sequence of debris, the design vari-

ables of the local optimization are the launch date and

the flight times of all legs of an individual mission.
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FIGURE 1. Plot of Ω̇ versus Ω for the respective epoch time

of each debri.

2 Sequence of Debris

Given the large number of permutations of the sequence

of debris (large design space), it is vital to exploit very

rapid measures for conducting a broad search to find the

sequence of debris in each mission. Several concepts

were investigated; here the most significant of them are

briefed and the concept used to generate this team’s best

solution is detailed at the end.

Semi-Free Rides

Generally speaking, plane-change maneuvers are more

expensive compared to in-plane maneuvers. Two angles

determine the plane: the inclination and the RAAN. The

inclinations of the debris do not change due to the de-

bris motion while the RAAN changes due to the J2 ef-

fect. So, the concept presented in this section utilizes

this change in the RAAN due to the J2 effect, to sched-

ule rendezvous times when the values of RAANs of

two debris are very close; hence the spacecraft can wait

with one debris until a good time (when another debris

has the same RAAN) and then start a maneuver to ren-

dezvous with the new debris. The spacecraft will then

wait with the new debris until a new debris achieves a

RAAN that is close to the spacecraft’s RAAN, and so

on.

This concept generated a nice sequence of debris

with very low cost maneuvers; however the time of

flight in each maneuver is significantly high violating

the 30 days constraint defined in the problem descrip-

tion. As a result the sequences generated using this ap-

proach were not submitted.

The planes of all the debris are changing over time.

We can compute the date at which two arbitrary planes

would have equal RAAN as follows:

Ω1 = Ω10 + Ω̇1(T − Tepo1), (1)

Ω2 = Ω20 + Ω̇2(T − Tepo2), (2)

where Tepoi is the epoch date of debris i and T is the

current time. If we solve for Ω1 = Ω2 + 2nπ, we will

have:

T =
Ω20 − Ω10 + Ω̇1Tepo1 − Ω̇2Tepo2 + 2nπ

Ω̇1 − Ω̇2

. (3)

The feasible range for the MJD of this problem is

from 23467 to 26419. For the cases when the date of

the intersection is out of the feasible range, the data is

overwritten by a big number.

Although we have the best date to maneuver be-

tween the two planes, we still cannot guarantee the

spacecraft is exactly at the intersection point. In this

work, it is decided that a plane-change maneuver will

only be conducted when the spacecraft is close to the

intersection point of the two planes so that the cost of

the maneuver is lower. So then we compute the time of

wait unit the spacecraft can reach the intersection point.

The argument of latitude of the intersection and the ar-

gument of the spacecraft are computed:
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Asc = ωsc + θsc, (4)

δΩ = Ωf − Ωi, (5)

cosα = cos ii cos if

+sin ii sin if cos δΩ, (6)

sinAla = sin if sin δΩ/ sinα, (7)

where Asc is the argument of the position of the space-

craft, the Ala is the argument of latitude of the inter-

section. Ωf and Ωi are the right ascension of the initial

plane and the final plane, respectively. ii and if are the

inclination of the initial plane and the final plane. α is

the angle of the plane change. When we find Ala = Asc

we can start the maneuver. First a single-impulse plane

change maneuver is computed. Then an in-plane ma-

neuver is computed to rendezvous the spacecraft with

the debris. The combination of the previous two maneu-

vers is a two-impulse maneuver that will rendezvous the

spacecraft with the debris. The cost of the plane-change

maneuver can be computed as:

∆V = 2Vi sin(∆α/2), (8)

where Vi is the velocity of the spacecraft on the initial

orbit and ∆α is the difference in the inclination of the

orbits. The cost of the in-plane transfer can be com-

puted by solving Lambert problem. To have an ini-

tial guess for the real cost of the in-plane transfer, we

will hold the plane still, and assume the spacecraft has

the unperturbed Keplerian motion. Finally, the plane-

change maneuver and the departure cost of the in-plane

transfer will be combined. This combined maneuver

can also be obtained using the modified Lambert algo-

rithm presented in the Appendix.

