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Abstract. The ninth edition of the Global Tra-
jectory Optimization Competition (GTOC) series
was successfully organized in April 2017, wherein
the competitors were called to design a series of
missions able to remove a set of 123 orbiting de-
bris pieces while minimizing the overall cumula-
tive cost. A three-level optimization framework
of the NUDT Team is presented and an improved
Ant colony Optimization Algorithm, a hybrid-
encoding Genetic Algorithm and an improved Dif-
ferential Evolution algorithm are applied to solve
the complex problem, which combines the dy-
namic TSP, mixed-integer sequence optimization
and perturbed trajectory rendezvous optimization.
The result obtained during the competition ranked
second in the eventual leaderboard.

1 Introduction

The design of space trajectories can be profitably ap-
proached as a global optimization problem. The opti-
mal trajectory, which is significant for practical space
mission design, is usually very difficult to be ob-
tained. The Global Trajectory Optimization Compe-
tition (GTOC) series [1], was born with the objec-
tive of fostering research in this area by letting the
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best aerospace engineers and mathematicians world-
wide challenge themselves to solve one, difficult, well-
defined, problem of spacecraft trajectory design.

Since the launch of the first satellite, Sputnik, in
1957, mankind has placed countless spacecraft in orbit
around the Earth. Today, less than 10% of the trackable
objects orbiting the Earth are operational satellites. The
remainder is simply junk and the space debris is becom-
ing an increasingly serious problem. Following the un-
precedented explosion of a Sun-synchronous satellite,
the Kessler effect triggered further impacts and the Sun-
synchronous orbits environment was severely compro-
mised [2]. Scientists from all main space agencies and
private space companies isolated a set of 123 orbiting
debris pieces that, if removed, would restore the pos-
sibility to operate in that precious orbital environment
and prevent the Kessler effect to permanently compro-
mise it.

For calling to protect the environment of earth orbits,
the background of GTOCY is to clean the debris to avoid
the Kessler effect. It is the first time that GTOC focuses
on the near-earth space problem. The competitors are
called to design a series of missions to remove a set of
123 orbiting debris pieces while minimizing the overall
cumulative cost.

To find the optimal solution of such a complex
problem, three sub-problems need to be extracted and
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solved. First, the set of 123 debris pieces needs to be
divided into several groups. Each group of debris is re-
moved by one mission. Optimization is performed to
minimize the overall cumulative cost. This can be ap-
proached as a dynamic TSP and solved by evolutionary
algorithms [3]. Second, given a group of the debris,
one mission is designed by mixed-integer optimization
to remove them while costing minimal velocity incre-
ment [4]. Finally, given the current and next debris as
well as the rendezvous duration, the impulsive maneu-
ver strategy is designed to produce the optimal flight
trajectory [5].

This paper presents the solving methods and results
from the National University of Defense Technology
(NUDT) for GTOC9. The remainder of the paper is or-
ganized as follows. Section 2 makes a short description
of the problem and analyzes the main challenges of this
problem. Section 3 gives the optimization framework
of the NUDT Team. The detailed solving approach and
procedure are presented in Section 4-6. Conclusions are
drawn in Section 7.

2 Problem Description and Analysis

2.1 Problem Description

The problem of GTOCY is to design n missions to
cumulatively remove all the 123 orbiting debris while
minimizing the overall cumulative cost of such an en-
deavor. The cost function is expressed as

J=>Ci=)
=1 1=1

_ tsubmission —lstart
c; = ¢ submission start (o —c
v m + tend—tstart ( M m)

[ci + a(mp, — mdry)ﬂ

6]

where C} is the cost charged by the contracted launcher
supplier for the i*" mission. At the beginning of the
it mission, mp, is the spacecraft mass and mg,., its
dry mass. Each spacecraft initial mass mg is the sum
of its dry mass, the weights of the NV > 1 de-orbit
packages to be used and the propellant mass: mg =
Mgry + NMge + myp.  « is a parameter set to be
a =20 x 1075 [MEUR/Kg?| . tsubmission is the
epoch at which the i*" mission is validated, and t.,q
and t44,,¢ are the end and the beginning epochs of the
GTOC9 competition. The minimal basic cost ¢, is 45
MEUR and the maximum cost ¢y, is 55 MEUR. Other
definition and constraints can be found in [2].

