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Abstract.  This paper discusses the methods
used by the team from the German Aerospace
Center (DLR) for solving the 9th Global Tra-
jectory Optimization Competition (GTOC) prob-
lem. The GTOC is an event taking place ev-
ery year lasting roughly one month during which
the best aerospace engineers and mathematicians
world wide challenge themselves to solve a nearly-
impossible problem of interplenatery trajectory
design.

1 Introduction

The paper is organized as follows: section 2 summa-
rizes briefly the problem statement; section 3 points out
how the overall strategy was developed; section 4 fo-
cuses on the combinatorial part of the problem and 5 on
the transfer between two debris. Finally, in sections 6
and 7 we discuss the results and draw some conclusions.

2 Problem Statement

The task was to design a scenario with n missions
which collect a given set of 123 space debris on Sun-
synchronous Low Earth Orbits. The following cost
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function has to be minimized:

n

J = Zci =+ a(moi — mdry)Q

i=1

D

where c; is the base cost (increasing linearly during the
competition time frame from 45 MEUR to 55 MEUR).
Each spacecraft initial mass my is the sum of dry mass,
propellant mass and /V times the deorbit package mass:
moy = Mgyry + My + Nmyge, with mg. = 30kg. The o
parameter is set to be 2.0 - 102 MEUR/kg?.

In order to control the spacecraft, five impulsive ma-
noeuvres are allowed during the debris to debris trans-
fer in addition to an impulsive manoeuvre at departure
and at arrival. The overall time between two succes-
sive debris rendezvous, within the same mission, must
not exceed 30 days. The deorbit package deployment
takes 5 days. That results in a maximum transfer time
of 25 days. The time between two missions must be
at least 30 days. And the mission must take place be-
tween 23467 MJD2000 and 26419 MJD2000. The ra-
dius of pericenter 7, is constrained to be smaller than
Tm = 6600 km.

The spacecraft dynamics is described by the follow-
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ing set of Ordinary Differential Equations (ODE):

) (1-5()7))
j=—1 (1+320)" (1-5()7))

) (3-5(2)"))
which describes a Keplerian motion perturbed by an
oblate Earth. The orbital elements of the space debris

are given for a certain epoch and are propagated via a
more simplified model than equation (2):
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It can be seen that the ascending node {2 is the orbital
element which encounters the most variations caused
by Jo. That will have an impact on the overall strat-
egy. For more details on the problem statement re-
fer to the GTOC 9 problem statement [1] or visit
https://kelvins.esa.int/gtoc9-kessler-run/.

3 Overall Strategy

The problem to be solved can be classified as Time De-
pendent Traveling Salesman Problem, with a nested op-
timal control problem for each transfer. One way to
solve the combinatorial part would be to explicitly eval-
uate all possible combinations. That approach is only
applicable for small dimensions. In this case there are
123 debris to be sorted for the best sequence (which
gives 123! permutations). In addition they have to be
chopped into n missions, which increases the dimen-
sion of the problem even more. Even with the most
powerful computers and the smartest approach to cal-
culate the AV for transfer from one debris to the next
one it would take years to determine the entire tree. Sec-
tion 4 deals about the solution of the combinatorial part
of the problem.

Before looking into the transfer it makes sense to ana-
lyze the design space to get some reasonable boundaries
for design variables like transfer time, delta v range,
needed number of missions and so on. The first im-
portant question to answer is how are the debris pieces
spread out regarding inclination %, eccentricity e and

semi major axis a. Figure 1 shows the range of the or-
bital elements for the debris pieces. It can be seen that
the orbits are nearly circular, inclination ranges from
96 deg to 102deg and the orbital height (or a — req)
goes from 600 km to 900 km. These elements do not
change over time for the dynamic model which is used
for the debris.