Hidden Genes Genetic Algorithms

In this approach, a hidden genes genetic algorithm

(HGGA) was implemented to carry out a global search

as opposed to a sequential search. Details of the HGGA

can be found in [3, 4, 5].

To solve the problem, it can be divided into several

missions (mi) and in each mission some debris (Ndi)

can be captured by a spacecraft. In general, mi and Ndi

are not known a priori. If we assume that each mis-

sion is solved at a time, the only variable that makes the

problem a Variable Size Design Space (VSDS) prob-

lem is the number of debris at each mission. The de-

sign variables in each mission are launch time, arrival

time, number of debris (Ndi), debris IDs (debris that

are captured in the mission), wait time, and Deep Space

Maneuvers (DSMs) direction and magnitude.

The problem is solved in two phases. In the first

phase, the J2 effect is ignored and launch/arrival time,

time of flight, number of debris, and debris IDs are op-

timized, and in the second step, the effect of J2 is cor-

rected by adding a DSM in each leg. It is assumed that

there is no DSM in the first phase and there is only one

DSM in each leg in the second phase. In the first phase,

the Lambert problem is solved to find the trajectory be-

tween each two debris.

Assume that the current debris is Di and the next

debris is Di+1. At the end of the wait time at Di and

before the departure impulse, the position of the space-

craft is known (similar to the position of debris Di).

Since the time of flight is known, the Lambert problem

can be solved to find the departure and arrival impulses.

This can be done for all the legs until the last debris of

the mission. After the first phase, the effect of the J2 is

corrected by assuming a DSM in each leg. In this algo-

rithm, debris selection is done automatically and there

is no need to categorize them into groups. The solution

generated using HGGA was not competitive due to the

large design space that the HGGA needs to work with.

Sequential Search

Our broad search strategy uses the remaining fuel,

where trajectories are built in a sequential manner by

adding new legs. The maneuvers are already impulsive

for which Lambert problem with a bi-impulsive transfer

is considered in the preliminary phase. In the final step,

the missions are optimized individually using a local

optimizer while taking into account the J2 perturbation

into the governing equations of the spacecraft motion.

Some of the orbital elements of the debris are very

close to each other, whereas the introduction of the

J2 perturbation varies the RAAN and the argument of

perigee of the orbits (see Appendix). Therefore, the de-

bris have different values for Ω̇.

Figure 1 depicts the distribution of the data points

on the Ω̇ − Ω plot. A more important factor, though,

is the evolution of the RAAN over certain time inter-

vals for it is possible to glean closeness information (in

terms of RAAN) in order to form clusters of debris. The

evolution of the RAAN is a linear relation,

Ω = Ω0 + Ω̇× (t− t0), (9)

where Ω0 is the value of the RAAN at the epoch time
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(t0). This linear relation can be utilized to construct a

closeness criterion to be used for clustering debris. On

the other hand, the number of debris considered in this

problem is significantly smaller than the involved bod-

ies of the previous GTOC problems. While the RAAN

has a significant effect on the value of the impulses,

initially, we decided to look for generating a series of

missions that has the lowest value of cost. Then, we

would perform a post-analysis to switch the debris be-

tween missions based on the closeness of the RAAN.

Our primary broad search method was to construct

individual missions, in a sequential manner, by using a

branch-and-prune tree search algorithm. Each mission

is built by connecting a series of legs. The building up

of sequential legs consists of two main loops: the first

loop iterates over the departure debri ID and the second

loop iterates over the arrival debri ID.

To find an optimal solution between each pair of de-

bris, a hybrid optimization method is devised. First,

a standard genetic algorithm (GA) performs a broad

search over the departure time (MJDdep) and time

of flight (TOF ) within their defined ranges. The

departure time is defined in the range MJDdep ∈
[MJDLB ,MJDUB ] where the lower bound and up-

per bounds of the departure time are MJDLB =
MJDarrival + Staytime and MJDUB = MJDLB +
29, respectively. The Staytime of 5 days is one of

the constraints necessary for deploying the de-orbiting

package. In addition, the transfer time between any two

debris should not take more than 30 days.