During each transfer between two successive debris,
the spacecraft dynamics is described by a Keplerian mo-

tion perturbed by main effects of an oblate Earth, i.e. J5.

T =g, Y=y, Z=1,

by = - g SBRL (522 )T,

ﬂy**%Jrgugff% %2*1 y+Ty @

0, = bz 4 3l (522 _3) 4T,
where r = [x,y,z]T and v = [vm,vy,vz]T are the

spacecraft’s position and velocity vector described in
the mean equator inertial coordinate system of the cen-
ter body, » = ||r||, || - || denotes the Euclidean norm
of a vector, i, R and J, are the gravitational constant,
mean equator radius and Ja-perturbation coefficient of
the central body respectively. I' is the thrust accelera-
tion.

The only maneuvers allowed to control the spacecraft
trajectory are instantaneous changes of the spacecraft
velocity (its magnitude being denoted by AV. After
each such maneuver, the spacecraft mass is to be up-
dated using Tsiolkovsky equation:

(%)
my =m;exp | —

Ve

3)

where v, = I5,g0. A maximum of 5 impulsive velocity
changes is allowed during each transfer between two
successive debris. These do not include the departure
and arrival impulse.

2.2 Analysis

The goal of this problem is to design a minimal mass ve-
hicle compliant of a series of suc-cessive removal mis-
sions. For optimization this problem, three following
sub-problems must be addressed:

1) How to plan the successive removal missions?
2) How to minimize the cost of a single mission?

3) How to minimize the trajectory between each two
debris?

The first problem is a large-scale multi-sequence
combinatorial optimization problem, which is similar
to the combination of the classic TSP (Travelling Sales-
man Problem) and BPP (Bin Packing Problem). The
TSP is to find a minimal distance closed path visiting
all the nodes once and the BPP is to find a minimal bin-
packing scheme placing all the items without omission.
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However, compared with TSP and BPP, the following
differences make this sub-problems much more difficult
to solve.

In the BPP, only the weight constraint need to be sat-
isfied. The placing sequence of each item can be ignore.
While in this problem not only the total fuel cost con-
straint should be satisfied, but also the sequence of the
visited debris must be considered. This makes the so-
lution space of this problem much larger than BPP and
increase the optimization difficulty.

In the TSP, each node has to be visited once and once
only and the path is closed. While removing the debris
can be divided into several missions in this problem,
where the number of missions are not fixed and the re-
moval paths are opened. This makes the solution space
of this problem much larger than TSP and also increase
the optimization difficulty.

In the TSP, all the nodes to be visited are fixed in
the plane and the cost of going from one node to an-
other can be easily calculated according to the Carte-
sian distance in the plane. While in this problem the
cost of going from a debris to the next one depends on
the starting date and arrival date. This makes the prob-
lem time-dependent and further increase the optimiza-
tion difficulty.

The second problem is a mixed-integer nonlinear-
programming (MINLP) problem. Not only the se-
quence of the debris (integer variables) but also the
transfer times between each debris (real variables) need
to be considered as the Design Variables, which are typ-
ically much more difficult to solve than both mixed-
integer linear-programming (MILP) and nonlinear-
programming (NLP) problems.

The third problem is an orbital transfer problem. It is
very difficult to find the optimal solution for the long-
duration (ty is up to 30 days) perturbed rendezvous
problem. A fuel-optimal orbital rendezvous problem is
to find a maneuvering plan for the spacecraft to min-
imize the total velocity increment and simultaneously
satisfy specific constraints. While the .J-perturbation
is taken in account, the well-known orbital targeting al-
gorithms such as the Lambert algorithm will be failed
in obtaining the feasible solutions, and the constrained
optimization methods which can directly corporate final
state constraints, such as SQP, will also encounter con-
vergence problems for long-duration rendezvous. From
the scope of orbital dynamics, at least two impulses are
needed to target the final position and velocity vectors.
However, the total velocity increment of the 2-impulse
maneuvers will be very large for a rendezvous mission,

especially for the long-duration, large non-coplanar ren-
dezvous. Therefore, a rendezvous mission usually uses
more than two impulses. Due to the long-duration,
multi-impulse characteristics, the design variables (e.g.
the maneuver time) will have large search space, and
many sub-optimal solutions may exist, thus it is difficult
to find the global optimal solution for this problem even
though the state-of-art optimization algorithm is used.
In addition, numerical integration of the Js-perturbed
trajectory is required in the optimization process, which
makes the optimization time-consuming.

