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Abstract. This paper discusses the methods

used by the team from the German Aerospace

Center (DLR) for solving the 9th Global Tra-

jectory Optimization Competition (GTOC) prob-

lem. The GTOC is an event taking place ev-

ery year lasting roughly one month during which

the best aerospace engineers and mathematicians

world wide challenge themselves to solve a nearly-

impossible problem of interplenatery trajectory

design.

1 Introduction

The paper is organized as follows: section 2 summa-

rizes briefly the problem statement; section 3 points out

how the overall strategy was developed; section 4 fo-

cuses on the combinatorial part of the problem and 5 on

the transfer between two debris. Finally, in sections 6

and 7 we discuss the results and draw some conclusions.

2 Problem Statement

The task was to design a scenario with n missions

which collect a given set of 123 space debris on Sun-

synchronous Low Earth Orbits. The following cost
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function has to be minimized:

J =

n
∑

i=1

ci + α(m0i −mdry)
2

(1)

where ci is the base cost (increasing linearly during the

competition time frame from 45 MEUR to 55 MEUR).

Each spacecraft initial mass m0 is the sum of dry mass,

propellant mass and N times the deorbit package mass:

m0 = mdry +mp +Nmde, with mde = 30 kg. The α
parameter is set to be 2.0 · 10−2 MEUR/kg2.

In order to control the spacecraft, five impulsive ma-

noeuvres are allowed during the debris to debris trans-

fer in addition to an impulsive manoeuvre at departure

and at arrival. The overall time between two succes-

sive debris rendezvous, within the same mission, must

not exceed 30 days. The deorbit package deployment

takes 5 days. That results in a maximum transfer time

of 25 days. The time between two missions must be

at least 30 days. And the mission must take place be-

tween 23467 MJD2000 and 26419 MJD2000. The ra-

dius of pericenter rp is constrained to be smaller than

rm = 6600 km.

The spacecraft dynamics is described by the follow-
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ing set of Ordinary Differential Equations (ODE):
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which describes a Keplerian motion perturbed by an

oblate Earth. The orbital elements of the space debris

are given for a certain epoch and are propagated via a

more simplified model than equation (2):

Ω̇ = −
3

2
J2

(

req
p

)2

n cos i

ω̇ = 3

4
J2

(

req
p

)2

n
(

5cos2i− 1
)

(3)

It can be seen that the ascending node Ω is the orbital

element which encounters the most variations caused

by J2. That will have an impact on the overall strat-

egy. For more details on the problem statement re-

fer to the GTOC 9 problem statement [1] or visit

https://kelvins.esa.int/gtoc9-kessler-run/.

3 Overall Strategy

The problem to be solved can be classified as Time De-

pendent Traveling Salesman Problem, with a nested op-

timal control problem for each transfer. One way to

solve the combinatorial part would be to explicitly eval-

uate all possible combinations. That approach is only

applicable for small dimensions. In this case there are

123 debris to be sorted for the best sequence (which

gives 123! permutations). In addition they have to be

chopped into n missions, which increases the dimen-

sion of the problem even more. Even with the most

powerful computers and the smartest approach to cal-

culate the ∆V for transfer from one debris to the next

one it would take years to determine the entire tree. Sec-

tion 4 deals about the solution of the combinatorial part

of the problem.

Before looking into the transfer it makes sense to ana-

lyze the design space to get some reasonable boundaries

for design variables like transfer time, delta v range,

needed number of missions and so on. The first im-

portant question to answer is how are the debris pieces

spread out regarding inclination i, eccentricity e and

semi major axis a. Figure 1 shows the range of the or-

bital elements for the debris pieces. It can be seen that

the orbits are nearly circular, inclination ranges from

96 deg to 102 deg and the orbital height (or a − req)

goes from 600 km to 900 km. These elements do not

change over time for the dynamic model which is used

for the debris.

If we only consider the change in inclination and

semimajor axis during a transfer, the problem can be

treated as a simple Traveling Salesman Problem (TSP).