The time of flight of each leg is also defined in

the range of TOF ∈ [TOFLB , TOFUB ] where the

lower bound and upper bounds of the time of flight are

0.1× Torb and 5× Torb. Semi-major axis of the debris

are relatively close to each other and the period of their

orbit is approximately the same. Therefore, we defined

the limits of the TOF in terms of the average orbital

period Torbit and its value is set to 100 minutes. Two

important parameters of a GA are the number of gener-

ations and populations. We set those parameters to 20

and 50, respectively.

Eventually, the solution of the GA is used as an ini-

tial guess for a local optimizer to further reduce the cost

function. For each leg, the departure time (MJDdep)

and time of flight (TOF) are the two design variables,

and the optimization objective was to minimize the sum

of the two impulses,

J = min
MJDdep,TOF

∆v1 +∆v2, (10)

where ∆v1 and ∆v2 are the magnitude for impulses at

departure and arrival instances, respectively. For the

hybrid optimization we did not define any constraint

mainly due the fact that the constraint handling is dealt

with at the final verification stage in which we use

a local optimizer. Each individual execution of GA-

Fmincon hybrid optimization takes on average 0.2 sec-

onds (running on 8-cores).

The solution to the Lambert problem is used exten-

sively in the hybrid optimization method, for which we

used a multiple-revolution Lambert solver [6] and set

the maximum number of revolutions to 5. In addition,

we used a compiled Mex file C++ implementation of

the Lambert solver. Note that the actual transfer occurs

during a short interval. This will simplify the local op-

timization step during which the accumulative effect of

J2 perturbation becomes small.

Once a solution, which consists of individual mis-

sions, was generated through the broad search algo-

rithm, we performed a post-analysis to modify the mis-

sions by performing two major changes. The first

change was to remove the last missions that may con-

sist of only one leg, i.e., single-leg missions and to re-

assign their debris to the previous missions. The second

change was to inspect all of the missions and remove

those legs that required significantly greater values of

impulse compared to the other legs, and re-assign those

debris to other missions.

Debris Re-assignment

The re-assigning strategy that we considered exploits

the RAAN closeness which is explained in this section.

For any debri which is to be re-assigned, we calculated

the closeness criterion

η =

∑n

i (Ω
∗
debri(ti)− Ωdebri(ti))

2

n
, (11)

where Ω∗
debri denotes the RAAN of the debri, which

is going to be re-assigned (evaluated at the descretized

points), and ti ∈ [MJDLB ,MJDUB ]. Note that

MJDLB and MJDUB correspond to the lower and

upper bounds of the mission MJD time interval and are

known values. We adopted a simple equi-distant dis-

cretization of the mission time interval. n is the num-

ber of dicretization points (that depends on the step size

used for discretization) and Ωdebri is the RAAN of one

of the debri to which we compare the relative differ-

ences. The minimum value of the closeness criterion
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gives us a measure to assign any new debri to a particu-

lar mission.

For instance, if there is a mission which already

contains 10 debris, we calculate the above parameter

by comparing the closeness criterion between the new

debri and each of the 10 debris, and take the low-

est value. Then, we would repeat the same procedure

for the other missions and store the respective RAAN

closeness value, η. Finally, the minimum value of η de-

termines the mission to which we should assign the new

debri. The above steps are followed for the other debris

until all of them are re-assigned. In addition, we can

avoid re-assigning new debris to the original missions

from which we picked them. This will ensure that the

debris are assigned to new missions.

After performing the above steps, some of the mis-

sions will be modified and a new tree-search optimiza-

tion is performed to achieve a minimum-cost mission

that visits all of the debris within each mission. Another

consideration is to modify the allowed duration interval

of a mission to make sure that there is enough time to

visit all of the derbi within each mission. The task of

modifying time is the tricky part of the re-assignment.

However, the optimization has to be performed over a

reduced number of debris within a mission (usually on

the order of 25 or less).

3 Results

The final solution consists of 16 missions that deorbits

122 debris with a total cost of 1192.743 MEURs.

