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Abstract. The ninth edition of the Global Tra-

jectory Optimization Competition (GTOC) series

was successfully organized in April 2017, wherein

the competitors were called to design a series of

missions able to remove a set of 123 orbiting de-

bris pieces while minimizing the overall cumula-

tive cost. A three-level optimization framework

of the NUDT Team is presented and an improved

Ant colony Optimization Algorithm, a hybrid-

encoding Genetic Algorithm and an improved Dif-

ferential Evolution algorithm are applied to solve

the complex problem, which combines the dy-

namic TSP, mixed-integer sequence optimization

and perturbed trajectory rendezvous optimization.

The result obtained during the competition ranked

second in the eventual leaderboard.

1 Introduction

The design of space trajectories can be profitably ap-

proached as a global optimization problem. The opti-

mal trajectory, which is significant for practical space

mission design, is usually very difficult to be ob-

tained. The Global Trajectory Optimization Compe-

tition (GTOC) series [1], was born with the objec-

tive of fostering research in this area by letting the
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best aerospace engineers and mathematicians world-

wide challenge themselves to solve one, difficult, well-

defined, problem of spacecraft trajectory design.

Since the launch of the first satellite, Sputnik, in

1957, mankind has placed countless spacecraft in orbit

around the Earth. Today, less than 10% of the trackable

objects orbiting the Earth are operational satellites. The

remainder is simply junk and the space debris is becom-

ing an increasingly serious problem. Following the un-

precedented explosion of a Sun-synchronous satellite,

the Kessler effect triggered further impacts and the Sun-

synchronous orbits environment was severely compro-

mised [2]. Scientists from all main space agencies and

private space companies isolated a set of 123 orbiting

debris pieces that, if removed, would restore the pos-

sibility to operate in that precious orbital environment

and prevent the Kessler effect to permanently compro-

mise it.

For calling to protect the environment of earth orbits,

the background of GTOC9 is to clean the debris to avoid

the Kessler effect. It is the first time that GTOC focuses

on the near-earth space problem. The competitors are

called to design a series of missions to remove a set of

123 orbiting debris pieces while minimizing the overall

cumulative cost.

To find the optimal solution of such a complex

problem, three sub-problems need to be extracted and
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solved. First, the set of 123 debris pieces needs to be

divided into several groups. Each group of debris is re-

moved by one mission. Optimization is performed to

minimize the overall cumulative cost. This can be ap-

proached as a dynamic TSP and solved by evolutionary

algorithms [3]. Second, given a group of the debris,

one mission is designed by mixed-integer optimization

to remove them while costing minimal velocity incre-

ment [4]. Finally, given the current and next debris as

well as the rendezvous duration, the impulsive maneu-

ver strategy is designed to produce the optimal flight

trajectory [5].

This paper presents the solving methods and results

from the National University of Defense Technology

(NUDT) for GTOC9. The remainder of the paper is or-

ganized as follows. Section 2 makes a short description

of the problem and analyzes the main challenges of this

problem. Section 3 gives the optimization framework

of the NUDT Team. The detailed solving approach and

procedure are presented in Section 4-6. Conclusions are

drawn in Section 7.

2 Problem Description and Analysis

2.1 Problem Description

The problem of GTOC9 is to design n missions to

cumulatively remove all the 123 orbiting debris while

minimizing the overall cumulative cost of such an en-

deavor. The cost function is expressed as

J =
n
∑

i=1

Ci =
n
∑

i=1

[

ci + α(m0i −mdry)
2
]

ci = cm + tsubmission−tstart

tend−tstart
(cM − cm)

(1)

where Ci is the cost charged by the contracted launcher

supplier for the ith mission. At the beginning of the

ith mission, m0i is the spacecraft mass and mdry its

dry mass. Each spacecraft initial mass m0 is the sum

of its dry mass, the weights of the N ≥ 1 de-orbit

packages to be used and the propellant mass: m0 =
mdry + Nmde + mp. α is a parameter set to be

α = 2.0 × 10−6
[

MEUR/Kg2
]

. tsubmission is the

epoch at which the ith mission is validated, and tend
and tstart are the end and the beginning epochs of the

GTOC9 competition. The minimal basic cost cm is 45

MEUR and the maximum cost cM is 55 MEUR. Other

definition and constraints can be found in [2].