3 Optimization framework

Based on the analysis of the problem and the opti-
mization tools we have accumulated, our optimization
framework is divided into three levels, which are illus-
trated in Fig. 1.

Analytical ACO NI GA 12 Lambert DE
Estimation o Estimation o a 5
Method Algorithm Method Algorithm Algorithm Algorithm

Id >
Divide all Reoptimize the Obtain accurate
the debris into visiting sequence and AV and AT of
several chains ﬁ time of each chai ﬁ each transfer
Global Optimizati Optimizati Ultimate Optimization

FIGURE 1. Optimization framework

The task of the global optimization is to appropri-
ately divide the debris into several chains. It is a com-
binatorial optimization problem with huge search space
that is similar to the TSP. For such NP-hard problem,
no algorithm can guarantee to the global optimum. As
an efficient optimization tool, ACO performs well on
the classic TSP and many other TSP variants. Follow-
ing the characteristic of this problem, we improve an
ACO based on the one for the extravehicular missions
packing programming (EMPP) [6] and apply it to solve
the first-level problem. In addition, compared with the
calculating of the distance between any two cities in the
TSP, the calculating of the AV from a debris to the next
one is much more time-consuming. Thus, an analytical
estimation method of the transfer AV and AT between
any two debris is employed in the global optimization.

With the completion of the global optimization for
the whole mission, the number of the chains and the
debris in each chain are determined and will not be
changed. However, since the optimal transfer AV and
AT between each debris are estimated by an analytical
model with high error (up to 30% in some conditions),
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a numerical estimation method of the transfer AV and
AT between any two debris is developed and the mixed
integer reoptimization for both the visiting sequence of
the chain and the transfer time between each debris
is necessary. An im-proved hybrid-encoding Genetic
Agorithm (HEGA) [7, 8] is applied to solve the second-
level problem.

Once the visiting sequence of each chain is deter-
mined, the optimization of the accurate transfer AV and
AT between each two debris is required. The orbital
transfer from a debris to another is a multi-impulse, per-
turbed rendezvous problem. A feasible solution can-
not be directly obtained by the orbital targeting algo-
rithms based on two-body dynamics unless some dif-
ferential corrections or simple iterations are used. In
order to efficiently obtain a near-optimal solution for
the given long-duration (up to 30 days) rendezvous

J

where the mean motion n = \/;ié, and the semilatus
rectump = a (1 - 62). Detailed procedure is described
as follows.

1) Adjustment of the RAAN difference

The RAAN of an orbital object drifts due to the Js
perturbation. The drift velocity is formulated as follow,

2
Q:—3J2<T6q) n.COS1 (®)]

2 P
where 7, is the mean radius of the earth.

As the adjustment of orbital plane costs a large ve-
locity increment, the difference of the RAAN drift ve-
locity between the spacecraft and the debris should be
fully used. If the RAAN difference cannot be remedied
naturally during the maximum rendezvous duration, an
impulse perpendicular to the orbital plane can be imple-
mented at the north or south vertex of the orbit.

na®v1 — e2sini

problem, a feasible iteration optimization model is em-
ployed, in which the homotopic perturbed Lambert al-
gorithm [9, 10] is used as the orbital targeting algo-
rithm. An improved differential evolution (DE) algo-
rithm [11] is applied to solve the third-level problem.

4 Global Optimization for the Whole
Mission

4.1 Analytical estimation method of the transfer

AV and AT
The analytical estimation method for evalu-
ating the objective function of each transfer

and the overall cumulative cost are based on
the Gauss form of variational equations [12],

“)

(1 + %) sin f - Avt} —cosi - A}
[(26% — cos f) Av,. + (1 + }%) sin f - Avt}

Aa = n\/% [esin f - Av,. 4+ (1 + ecos f) Avy]
Ae = % [sin f - Av, + (cos f + cos E) Avy]
Ai = 77;@2%Avh

AQ = %Avh

Aw:% —cos [+ Av, +

AM =n— 1=

(

2) Adjustment of the inclination difference

As the Jy perturbation does not change the orbital in-
clination, the inclination difference must be remedied
by maneuvers. An impulse perpendicular to the orbital
plane can be implemented at the ascending node or de-
scending node.