The ∆V which is needed to travel from debris A to de-

bris B is the sum of the inclination change ∆Vinc plus

the ∆Vsma for the Hohmann transfer:

∆Vinc = 2V sin((iA − iB)/2)

∆Vsma =
√

µ/r1(
√

2k/(1 + k)− 1) + ...
√

µ/(r1k)(1−
√

2/(1 + k))

∆VAB = ∆Vinc +∆Vsma,

where k is the ratio between aA and aB , assuming cir-

cular orbits. With that equations it is possible to set up

a cost matrix showing the cost for the transfer from one

debris to the next debris, ignoring the phasing in true

anomaly and right ascension. With these assumptions

it is possible to apply a genetic algorithm implemented

in Matlab to find the optimal route. Figure 2 shows the

result of one run with 500 populations and 1 · 105 it-

erations. The total distance is around 2654 m/s, so an

average ∆V of 21.7 m/s is needed for one transfer. In

theory and with no constraints on the mission time, this

result would equal to J < 100 MEUR. In practice the

8 years mission time constraint and the 25 day transfer

time constraint has to be fulfilled.

So some reasonable ∆V has to be invested for chang-

ing the right ascension. That can be done in two ways:

• a direct plane change,

• an indirect plane change via a change in semi ma-

jor axis.

Assuming that all other elements besides Ω are the

same, one can compare the ∆V for both cases. With

this assumption the equation for the direct plane change

is similar to the one used for the inclination change.

∆VΩ = 2V sin((ΩA − ΩB)/2) (4)

Like the inclination change it is quite a cost intensive

maneuver. If there is enough time available, an indirect

transfer is cheaper. An important figure to look at is the
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FIGURE 1. Debris orbital elements
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Total Distance = 2654.9208, Iteration = 77756

FIGURE 2. Optimal Path in the i and a TSP

change in right ascension for the debris which is plot-

ted in Figure 3 over height (with an inclination equal

to 98 deg). Out of that one can see that the orbits are
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FIGURE 3. Ω̇ over height

drifting between 1.2 deg/day and 0.2 deg/day. Depend-

ing on the initial height the differential drift is around

0.5 deg/day. Assuming a 20 day transfer time it is pos-

sible to overcome a delta of 10 deg in Ω. For the in-

direct change two Hohmann like transfers are needed.

The first one to reach the desired drift orbit, the second

one to get the semi major axis of the arrival debris.

Assuming the same orbital elements for both debris

as: a = 600 km+ req , e = 0, i = 98 deg, only a change

in Ω needs to be considered. On Figure 4 one can see
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FIGURE 4. ∆V over ∆Ω

that the ∆V needed for a direct change increases nearly

linear with ∆Ω (dashed line). The other curves in the

figure represent an indirect transfer for different transfer

times (5:5:25 days). One can see that for transfer times

larger than 15 days it is always better to make an indi-

rect transfer. And that does even not take into account

that it is possible to save some ∆V because of differ-

ent semi major axis and inclination of the departing and

arrival debris. The inclination change can either be per-

formed before or after the drift change maneuvers. This

choice also has an impact on the required ∆V , as it is

a function of the inclination (see equation 3). With that

thoughts one has a good set up for the combinatorial

problem, which will be discussed later.

The next interesting question to look at is how many

missions one may need (does it make sense to stack

one launcher as full as possible) and what does the cost

function look like. Assuming a range of different av-
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FIGURE 5. J over n and ∆Vaverage

erage transfer ∆V s and number of missions (n) one

gets Figure 5, which shows the J function in MEUR. It

can be seen that it is not advisable to use the maximum

propulsion available. For an average ∆V of 300 m/s,

J is 904.1 MEUR for 9 starts, while for 12 starts it is

827.6 MEUR and for a larger number of starts J in-

creases again. Although one would have to add 12 times

the base cost for the launcher instead of only 9 times,

the used propellant mass goes in quadratic. So using

the total allowed 5000 kg is not optimal. It is better to

reduce the total allowed fuel or ∆V per mission by 10%

to 20%, depending on how many missions are needed.

The issue is that this number is not known before hand.

4 Combinatorial Problem

In section 3 basic figures have been derived to narrow

down the problem. With these figures it is possible to

estimate the cost or ∆V to perform a debris to debris

transfer. The issue is, the problem is time variant, be-

cause the cost matrix depends on the epoch of the trans-

fer. Or using the TSP syntax it is not a city to city rout-

ing problem, it is a boat to boat one, where the boats are

sailing around.

Before going into detail of the graph implementation

a deeper look into the handling of the transfer time is

needed. As derived in section 3, for the drift change ma-

neuver, it would be better to have a large transfer time

available. At a first guess it might make sense to use

the maximum allowed 25 days. But using that for all

of the transfers, the total mission time would be larger

than the allowed 8 years. And that even depends on the

number of needed missions. Figure 6 shows the maxi-

mum allowed transfer times over the number of needed
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FIGURE 6. Maximum transfer time over n

missions, which is again not known before solving the

graph problem. In fact it is only possible to use av-

erage transfer times between 15 and 19 days. In that

case the next question is, if it would make sense to have

the transfer time as a design variable in the combina-

torial problem or to keep it fixed to an average value.