If we only consider the change in inclination and
semimajor axis during a transfer, the problem can be
treated as a simple Traveling Salesman Problem (TSP).
The AV which is needed to travel from debris A to de-
bris B is the sum of the inclination change AV}, plus
the AV, for the Hohmann transfer:

AVipe =2V sin((ia —ip)/2)
AVima = V1)1 (V/2k/(1 + k) — 1) + ...

v/ (rik) (1= v2/(1+ k)

A‘/AB = Av;nc + AVvsmaa

where Kk is the ratio between a 4 and ap, assuming cir-
cular orbits. With that equations it is possible to set up
a cost matrix showing the cost for the transfer from one
debris to the next debris, ignoring the phasing in true
anomaly and right ascension. With these assumptions
it is possible to apply a genetic algorithm implemented
in Matlab to find the optimal route. Figure 2 shows the
result of one run with 500 populations and 1 - 10 it-
erations. The total distance is around 2654 m/s, so an
average AV of 21.7 m/s is needed for one transfer. In
theory and with no constraints on the mission time, this
result would equal to J < 100 MEUR. In practice the
8 years mission time constraint and the 25 day transfer
time constraint has to be fulfilled.

So some reasonable AV has to be invested for chang-
ing the right ascension. That can be done in two ways:

* adirect plane change,

* an indirect plane change via a change in semi ma-
jor axis.

Assuming that all other elements besides () are the
same, one can compare the AV for both cases. With
this assumption the equation for the direct plane change
is similar to the one used for the inclination change.

AVq =2V sin((Qa — Qp)/2) 4

Like the inclination change it is quite a cost intensive
maneuver. If there is enough time available, an indirect
transfer is cheaper. An important figure to look at is the
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change in right ascension for the debris which is plot-
ted in Figure 3 over height (with an inclination equal
to 98 deg). Out of that one can see that the orbits are
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FIGURE 3. Q over height

drifting between 1.2 deg/day and 0.2 deg/day. Depend-
ing on the initial height the differential drift is around
0.5 deg/day. Assuming a 20 day transfer time it is pos-
sible to overcome a delta of 10deg in 2. For the in-
direct change two Hohmann like transfers are needed.

The first one to reach the desired drift orbit, the second
one to get the semi major axis of the arrival debris.
Assuming the same orbital elements for both debris
as: a = 600km 47,4, e = 0, ¢ = 98 deg, only a change
in ) needs to be considered. On Figure 4 one can see
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FIGURE 4. AV over AQ

that the AV needed for a direct change increases nearly
linear with AS) (dashed line). The other curves in the
figure represent an indirect transfer for different transfer
times (5:5:25 days). One can see that for transfer times
larger than 15 days it is always better to make an indi-
rect transfer. And that does even not take into account
that it is possible to save some AV because of differ-
ent semi major axis and inclination of the departing and
arrival debris. The inclination change can either be per-
formed before or after the drift change maneuvers. This
choice also has an impact on the required AV, as it is
a function of the inclination (see equation 3). With that
thoughts one has a good set up for the combinatorial
problem, which will be discussed later.

The next interesting question to look at is how many
missions one may need (does it make sense to stack
one launcher as full as possible) and what does the cost
function look like. Assuming a range of different av-
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FIGURE 5. J over n and AVgyerage

erage transfer AV's and number of missions (n) one
gets Figure 5, which shows the J function in MEUR. It
can be seen that it is not advisable to use the maximum
propulsion available. For an average AV of 300 m/s,
J is 904.1 MEUR for 9 starts, while for 12 starts it is
827.6 MEUR and for a larger number of starts J in-
creases again. Although one would have to add 12 times
the base cost for the launcher instead of only 9 times,
the used propellant mass goes in quadratic. So using
the total allowed 5000 kg is not optimal. It is better to
reduce the total allowed fuel or AV per mission by 10%
to 20%, depending on how many missions are needed.
The issue is that this number is not known before hand.

4 Combinatorial Problem

In section 3 basic figures have been derived to narrow
down the problem. With these figures it is possible to
estimate the cost or AV to perform a debris to debris
transfer. The issue is, the problem is time variant, be-
cause the cost matrix depends on the epoch of the trans-
fer. Or using the TSP syntax it is not a city to city rout-
ing problem, it is a boat to boat one, where the boats are
sailing around.

Before going into detail of the graph implementation
a deeper look into the handling of the transfer time is
needed. As derived in section 3, for the drift change ma-
neuver, it would be better to have a large transfer time
available. At a first guess it might make sense to use
the maximum allowed 25 days. But using that for all
of the transfers, the total mission time would be larger
than the allowed 8 years. And that even depends on the
number of needed missions. Figure 6 shows the maxi-
mum allowed transfer times over the number of needed
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FIGURE 6. Maximum transfer time over n

missions, which is again not known before solving the
graph problem. In fact it is only possible to use av-
erage transfer times between 15 and 19 days. In that
case the next question is, if it would make sense to have
the transfer time as a design variable in the combina-
torial problem or to keep it fixed to an average value.
To not further increase the permutation space it was de-
cided to keep it fixed. That approach also allows to use
a look up table for all possible transfers with a 1 day
grid size. This table is precalculated and loaded into the
graph algorithm. In the cost matrix it is also possible to
handle the radius of periapsis constraint, by setting the
AV = oo for all transfers where r, < 7, .