Tables 1 to 16 summarizes the individual missions

of the submitted solution. Note that each row of the ta-

ble only reports the dates corresponding to the departure

and arrival impulse dates, MJDdep and MJDarrival,

respectively, between the departure debri ID and the ar-

rival debri ID. The spacecraft de-orbits a considerable

number of debris during the first three missions. De-

spite our efforts to remove the last two missions and

to re-assign their debris into the previous missions, our

tree-search algorithm was not capable of finding feasi-

ble missions after re-assigning them to other missions.

Figure 3 depicts the variation of the RAAN of the

debris visited in the first mission. Note that the apparent

separation of bands of lines with similar slope is due to

the fact that the angles are not brought into the interval

of [0, 2π]

TABLE 1. Summary of mission #1

MJDdep MJDarrival Dept. Deb # Arri. Deb #

23680.147 23680.175 19 61

23704.058 23704.303 61 107

23727.367 23727.547 107 30

23736.618 23736.734 30 85

23764.976 23765.083 85 41

23782.362 23782.529 41 45

23789.213 23789.415 45 11

23801.012 23801.203 11 82

23816.460 23816.490 82 71

23844.768 23844.932 71 115

23867.137 23867.386 115 43

23873.892 23874.146 43 47

23900.408 23900.656 47 26

23918.438 23918.679 26 109

23929.680 23929.868 109 7

23958.427 23958.531 7 2

TABLE 2. Summary of mission #2

MJDdep MJDarrival Dept. Deb # Arri. Deb #

24007.834 24008.027 72 51

24014.289 24014.398 51 10

24020.713 24020.965 10 69

24037.514 24037.657 69 66

24046.992 24047.242 66 73

24074.129 24074.159 73 28

24099.494 24099.639 28 64

24115.494 24115.684 64 52

24144.436 24144.732 52 12

24166.146 24166.399 12 3

24193.416 24193.677 3 31

24202.086 24202.332 31 65

24227.436 24227.702 65 91

TABLE 3. Summary of mission #3

MJDdep MJDarrival Dept. Deb # Arri. Deb #

24279.950 24279.998 81 13

24288.991 24289.174 13 32

24315.744 24316.037 32 22

24331.734 24331.777 22 17

24352.800 24353.076 17 105

24381.354 24381.452 105 59

24404.094 24404.245 59 98

24426.367 24426.654 98 46

24444.178 24444.216 46 83

24467.346 24467.380 83 48

24495.328 24495.623 48 99

24504.925 24505.101 99 96

24533.435 24533.635 96 114
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TABLE 4. Summary of mission #4