To not further increase the permutation space it was de-

cided to keep it fixed. That approach also allows to use

a look up table for all possible transfers with a 1 day

grid size. This table is precalculated and loaded into the

graph algorithm. In the cost matrix it is also possible to

handle the radius of periapsis constraint, by setting the

∆V = ∞ for all transfers where rp < rpm
.

For solving the routing of the time dependent prob-

lem the same genetic algorithm has been used, which

already delivered good results for the inclination-sma

routing problem. But it didn’t brought any good results.

Instead a graph algorithm which uses a certain beam

width has been developed.

Each mission can be represented as a graph or tree

(see Figure 7). For the first mission there are 123 nodes

or debris as an option to start from. Keeping in mind

that the cost function doesn’t give any penalty at which

debris the mission starts, it’s a free design parameter. So

the initial beam width would be 123. Using that one can

calculate 122 possible debris transfers for each of that

123 debris. Because each debris should be only visited

ones. This results in 123 times 122 possible options.

There are many methods to explore such kind of trees

or graphs:

• Depth First Search

• Breadth First Search

• Beam Search
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FIGURE 7. Mission Graph

• Greedy Search

The Depth First Algorithm travels along the left or right

side of the tree. In this case it would just visit the debris

either in the sequence 1:1:123 or 123:-1:1. It would

be possible to add some backtracking if the algorithms

gets stuck somewhere or to apply some heuristic, like

the average ∆V is getting too large along the current

path.

Breadth First in the opposite explores the tree first

horizontal and than continues to the next level with all

possible permutations. In this case like mentioned al-

ready a full breadth first search would not be possible

cause the permutation would be to large.

Greedy search is like depth first, but it makes a de-

cision on some heuristic which path to take. The easi-

est implementation is to make the decision on the next

shortest (lowest ∆V ) path. That was the first method

used to find a proper sequence and it brought results for

J around 2500. The Greedy search has the typical tree

drawback that the best cookies are eaten first and the

bad ones are left over in the end, and one still has to

eat them, cause the entire set has to be collected and not

only a subset. And that’s something that has been ob-

served when running a greedy search on the tree. The

last transfers had a quite high ∆V and that caused a

high number of missions and a resulting high J value.

In order to overcome that issue a beam search has

been applied. Instead of only travelling along one path,

k best options are selected. Depending on the beam

width k the computational time of course grows in that

case. For this problem an initial beam width of 123 has

been selected for the first mission. On the next level the

maximum beam width is already 123 · 122 = 15006
and so on. Limiting the beam width for the first runs

to 2000 already gave good results for J around 1000.

The entire idea behind that method is, that it is possible

to look into the future by taking also some bad paths

hopping they turn into golden paths in the end.

At each level each possible solution has been checked

for uniqueness. That can also be explained when look-

ing again at Figure 7. The sequence 1-3-2 is equal to 3-

1-2, because for the next level the start node (in that case

node 2) as well as the left over debris-set is the same.

So the algorithm only takes the best sequence out of that

two, because the beam width is limited and many dif-

ferent permutations are needed to find the golden path.

The graph algorithm has been implemented in Mat-

lab and took roughly 1 hr computation time on a In-

tel Xeon CPU E3 3.50GHz, with a beam width set to

20000. Running the tree after the first mission the left

nodes are getting less and the computation time goes

down.

With the 5000 kg propellant a maximum ∆V of

5000 m/s can be achieved. But with the results from the

qualitative J-function analysis the maximum has been

set to 4500 m/s and also runs with lower values have

been performed. For the first mission it was possible to

perform 23 transfers. But the beam width at that point

was only around 10 to 20. So in that case there are not

enough permutations for the next missions. Instead of

taking the maximum transfer solution one with a higher

beam width has been taken. The algorithm has been set

up in a way that the number of transfers is the same for

all beams. That may not be the optimal choice and some

further investigation may be performed to see if a free

number of transfers brings a significant improvement.