Av = ZESiHM
r 2

@)
where h = 20 , 0 is the argument of latitude.

3) Adjustment of the semimajor axis and eccentricity

After the spacecraft transfers to the same orbital
plane with the debris, the semimajor axis and eccen-
tricity are adjusted by two tangential impulses. For a
near circular orbit, omitting the high order terms of e?,
the impulses are formulated as follows.

If AaAe > 0, the first tangential impulse Awvyq is
implemented at the perigee, where the true anomaly
f = 0, and the second tangential impulse Auv;s is im-
plemented at the apogee of f = .
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Aa+a(1 e)Ae
Aa a(1+€)A€

{ Avtl (8)
Avtg =

If AaAe < 0, the first tangential impulse Awvy is
implemented at the apogee, where the true anomaly
f = m, and the second tangential impulse Avys is im-
plemented at the perigee of f =0.

Aa—a(l4e)Ae
Ay = n=22marene “(4+€) =
Aa+a(l—e)Ae

4

Avip =n ©)
4) Estimation of rendezvous duration
The rendezvous duration should mainly come from
the adjustment of the RAAN difference so as to make
full use of the natural RAAN drift due to .J5 perturba-
tion. The other adjustments do not need too much time.
To be conservative, the rendezvous duration is roughly
estimated as the duration for RAAN adjustment plus
one day.

4.2 ACO for Debris Grouping and Bunching

ACO algorithm was originally inspired by the ability of
biological ants to find the shortest path between their
nest and a food source [13]. The fundamental working
procedure of the ACO for debris Grouping and bunch-
ing (ACO_DGB) is similar to the classic ACO, which is
shown in Algorithm 1. The most important feature of
an ACO is the design of the heuristic, which is eventu-
ally combined with the pheromone information to build
solutions. In this part, we mainly present the heuristic
and solution construction method of the DCB_ACO.
Algorithm 1 Ant System

step 1: Pheromone trail initialization;
while termination criteria not met
do

step 2:  Solution construction;

step 3: Pheromone update;

end while

The procedure of bunching a debris chain is illus-
trated in Fig. 2. After setting the start time and select
a debris as the head of the chain, the estimation of the
optimal transfer AV and AT between the last debris of
the current chain and all remaining ones and the selec-
tion from the candidate pool are followed and cycled to
bunch the chain one by one. When the candidate pool

becomes empty, which means none of the remaining de-
bris can be added to the tail of the chain, the procedure
will be stopped and a chain will be obtained.

o
° o O o
o OO Estimate the optimal

o
oO o 00 00 o transfer cost and 0°5%
) collect the candidate ° o
oP o oo o
o° °45 0 o0
(e} 0O 00 O Estimate the optimal
O/550C 00 transfer cost and

00 collect the candidate

eelm one from the
candidate pool

Selecn a debris as the 7 Select one from the

T
head of the chain i candidate pool
o o o o
© o Lo © o oo
o (o] O
Qo © jo 00° 0 509 00
o

T T+A/‘

T=T+At,

o
O "o g 0000° 0~ 0000
%50 0 00 oo
o
Until the candidate pool is empty,

Finish bunching

FIGURE 2. Bunching procedure of the debris chain

Three remarks should be noted for this procedure:

1) In steps 3 and 6, the candidate refers to all of the
debris that satisfy the total fuel constraints for one
mission after being added to the tail of the chain.

2) In steps 4 and 7, the probability that an ant k will
choose a debris j as the next debris for the current
chain b in the partial solution s is given by

3
Toj ;"
Z -,—bg.ngﬁv
geUk (s,b)

ko j € Uk(s,b)
Do (s)=
0 otherwise

(10)

where U* (s, b) is the candidate pool and 1; = AV},

is the heuristic value. The parameter « in the clas-

sic ACO is fixed to 1 here because using the pa-

rameter 3 is sufficient to reflect the weight between

the pheromone information and heuristic informa-

tion. 7y; is the pheromone from debris / to debris j,

where debris [ is the last debris in the current chain
b.