During each transfer between two successive debris,

the spacecraft dynamics is described by a Keplerian mo-

tion perturbed by main effects of an oblate Earth, i.e. J2.
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where r = [x, y, z]
T

and v = [vx, vy, vz]
T

are the

spacecraft’s position and velocity vector described in

the mean equator inertial coordinate system of the cen-

ter body, r = ||r||, || · || denotes the Euclidean norm

of a vector, µ, RE and J2 are the gravitational constant,

mean equator radius and J2-perturbation coefficient of

the central body respectively. Γ is the thrust accelera-

tion.

The only maneuvers allowed to control the spacecraft

trajectory are instantaneous changes of the spacecraft

velocity (its magnitude being denoted by ∆V . After

each such maneuver, the spacecraft mass is to be up-

dated using Tsiolkovsky equation:

mf = mi exp

(

−∆V

ve

)

(3)

where ve = Ispg0. A maximum of 5 impulsive velocity

changes is allowed during each transfer between two

successive debris. These do not include the departure

and arrival impulse.

2.2 Analysis

The goal of this problem is to design a minimal mass ve-

hicle compliant of a series of suc-cessive removal mis-

sions. For optimization this problem, three following

sub-problems must be addressed:

1) How to plan the successive removal missions?

2) How to minimize the cost of a single mission?

3) How to minimize the trajectory between each two

debris?

The first problem is a large-scale multi-sequence

combinatorial optimization problem, which is similar

to the combination of the classic TSP (Travelling Sales-

man Problem) and BPP (Bin Packing Problem). The

TSP is to find a minimal distance closed path visiting

all the nodes once and the BPP is to find a minimal bin-

packing scheme placing all the items without omission.
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However, compared with TSP and BPP, the following

differences make this sub-problems much more difficult

to solve.

In the BPP, only the weight constraint need to be sat-

isfied. The placing sequence of each item can be ignore.

While in this problem not only the total fuel cost con-

straint should be satisfied, but also the sequence of the

visited debris must be considered. This makes the so-

lution space of this problem much larger than BPP and

increase the optimization difficulty.

In the TSP, each node has to be visited once and once

only and the path is closed. While removing the debris

can be divided into several missions in this problem,

where the number of missions are not fixed and the re-

moval paths are opened. This makes the solution space

of this problem much larger than TSP and also increase

the optimization difficulty.

In the TSP, all the nodes to be visited are fixed in

the plane and the cost of going from one node to an-

other can be easily calculated according to the Carte-

sian distance in the plane. While in this problem the

cost of going from a debris to the next one depends on

the starting date and arrival date. This makes the prob-

lem time-dependent and further increase the optimiza-

tion difficulty.

The second problem is a mixed-integer nonlinear-

programming (MINLP) problem. Not only the se-

quence of the debris (integer variables) but also the

transfer times between each debris (real variables) need

to be considered as the Design Variables, which are typ-

ically much more difficult to solve than both mixed-

integer linear-programming (MILP) and nonlinear-

programming (NLP) problems.

The third problem is an orbital transfer problem. It is

very difficult to find the optimal solution for the long-

duration (tf is up to 30 days) perturbed rendezvous

problem. A fuel-optimal orbital rendezvous problem is

to find a maneuvering plan for the spacecraft to min-

imize the total velocity increment and simultaneously

satisfy specific constraints. While the J2-perturbation

is taken in account, the well-known orbital targeting al-

gorithms such as the Lambert algorithm will be failed

in obtaining the feasible solutions, and the constrained

optimization methods which can directly corporate final

state constraints, such as SQP, will also encounter con-

vergence problems for long-duration rendezvous. From

the scope of orbital dynamics, at least two impulses are

needed to target the final position and velocity vectors.

However, the total velocity increment of the 2-impulse

maneuvers will be very large for a rendezvous mission,

especially for the long-duration, large non-coplanar ren-

dezvous. Therefore, a rendezvous mission usually uses

more than two impulses. Due to the long-duration,

multi-impulse characteristics, the design variables (e.g.

the maneuver time) will have large search space, and

many sub-optimal solutions may exist, thus it is difficult

to find the global optimal solution for this problem even

though the state-of-art optimization algorithm is used.

In addition, numerical integration of the J2-perturbed

trajectory is required in the optimization process, which

makes the optimization time-consuming.