MJDdep MJDarrival Dept. Deb # Arri. Deb #

24593.279 24593.535 0 122

24622.047 24622.337 122 74

24640.378 24640.552 74 119

24667.886 24668.010 119 104

24674.232 24674.284 104 24

24680.834 24681.046 24 108

24707.583 24707.619 108 37

TABLE 5. Summary of mission #5

MJDdep MJDarrival Dept. Deb # Arri. Deb #

24769.598 24769.714 55 93

24779.413 24779.534 93 100

24801.111 24801.140 100 90

24807.694 24807.994 90 9

24815.556 24815.841 9 33

24842.602 24842.728 33 21

24853.887 24854.082 21 106

24871.127 24871.394 106 68

24893.691 24893.833 68 118

24917.925 24918.101 118 113

TABLE 6. Summary of mission #6

MJDdep MJDarrival Dept. Deb # Arri. Deb #

24966.805 24967.058 76 27

24974.934 24975.190 27 20

24996.868 24997.089 20 102

25021.045 25021.332 102 80

25033.293 25033.326 80 121

25062.310 25062.567 121 116

25087.865 25088.165 116 4

25115.532 25115.757 4 15

TABLE 7. Summary of mission #7

MJDdep MJDarrival Dept. Deb # Arri. Deb #

25159.145 25159.411 35 1

25167.633 25167.878 1 40

25173.101 25173.358 40 62

25187.643 25187.861 62 54

25212.934 25213.041 54 89

25239.149 25239.255 89 112

25263.523 25263.714 112 87

TABLE 8. Summary of mission #8

MJDdep MJDarrival Dept. Deb # Arri. Deb #

25327.371 25327.669 60 103

25341.232 25341.436 103 39

25346.811 25347.072 39 5

25371.826 25372.103 5 53

25377.357 25377.602 53 101

25400.698 25400.955 101 78

TABLE 9. Summary of mission #9

MJDdep MJDarrival Dept. Deb # Arri. Deb #

25447.187 25447.477 110 79

25473.209 25473.464 79 34

25485.266 25485.520 34 97

25510.400 25510.575 97 50

25535.869 25536.150 50 86

25542.053 25542.285 86 6

TABLE 10. Summary of mission #10

MJDdep MJDarrival Dept. Deb # Arri. Deb #

25584.694 25584.991 25 94

25594.707 25594.828 94 120

25618.420 25618.691 120 38

25623.691 25623.839 38 42

25641.463 25641.636 42 56

25653.755 25653.820 56 111

TABLE 11. Summary of mission #11

MJDdep MJDarrival Dept. Deb # Arri. Deb #

25710.022 25710.291 95 8

25734.377 25734.542 8 49

25739.921 25740.060 49 84

25746.989 25747.024 84 36

25769.358 25769.460 36 75

TABLE 12. Summary of mission #12

MJDdep MJDarrival Dept. Deb # Arri. Deb #

25871.606 25871.896 88 117

25877.672 25877.972 117 18

25884.791 25885.050 18 70

TABLE 13. Summary of mission #13

MJDdep MJDarrival Dept. Deb # Arri. Deb #

25933.550 25933.729 14 58

25962.043 25962.246 58 63

TABLE 14. Summary of mission #14

MJDdep MJDarrival Dept. Deb # Arri. Deb #

26098.760 26099.087 57 67

26107.636 26107.911 67 44
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TABLE 15. Summary of mission #15

MJDdep MJDarrival Dept. Deb # Arri. Deb #

26151.463 26151.788 77 29

TABLE 16. Summary of mission #16

MJDdep MJDarrival Dept. Deb # Arri. Deb #

26205.748 26206.085 23 16
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FIGURE 2. Evolution of the RAAN of the debris in the first

mission MJD2000 ∈ [23672.248, 23963.531].
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4 Conclusion

Team MTU-UoM employed a set of tools which were

sufficient to find a good solution to GTOC9 problem.

A major enhancement would have been to utilize an ef-

ficient tree-search algorithm. In addition, it would be

ideal to perform, early on, a clustering strategy in terms

of the right-ascension of the ascending node, and then

focus on visiting the debris within each cluster. In ad-

dition, for each mission, plot of Ω̇−Ω is helpful in fix-

ing the sequence of debris (transfers) and consider only

the stay time and the time of transfer as design vari-

ables. The debri re-assignment strategy that we con-

sidered during the competition time can be performed

more efficiently.

Although we made progress in GTOC9, there is a

considerable gap between our solution and the solutions

submitted by the top-rank teams. There are still a lot of

works for us to do in trajectory design and optimiza-

tion. We have only used personal desktop computers

and exploited parallel capability of MATLAB running

our codes on eight cores. It is reasonable to run our

codes on clusters with access to a greater number of

cores. We should also consider developing our codes

on compiled programming languages, such as C or For-

tran. In addition, developing a capable local optimizer

(other than MATLAB’s fmincon is quite important for

achieving improved solutions.

Appendix: Modified Lambert Solver

The Lambert solver finds the bi-impulse maneuver nec-

essary to rendezvous with a debris given the initial

spacecraft position, the final rendezvous position, and

the time of flight of the maneuver, assuming Keplerian

motion. Due to the oblateness of the Earth, the keple-

rian motion will be perturbed by the J2 effect. The J2
effect will influence the right ascension, the argument

of the perigee and the mean anomaly. The latter was

neglected in GTOC 9.

Ω̇ = −
3

2
J2(

req
p

)2n cos i, (12)

ω̇ =
3

4
J2(

req
p

)2n(5 cos2 i− 1). (13)
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The change rate of Ω and ω is linear.