3) Instep 5 and 8, 4t is the estimated optimal transfer
time between the last debris in the current chain and
the selected debris.

Based on the chain bunching method, building a so-
lution for each ant should take the following procedure,
which is presented as Algorithm 2.

Algorithm 2 Solution Construction Procedure of the
ACO_DGB

step 1: Determine the start time 7 (MJD)
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step 2: Produce a debris chain based on the chain
bunching method in Fig. 2

if None debris remains

Go to step 4

else

Set the current time T=T+ATy; (ATy €
rand[30day, 60day])

Return to step 2

end if

step 3:

Collect all of the debris chains and obtain a so-
lution

step 4:

The evaporation parameter p is set as 0.05 and the
increase of the pheromone ATZ-]E- is limited to the max-
imum value of 0.17;; to avoid premature convergence.
The pheromone update rule used in the ACO_DGB is
the same as the one in the ACO for the EMPP [6].

4.3 Solving Strategy

To minimize the cost function that is expressed in
Eq. (1), not only the launch times but also the total
propellant cost in each launch should be reduced. The
time-related part c¢; is set as the maximum cost (55
MEUR) in the optimization for the whole mission.

Due to the insufficient optimization performance of
the ACO_DGB, we can hardly obtain the optimal so-
Iution or even a good solution if using the algorithm
to optimize 123 debris all at once and taking the solu-
tion from the result directly. In order to make the orig-
inal problem easier to be optimized and obtain better
solutions, a chain-by-chain solving strategy is applied,
which is illustrated in Fig. 3.

Use ACO_DGB

o o o
© o oo to0 obtain several o o Disorganize the o oo
® Oooo 009 solutions o° remaining debris ° OOOO OOOO
S o000 e — 030000
o°60 0 00 P ©50 0 00
© o O

Determine the se ACH
first chain Determine the
N ag:
second chain
se solutions

Obtain the final oo

Disorganize the
3~4 chains © g

©00 00O  remaining debris
FIGURE 3. Procedure of the chain-by-chain solving strategy

OOOOOO
0000
o O

The main idea of this solving strategy is to deter-
mine the debris chains of the final solution step by step.
2000 runs will be implemented for the ACO_DGB to
optimize the remaining debris each time and the first
chain of the best partial solution will be selected and

determined as the next chain of the final solution. Here
the best partial solution refers to the one that owns the
smallest objective function value excluding the deter-
mined chains. The final 3-4 chains are determined all at
once because the search space is small enough and fur-
ther disorganization and reoptimization for the remain-
ing debris will not make the final solution better.

S Sequence Optimization for the Debris
Chain

5.1 Optimization Model

1) Design variables

The solution of a debris chain Y is made up of a
group of serial integers Y; and a set of real numbers
Y.

Y = (Y1,Y5) (11

where Y; refers to the rendezvous sequence
(p1,p2,...-pg), and Yo refers to the orbital trans-
fer time (dury, durs, ...durg).

Through the sequence of its elements the serial in-
teger vector Y7 represents a rendezvous order. The
search space of Y is therefore discrete and its elements
must be manipulated in combination.

2) Objective function

The objective is to minimize the propellant consumed
by orbital maneuvers:

min .f2 = (mO — Mdry — dee) (12)
where mg,., is the spacecraft’s mass after the last re-
moving mission and also denotes the spacecraft’s dry
mass(Generally, mg,, should include the propellant
used by spacecraft to deorbit, otherwise, the spacecraft
itself would be a debris now).