3 Optimization framework

Based on the analysis of the problem and the opti-

mization tools we have accumulated, our optimization

framework is divided into three levels, which are illus-

trated in Fig. 1.

Global Optimization Sequence Optimization Ultimate Optimization

Divide all

the debris into 

several chains

Reoptimize the 

visiting sequence and 

time of each chain 

  Obtain accurate 

      and         of 

each transfer

Analytical 
Estimation

Method

ACO

Algorithm

Numerical 
Estimation

Method

GA

Algorithm 

J2 Lambert 

Algorithm

  T  
DE

Algorithm

FIGURE 1. Optimization framework

The task of the global optimization is to appropri-

ately divide the debris into several chains. It is a com-

binatorial optimization problem with huge search space

that is similar to the TSP. For such NP-hard problem,

no algorithm can guarantee to the global optimum. As

an efficient optimization tool, ACO performs well on

the classic TSP and many other TSP variants. Follow-

ing the characteristic of this problem, we improve an

ACO based on the one for the extravehicular missions

packing programming (EMPP) [6] and apply it to solve

the first-level problem. In addition, compared with the

calculating of the distance between any two cities in the

TSP, the calculating of the ∆V from a debris to the next

one is much more time-consuming. Thus, an analytical

estimation method of the transfer ∆V and ∆T between

any two debris is employed in the global optimization.

With the completion of the global optimization for

the whole mission, the number of the chains and the

debris in each chain are determined and will not be

changed. However, since the optimal transfer ∆V and

∆T between each debris are estimated by an analytical

model with high error (up to 30% in some conditions),
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a numerical estimation method of the transfer ∆V and

∆T between any two debris is developed and the mixed

integer reoptimization for both the visiting sequence of

the chain and the transfer time between each debris

is necessary. An im-proved hybrid-encoding Genetic

Agorithm (HEGA) [7, 8] is applied to solve the second-

level problem.

Once the visiting sequence of each chain is deter-

mined, the optimization of the accurate transfer ∆V and

∆T between each two debris is required. The orbital

transfer from a debris to another is a multi-impulse, per-

turbed rendezvous problem. A feasible solution can-

not be directly obtained by the orbital targeting algo-

rithms based on two-body dynamics unless some dif-

ferential corrections or simple iterations are used. In

order to efficiently obtain a near-optimal solution for

the given long-duration (up to 30 days) rendezvous

problem, a feasible iteration optimization model is em-

ployed, in which the homotopic perturbed Lambert al-

gorithm [9, 10] is used as the orbital targeting algo-

rithm. An improved differential evolution (DE) algo-

rithm [11] is applied to solve the third-level problem.

4 Global Optimization for the Whole

Mission

4.1 Analytical estimation method of the transfer

∆V and ∆T

The analytical estimation method for evalu-

ating the objective function of each transfer

and the overall cumulative cost are based on

the Gauss form of variational equations [12],
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where the mean motion n =
√

µ
a3 and the semilatus

rectum p = a
(

1− e2
)

. Detailed procedure is described

as follows.

1) Adjustment of the RAAN difference

The RAAN of an orbital object drifts due to the J2
perturbation. The drift velocity is formulated as follow,

Ω̇ = −3

2
J2

(

req
p

)2

n cos i (5)

where req is the mean radius of the earth.

As the adjustment of orbital plane costs a large ve-

locity increment, the difference of the RAAN drift ve-

locity between the spacecraft and the debris should be

fully used. If the RAAN difference cannot be remedied

naturally during the maximum rendezvous duration, an

impulse perpendicular to the orbital plane can be imple-

mented at the north or south vertex of the orbit.

∆vh =
na2

√
1− e2 sin i

r
|∆Ω| (6)

2) Adjustment of the inclination difference

As the J2 perturbation does not change the orbital in-

clination, the inclination difference must be remedied

by maneuvers. An impulse perpendicular to the orbital

plane can be implemented at the ascending node or de-

scending node.

∆v = 2
h

r
sin

|∆i|
2

(7)

where h = r2θ̇ , θ is the argument of latitude.

3) Adjustment of the semimajor axis and eccentricity

After the spacecraft transfers to the same orbital

plane with the debris, the semimajor axis and eccen-

tricity are adjusted by two tangential impulses. For a

near circular orbit, omitting the high order terms of e2,

the impulses are formulated as follows.