For solving the routing of the time dependent prob-
lem the same genetic algorithm has been used, which
already delivered good results for the inclination-sma
routing problem. But it didn’t brought any good results.
Instead a graph algorithm which uses a certain beam
width has been developed.

Each mission can be represented as a graph or tree
(see Figure 7). For the first mission there are 123 nodes
or debris as an option to start from. Keeping in mind
that the cost function doesn’t give any penalty at which
debris the mission starts, it’s a free design parameter. So
the initial beam width would be 123. Using that one can
calculate 122 possible debris transfers for each of that
123 debris. Because each debris should be only visited
ones. This results in 123 times 122 possible options.
There are many methods to explore such kind of trees
or graphs:

* Depth First Search
¢ Breadth First Search

¢ Beam Search
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FIGURE 7. Mission Graph

* Greedy Search

The Depth First Algorithm travels along the left or right
side of the tree. In this case it would just visit the debris
either in the sequence 1:1:123 or 123:-1:1. It would
be possible to add some backtracking if the algorithms
gets stuck somewhere or to apply some heuristic, like
the average AV is getting too large along the current
path.

Breadth First in the opposite explores the tree first
horizontal and than continues to the next level with all
possible permutations. In this case like mentioned al-
ready a full breadth first search would not be possible
cause the permutation would be to large.

Greedy search is like depth first, but it makes a de-
cision on some heuristic which path to take. The easi-
est implementation is to make the decision on the next
shortest (lowest AV') path. That was the first method
used to find a proper sequence and it brought results for
J around 2500. The Greedy search has the typical tree
drawback that the best cookies are eaten first and the
bad ones are left over in the end, and one still has to
eat them, cause the entire set has to be collected and not
only a subset. And that’s something that has been ob-
served when running a greedy search on the tree. The
last transfers had a quite high AV and that caused a
high number of missions and a resulting high J value.

In order to overcome that issue a beam search has
been applied. Instead of only travelling along one path,
k best options are selected. Depending on the beam
width k the computational time of course grows in that
case. For this problem an initial beam width of 123 has
been selected for the first mission. On the next level the
maximum beam width is already 123 - 122 = 15006
and so on. Limiting the beam width for the first runs
to 2000 already gave good results for J around 1000.
The entire idea behind that method is, that it is possible

to look into the future by taking also some bad paths
hopping they turn into golden paths in the end.

At each level each possible solution has been checked
for uniqueness. That can also be explained when look-
ing again at Figure 7. The sequence 1-3-2 is equal to 3-
1-2, because for the next level the start node (in that case
node 2) as well as the left over debris-set is the same.
So the algorithm only takes the best sequence out of that
two, because the beam width is limited and many dif-
ferent permutations are needed to find the golden path.

The graph algorithm has been implemented in Mat-
lab and took roughly 1hr computation time on a In-
tel Xeon CPU E3 3.50GHz, with a beam width set to
20000. Running the tree after the first mission the left
nodes are getting less and the computation time goes
down.

With the 5000kg propellant a maximum AV of
5000 m/s can be achieved. But with the results from the
qualitative J-function analysis the maximum has been
set to 4500 m/s and also runs with lower values have
been performed. For the first mission it was possible to
perform 23 transfers. But the beam width at that point
was only around 10 to 20. So in that case there are not
enough permutations for the next missions. Instead of
taking the maximum transfer solution one with a higher
beam width has been taken. The algorithm has been set
up in a way that the number of transfers is the same for
all beams. That may not be the optimal choice and some
further investigation may be performed to see if a free
number of transfers brings a significant improvement.