5.2 Numerical estimation method of the transfer
AV and AT

The state of a spacecraft can be expressed as

E = (a,u,&,n,i,0)7" (13)
where a is the semi-major axis, ¢ is the orbital in-
clination, €2 is the right ascension of ascending node
(RAAN), u is the argument of latitude, e is the eccen-
tricity, w is the argument of perigee, and £ = ecosw
and 77 = esinw are the modified orbital elements suit-
able for de-scribing near-circular orbits.
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The state variable used to express orbital differences

between the spacecraft and a debris is
X = (Aa/a,, A, AE, An, Ai, AQ)T  (14)

where the subscript r denotes the reference orbit, Aa is
the difference in semi-major axis, Af is the difference

Aa = Aaqg

A = Ady — [In, 2

ar

+3520(3

Ai = Ay
AQ =A% + (]

where the subscript 0 denotes the initial state, At is
the orbital transfer time, p is the geocentric gravita-

A& = Ay cos(w g, At) — Ang sin(w g, At)
An = A& sin(wg, At) + Ang cos(w z, At)

in argument of latitude, Ai is the difference in orbital
inclination, AS? is the difference in RAAN, and A¢ and
An give the differences in eccentricity vector.

Using the first order approximations, the state
transitions of the orbital element differences
under the .J, perturbation are given by [10]

_ 4sin2ir)} At — AC sin(2i,) AigAt

5)

Aaao COoS 1, + sin iTAiO) CAt

(

_z
C = %\/ﬁar >, and wy, = C(2— 3sin®,) is
the drift rate of perigee.

tion constant, a. is the mean equatorial radius of the Thus, the orbital transfer of the qth ren-
Earth, n, = /% is the mean angular motion rate, dezvous operation can be expressed as
J
2
X(tgr) = ®(Atgo)Xo + Y By (Aty), g;) Avy; (16a)
j=1
r 1 0 0 0 0 0 7
—%nrAtqo—
7 i_' . ) Aty 1 0 0 —4C'sin(2i,) Aty 0
®(Aty) = S 2y 16b
(Atgo) 0 0 cosTyo —sinTy 0 0 (16b)
0 0 sintyy cosTy 0 0
0 0 0 1 0
i TC cosi, Aty 0 0 0 Csini, Aty 1 ]
[ 0 2 0 T
73nrf
0 70( 3—. . ) Atg;  —4Csin(2i,) cosug; Aty;
48in“i,
P (Atgj ugi) = | sin(ugs + 74;) 2 cos(ug; + 7g; 0 (16¢)
—cos (Ugj + Tqj 2sin(ug; + 7qj 0
0 0 COS Ug;
sinug;
0 7C AN sini,
i COStratyj ( C'sini, cos ug; Aty; ) |
[
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where 74; = Wy, Atgj, Atgo = tqr — tqo = durg is
orbital transfer time, Aty; = tqr — tq5, ug; is the ar-
gument of latitude of the j'" maneuver, and Av,; =
(Avgjz, Avgjy, Avqu)T is the impulse vector. The or-
bital coordinate system used to describe the impulse is
given as follows: « is along the orbital radial direc-
tion, y is along the in-track direction and z is along
the orbital normal direction and completes the rand-
handed system. The last maneuver is executed at ¢y,
i.e. tqf = tqg.

Eq. (16) is a linear relative dynamic equation under
the J, perturbation. Only two maneuvers are consid-
ered for each orbital transfer that six unknown impulse
components correspond to six equations, and then the
solution to Eq. (16) can be easily obtained using Gaus-
sian elimination. The details of this linear dynamics
model can be found in the references [14, 15].

Long-duration rendezvous problems under the .J,
perturbation have multiple local minima both in the
duration of one orbital period and in the duration of
multiple orbital period [15]. In order to overcome the
property of multiple local minima in one orbital pe-
riod, the burn time of the first maneuver ¢, is enumer-
ated from ¢4 to ty0 + ;- with a step of 7./ Nepym,
where 7. is the reference orbital period and Neyym, 1S
the number of enumerations. For each value of 741, a
group of values for Av,; and Avg, can be obtained,
and is referred to as Avyy(tq1) and Avya(te1). The
Nenum + 1 groups of Avgi(t,1) and Avga(ts) in
total are calculated and then are compared with each
other to find the group with the local minimum value
of [|Avgi(tq1)| + [|Avga(tq1)|l, and the values of the
Avg; and Avg, in this group are used as the impulses
for the orbital transfer of the ¢ rendezvous.

Based on the method provided above, the maneuver
impulses of each rendezvous orbital transfer are only
functions of the initial state, the required ending state
and the orbital transfer time, and then the propellant
cost can be evaluated with small computation cost.