Ω− Ω0 = Ω̇(t− t0), (14)

ω − ω0 = ω̇(t− t0). (15)

To solve the two-body transfer problem with the J2 ef-

fect, the following strategy is developed. For a two-

body transfer problem without J2 effect and with the

date of the departure, the arrival and the fixed time of

flight (TOF), usually Lambert problem is used to find

the transfer orbit. The required impulse for the depar-

ture ∆vd and the arrival ∆va can be calculated. How-

ever, the problem under study takes into account the J2
effect. Here, the solution obtained from Lambert is used

as initial guess. An optimization algorithm will be in-

troduced here for solving the perturbed transfer orbit.

The objective function is constructed as:

J = ‖~rasc − ~raDebris‖, (16)

where ~rasc is the position vector of the spacecraft at the

final time which is also the arrival time. ~raDebris is the

position vector of the debris at the arrival time. The goal

of the optimization is to minimize the objective function

which means we want to satisfy the rendezvous condi-

tion. The variables to be optimized is ~vdsc, the velocity

of the spacecraft at departure time. The optimization

algorithm is setup as:

Min : J = ‖~rasc − ~raDebris‖,

s.t :

ẍ = −
µx

r3
(1 +

3

2
J2(

req
r
)2(1− 5

z2

r2
)),

ÿ = −
µy

r3
(1 +

3

2
J2(

req
r
)2(1− 5

z2

r2
)),

z̈ = −
µz

r3
(1 +

3

2
J2(

req
r
)2(3− 5

z2

r2
)),

‖~rasc − ~raDebris‖ < 0.1,

where the first three constraints represent the perturbed

Keplerian motion. The last constraint is for the ren-

dezvous condition - the difference between the position

of the spacecraft and the position of the debris cannot

be bigger than 0.1 km. Due to the J2 effect, if we

propagate the perturbed trajectory with the ~vdsc obtained

from original Lambert solution, the final position of the

spacecraft does not reach ~raDebris. To take advantage

of J2 effect, the Lambert problem can be used to solve

the transfer orbit between ~rdsc and ~ratemp. A temporary

position ~ratemp is computed from a modified set of or-

bital elements. Assume the orbital elements at the ar-

rival time are [aa, ea, ia, Ωa, ωa, Ma]T . The modi-

fied orbital elements are computed from:

Ωtemp = Ωa − Ω̇T , (17)

ωtemp = ωa − ω̇T, (18)

where T is the time of flight. So the temporary posi-

tion is computed from the modified orbital elements:

[aa, ea, ia, Ωtemp, ωtemp, M
a]T . In this competition,

Ω̇ is always a positive number while ω̇ is always neg-

ative. If Ωa is greater than Ωd which is the right as-

cension of the orbit before we apply the departure im-

pulse which means we have the possibility to take ad-

vantage of J2 effect. After we compute Ωtemp, if

we found Ωtemp > Ωd, then we are able to apply

the modification for the orbital elements, otherwise we

will apply Ωtemp = Ωd. If Ωa is smaller than Ωd,

which means we are moving against J2 effect, the

modification for the orbital elements would not be ap-

plied, we will have Ωtemp > Ωa. Since ω̇ is nega-

tive, so the opposite algorithm will be applied to com-

pute ωtemp. The description above can be summarized

as

if Ωa < Ωd then

Ωtemp = Ωa

else

if Ωtemp > Ωd then

Ωtemp = Eq. (17)

else

Ωtemp = Ωd

end if

end if

if ωa > ωd then

ωtemp = ωa

else

if ωtemp > ωd then

ωtemp = ωd

else

ωtemp = Eq. (18)

end if

end if

So the above logic along with the Eqs. (17) and (18)

will be applied to compute the temporary position. The

Lambert problem will be solved between the initial po-

sition and the temporary position. The solution from

Lambert problem will be taken as the initial condition

of the optimization. Finally, we can use Eq. ((17)) to

optimize the velocity of the spacecraft at the departure
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point to reach the final position. The solution will be the

real cost of the perturbed transfer between two points.
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