The final sequence will be discussed in the Results
section 6

5 Transfer Problem

Before solving the debris to debris final transfer the se-
quence coming out of the beam search algorithm needs
to be re-optimized. As already discussed in section 4,
the transfer time for all transfers has been kept to a fixed
value. That has been re-optimized using the local opti-
mizer fmincon in Matlab. The cost function in that case
is the sum of the AV's for all transfers in that particu-
lar mission. The design variables are the transfer times.
The upper bound has been set to 25 days, constrained
by the problem statement. The lower bound was set to
1 day, cause some time for the final phasing of the true
anomaly may be needed, which has been ignored com-
pletely so far. In the combinatorial part a fixed grid size
for the transfer time has been used (e.g. always 17 days
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FIGURE 8. Evolution of orbital elements for mission 1

for the first 6 missions and than 19 or 20 for the re-
maining, depending how many debris is left to collect).
An inequality constraint had to be introduced that the
sum of the transfer times is not larger than the old sum
of the fixed transfer times (That means one can only
shift some transfer time from one transfer to the other).
For the re-optimizer the look up table for the AV was
not used. Instead it was calculated during the fmincon
call. That has the advantage of getting a real value for
the transfer time. With that approach between 10% and
25% AV per mission has been saved.

For each transfer the following information is known:

e departure epoch
e arrival epoch

e transfer time

e estimated AV

To solve that problem again Matlab fmincon with
an interior point method has been used. The control
parameters are the times between maneuvers and the
thrust of 5 maneuvers itself in cartesian form. The cost
function is quite easy in that case, it’s just the sum of all
5 AV's we applied. There are 3 deep space maneuvers
in addition to one at departure and one at arrival. The
more demanding part is the constraint function passed
to fmincon. Here the equations of motion are integrated
between the maneuvers until we reach our final state.
Than the final state should equal the arrival debris state
at that time. There is a global parameter in order to
activate or deactivate the constraints, and it is possible
to choose between the cartesian state vector, Keplerian
elements, or a mixture, or a subset. Another inequality
constraint had to be introduced, taking care that the sum
off all transfer times between maneuvers is not larger
than the transfer time from the tree, otherwise the fol-
lowing transfers are messed up.

When using an ODE-solver in fmincon, the integra-
tion errors from the ODE solver may disturb the Jaco-
bian or Hessian. That was the case for the first runs.
An investigation has been performed which ODE solver
brings reasonable results. The conclusion was that a
fixed step size is more stable than a variable step size
solver. In the end a RK8 has been used, implemented
in C++ with a step size of 50 s (the RK4 needed 1 s step
size), cause the Matlab implementation was to slow. An
interesting observation was also that when using the de-
bris dynamic model first and rerunning the optimizer
with the spacecraft ODE, faster and better results have
been achieved.

For the initial guess the first and last two maneuvers
have been set to the Hohmann like maneuvers coming
out of the drift strategy. The maneuver in the middle is
set to 0. The inclination and phasing change has been
solved by the optimizer. The first and last transfer times
where set to a half orbital period. And the remaining
two transfer times where chopped up equally (kind of
mid course maneuver).

One result is that scaling the state vector x, the con-
straints and the cost function all close to 1 is crucial
for success. Although one would assume that this tech-
niques should be handled by optimizers automatically,
that seems not to be the case.

With the RKS, the algorithm took roughly 5 minutes
on a Intel Xeon CPU E3 3.50GHz. And all transfers
converged proper. The achieved AV was even lower
than the estimated one out of the tree search, cause in
the tree search the AV for the inclination change and
the drift maneuver has been added separately. In prac-
tice they can be combined and the optimizer seems to
have taken care of that.
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6 Results

The solution submitted by the DLR team had a total
of n = 14 missions and a performance index J =
949.85 MEUR. Figure 9 shows the number of trans-
fers per mission. For the first mission the evolution of
Q, a and i are plotted over time (see Figure 8). It can
be seen that mainly the inclination and semi major axis
was changed by the AV and the right ascension just
drifts along to the next target.

7 Conclusion

For the combinatorial part genetic algorithms are suit-
able when the problem is time invariant. But for time
variant problems graph algorithms seem to be the bet-
ter choice. The Beam search algorithm brought reason-
able results, but still suffers a bit from the greedy ef-
fect: there are good sequences in the beginning but bad
ones in the end. One option to improve that may be to
select some feasible continuation beams randomly. In
the transfer problem one may use a multiple shooting
method to get rid off the ODE-integration issue.
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