The final sequence will be discussed in the Results

section 6

5 Transfer Problem

Before solving the debris to debris final transfer the se-

quence coming out of the beam search algorithm needs

to be re-optimized. As already discussed in section 4,

the transfer time for all transfers has been kept to a fixed

value. That has been re-optimized using the local opti-

mizer fmincon in Matlab. The cost function in that case

is the sum of the ∆V s for all transfers in that particu-

lar mission. The design variables are the transfer times.

The upper bound has been set to 25 days, constrained

by the problem statement. The lower bound was set to

1 day, cause some time for the final phasing of the true

anomaly may be needed, which has been ignored com-

pletely so far. In the combinatorial part a fixed grid size

for the transfer time has been used (e.g. always 17 days
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FIGURE 8. Evolution of orbital elements for mission 1

for the first 6 missions and than 19 or 20 for the re-

maining, depending how many debris is left to collect).

An inequality constraint had to be introduced that the

sum of the transfer times is not larger than the old sum

of the fixed transfer times (That means one can only

shift some transfer time from one transfer to the other).

For the re-optimizer the look up table for the ∆V was

not used. Instead it was calculated during the fmincon

call. That has the advantage of getting a real value for

the transfer time. With that approach between 10% and

25% ∆V per mission has been saved.

For each transfer the following information is known:

• departure epoch

• arrival epoch

• transfer time

• estimated ∆V

To solve that problem again Matlab fmincon with

an interior point method has been used. The control

parameters are the times between maneuvers and the

thrust of 5 maneuvers itself in cartesian form. The cost

function is quite easy in that case, it’s just the sum of all

5 ∆V s we applied. There are 3 deep space maneuvers

in addition to one at departure and one at arrival. The

more demanding part is the constraint function passed

to fmincon. Here the equations of motion are integrated

between the maneuvers until we reach our final state.

Than the final state should equal the arrival debris state

at that time. There is a global parameter in order to

activate or deactivate the constraints, and it is possible

to choose between the cartesian state vector, Keplerian

elements, or a mixture, or a subset. Another inequality

constraint had to be introduced, taking care that the sum

off all transfer times between maneuvers is not larger

than the transfer time from the tree, otherwise the fol-

lowing transfers are messed up.

When using an ODE-solver in fmincon, the integra-

tion errors from the ODE solver may disturb the Jaco-

bian or Hessian. That was the case for the first runs.

An investigation has been performed which ODE solver

brings reasonable results. The conclusion was that a

fixed step size is more stable than a variable step size

solver. In the end a RK8 has been used, implemented

in C++ with a step size of 50 s (the RK4 needed 1 s step

size), cause the Matlab implementation was to slow. An

interesting observation was also that when using the de-

bris dynamic model first and rerunning the optimizer

with the spacecraft ODE, faster and better results have

been achieved.

For the initial guess the first and last two maneuvers

have been set to the Hohmann like maneuvers coming

out of the drift strategy. The maneuver in the middle is

set to 0. The inclination and phasing change has been

solved by the optimizer. The first and last transfer times

where set to a half orbital period. And the remaining

two transfer times where chopped up equally (kind of

mid course maneuver).

One result is that scaling the state vector x, the con-

straints and the cost function all close to 1 is crucial

for success. Although one would assume that this tech-

niques should be handled by optimizers automatically,

that seems not to be the case.

With the RK8, the algorithm took roughly 5 minutes

on a Intel Xeon CPU E3 3.50GHz. And all transfers

converged proper. The achieved ∆V was even lower

than the estimated one out of the tree search, cause in

the tree search the ∆V for the inclination change and

the drift maneuver has been added separately. In prac-

tice they can be combined and the optimizer seems to

have taken care of that.
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FIGURE 9. Mission Graph

6 Results

The solution submitted by the DLR team had a total

of n = 14 missions and a performance index J =
949.85MEUR. Figure 9 shows the number of trans-

fers per mission. For the first mission the evolution of

Ω, a and i are plotted over time (see Figure 8). It can

be seen that mainly the inclination and semi major axis

was changed by the ∆V and the right ascension just

drifts along to the next target.

7 Conclusion

For the combinatorial part genetic algorithms are suit-

able when the problem is time invariant. But for time

variant problems graph algorithms seem to be the bet-

ter choice. The Beam search algorithm brought reason-

able results, but still suffers a bit from the greedy ef-

fect: there are good sequences in the beginning but bad

ones in the end. One option to improve that may be to

select some feasible continuation beams randomly. In

the transfer problem one may use a multiple shooting

method to get rid off the ODE-integration issue.
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