6 Optimization for the Debris-to-debris
Transfer

6.1 Optimization Model

1) Design variables
4n design variables are contained in an n-impulse
maneuver plan:

D = [ti,Avm,AviwAviz], 1= 1,2, 7K (17)

where K is the total number of the maneuvers, t; is
the i*" maneuver time and Av; = [Av;y, Avyy, Av;,|T
is the ' maneuver impulse vector. Herein, 4-impulse
maneuver plan is adopted.

2) Objective function

The objective is to minimize the total velocity incre-
ment:

K
minJ = Av = Z 1A ]|

i=1

(18)

3) Constraints

The duration between two adjacent maneuvers

should be larger than a given value, i.e.,
ti —ti1 > AT,

{ t; € [to,tf], 1=1,2,., K (19)

where tg = 0, ty = 30 days, AT} = 5 days, AT can
be set as zeros for i = 2, ..., K. In addition, at the final
time, the deviation between the spacecraft’s state vector
zfy = [ry,vf]” and the state vector Tpex of the next
debris should be smaller than the given tolerant error,
ie.,
{ |7 ; — Tnext]| < 100 m, 20)
0 — Vnextl| < 1 /s

6.2 Feasible Solution Iteration Optimization
Approach

Based on the impulsive maneuver assumption, a feasi-
ble solution iteration approach is used to solve this op-
timization problem, which can be divided into the fol-
lowing two parts.

1) Dealing with the Linear Constraints

A group of proportionality coefficients 71, - - - ,nx €
[0,1] is used to substitute the maneuver times
t1,--- ,tx as optimization variables. Then, the maneu-
ver times can be calculated as

ti =ti—1 +ni(ty —tio1) +AT;
AT; =5 days,
AT, =0,i=2,.., K

21

2) Dealing with the Nonlinear Constraints

The last two impulses Avg_; and Avg are cho-
sen to satisfy the nonlinear equality constraints, and
that they are obtained by solving a perturbed two-point
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boundary value problem. Otherwise, the number of de-
sign variables in Eq. (17) is reduced to 4K — 6, and the
equation can be expressed as

X = [7717"' 777K7A1117"' 7A’UK72] (22)

After the proportionality coefficients and the first
K — 2 nominal impulses Av; (i =1,2,--- , K —2)
are provided by the optimization algorithm, the
maneuver time can be computed using Eq. (21).

(Avk 1, Avg) = Lambert p ((tx 1), x(tx), tx —tx—1)

where @ (txx) = @next, and the position and veloc-
ity error tolerances for the perturbed Lambert algorithm
are respectively set as 100 m and 1 m/s. This perturbed
Lambert algorithm allowed the perturbed solutions that
included the successful computation of the gravitational
potential terms J» through a homotopic targeting tech-
nique in which the two-body Lambert solution is used
as an initial value and the Runge-Kutta integration is
used as a perturbed trajectory propagator. A set of mid-
dle target points along the position offset vector (i.e.,
the offset between the initial and the final perturbed tra-
jectories) is chosen to approach the final target point
iteratively so that the iteration from two-body Lam-
bert solution can converge for this long-duration, multi-
revolution Lambert problem.

7 Results

Table 1 presents the best solution we obtained during
the competition, in which the start and end epoch as
well as the sequence and the start mass of each mis-
sion are listed. It can be found that the number of the
removal debris in each mission are mainly distributed
from seven to twelve except for the first mission.

The total velocity increments for rendezvous of each
mission are presented in Fig. 4. It can be seen that the
total velocity increments of most missions are between
1500 m/s and 2500 m/s while only that of the fifth mis-
sion is beyond 3000 m/s. However, it should be no-
ticed that the first mission has also removed the most
debris. Consequently, the average velocity increments
of each mission are better indexes to evaluate the perfor-

Then the spacecraft’s trajectory is propagated to
tx—1 by substituting Awv;(i=1,2,---,K —2)
into the dynamics of Eq. (2), and the spacecraft’s
state x(tx_1) can be obtained. Following this, the
last two nominal impulses are computed by solv-
ing a two-point boundary value problem so that
the final rendezvous conditions of Eq. (20) can be
automatically satisfied. = Here the homotopic per-
turbed Lambert algorithm proposed by Yang et al. [10]
is used to calculate these two impulses as described by:

(23)

(

mance of each mission, which are shown in Fig. 5. We
find that the average velocity increments of the first four
missions are below 250 m/s while for most of other mis-
sions the average velocity increments are near 300 m/s.
It indicated that the performances of the first four mis-
sions are better than others. It is clear that the average
velocity increment of the eighth mission is the largest
with a number of near 400 m/s, which indicates that the
mission is not optimal. The minimum and maximum
velocity increments of each mission are illustrated in
Fig. 6. The smallest velocity increment of all 12 mis-
sions is 38.6 m/s while the largest one is 798.3 m/s. It
can be seen that the range of velocity increments for a
single rendezvous process of each mission is very wide.

AVimi)

9 W0 1 12

FIGURE 4. Total AV of each mission

The histories of the RAAN of the active spacecraft
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TABLE 1. Details of the best solution from NUDT

Mission  Start Epoch  End Epoch  Debris  Debris Removal Sequence Start Mass
Order (MJD) (MJD) Number (kg)

I 23517.00 23811.52 17 0, 115,12, 67, 19, 48, 122,7, 63, 5478.12
61, 82,107,41, 11, 45, 85, 47

2 23893.80 24092.29 11 58,28, 90, 51, 72, 69, 10, 66, 73, 64, 52 4106.88

3 24122.30 24427.74 12 84, 86, 103, 16, 121, 92, 49, 23, 20, 54, 27,36  3809.97

4 24461.50 24660.15 10 8,43,9,55,95, 14,102, 39, 113, 110 4081.09

5 24785.00 24975.41 12 83,75, 22,35,119, 24, 108, 37, 112, 104, 32, 5782.68
114

6 25006.00 25198.32 9 118, 65, 74, 50, 94, 21, 97,79, 120 4024.43

7 25281.60 25454.87 10 62, 1, 40, 76, 89, 99, 15, 59, 98, 116 4877.61

8 25555.40 25669.64 8 117,91, 93, 70, 18, 105, 88, 46 4909.98

9 25702.40 25860.22 9 5,53, 33, 68, 71, 80, 57, 60, 106 4419.99

10 25912.74 26055.85 8 2, 81, 96, 6, 100, 30, 34, 26 3902.24

11 26087.53 26262.18 10 87,29, 101, 31, 38, 25,4,77,13,3 4267.35

12 26292.26 26381.58 7 44,111, 56, 78, 17, 109, 42 3584.37

9 0 1 12

FIGURE 5. Average AV of each mission
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FIGURE 6. Minimum and maximum AV of each mission

and corresponding debris removed in the last mission
are shown in Fig. 7, where the red line with circles in-
dicated the history of RAAN of the spacecraft. We can
find that the RAAN of the spacecraft increases grad-
ually as it rendezvouses the debris one by one. The
RAAN of debris #42, as shown in the figure, is not
close to others in this sequence. However, there is an
intersection of the RAAN between debris #42 and de-
bris #109 around 26377 MJD. Thus, the spacecraft can
wait to transfer from debris #42 to debris #109 until to
that epoch so as to reduce the velocity increments for
maneuvers caused by a large initial RAAN error.

L L L L L L L
2622 263 263092635 26335 26348 26377
MID (day) ]

FIGURE 7. History of the RAAN of the active spacecraft and
corresponding debris for mission #12

8 Conclusions

A three-level optimization framework is presented to
solve the problem of GTOCY, wherein the competitors
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are called to design a series of missions able to remove
a set of 123 orbiting debris pieces while minimizing the
overall cumulative cost. The top level is similar to a dy-
namic TSP, wherein the debris pieces are divided into
several groups and each group of debris is removed by
one mission. The middle level is a mixed-integer opti-
mization problem, wherein the impulses and durations
of each rendezvous in one mission are designed. And
the bottom level is the precise and detailed optimiza-
tion of the flight trajectory in one rendezvous. The re-
sult of GTOC9 obtained by this framework is then il-
lustrated. The result indicates that the three-level op-
timization framework is efficient and can obtain good
solutions in considerable time.
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