If ∆a∆e ≥ 0, the first tangential impulse ∆vt1 is

implemented at the perigee, where the true anomaly

f = 0, and the second tangential impulse ∆vt2 is im-

plemented at the apogee of f = π.
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{

∆vt1 = n∆a+a(1−e)∆e

4

∆vt2 = n∆a−a(1+e)∆e

4

(8)

If ∆a∆e < 0, the first tangential impulse ∆vt1 is

implemented at the apogee, where the true anomaly

f = π, and the second tangential impulse ∆vt2 is im-

plemented at the perigee of f =0.

{

∆vt1 = n∆a−a(1+e)∆e

4

∆vt2 = n∆a+a(1−e)∆e

4

(9)

4) Estimation of rendezvous duration

The rendezvous duration should mainly come from

the adjustment of the RAAN difference so as to make

full use of the natural RAAN drift due to J2 perturba-

tion. The other adjustments do not need too much time.

To be conservative, the rendezvous duration is roughly

estimated as the duration for RAAN adjustment plus

one day.

4.2 ACO for Debris Grouping and Bunching

ACO algorithm was originally inspired by the ability of

biological ants to find the shortest path between their

nest and a food source [13]. The fundamental working

procedure of the ACO for debris Grouping and bunch-

ing (ACO DGB) is similar to the classic ACO, which is

shown in Algorithm 1. The most important feature of

an ACO is the design of the heuristic, which is eventu-

ally combined with the pheromone information to build

solutions. In this part, we mainly present the heuristic

and solution construction method of the DCB ACO.

Algorithm 1 Ant System

step 1: Pheromone trail initialization;

while termination criteria not met

do

step 2: Solution construction;

step 3: Pheromone update;

end while

The procedure of bunching a debris chain is illus-

trated in Fig. 2. After setting the start time and select

a debris as the head of the chain, the estimation of the

optimal transfer ∆V and ∆T between the last debris of

the current chain and all remaining ones and the selec-

tion from the candidate pool are followed and cycled to

bunch the chain one by one. When the candidate pool

becomes empty, which means none of the remaining de-

bris can be added to the tail of the chain, the procedure

will be stopped and a chain will be obtained.

Select a debris as the 

head of the chain

... Select one from the 

candidate pool

0
=T T

1
T T t  

...

2
=T T t 

... Until the candidate pool is empty, 

Finish bunching
...

1
=

n
T T t  

Select one from the 

candidate pool

1

2

Estimate the optimal  

transfer cost and 

collect the candidate

3

4
5

6

7
8

9

Estimate the optimal  

transfer cost and 

collect the candidate

FIGURE 2. Bunching procedure of the debris chain

Three remarks should be noted for this procedure:

1) In steps 3 and 6, the candidate refers to all of the

debris that satisfy the total fuel constraints for one

mission after being added to the tail of the chain.

2) In steps 4 and 7, the probability that an ant k will

choose a debris j as the next debris for the current

chain b in the partial solution s is given by

pkbj(s)=







τbj ·ηj
β

∑

g∈Uk(s,b)

τbg·ηg
β , j ∈ Uk(s, b)

0 otherwise
(10)

where Uk(s, b) is the candidate pool and ηj = ∆Vlj

is the heuristic value. The parameter α in the clas-

sic ACO is fixed to 1 here because using the pa-

rameter β is sufficient to reflect the weight between

the pheromone information and heuristic informa-

tion. τbj is the pheromone from debris l to debris j,

where debris l is the last debris in the current chain

b.

3) In step 5 and 8, δt is the estimated optimal transfer

time between the last debris in the current chain and

the selected debris.

Based on the chain bunching method, building a so-

lution for each ant should take the following procedure,

which is presented as Algorithm 2.

Algorithm 2 Solution Construction Procedure of the

ACO DGB

step 1: Determine the start time T0 (MJD)
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step 2: Produce a debris chain based on the chain

bunching method in Fig. 2

step 3: if None debris remains

Go to step 4

else

Set the current time T=T+∆TM (∆TM ∈
rand[30day, 60day])
Return to step 2

end if

step 4: Collect all of the debris chains and obtain a so-

lution

The evaporation parameter ρ is set as 0.05 and the

increase of the pheromone ∆τkij is limited to the max-

imum value of 0.1τij to avoid premature convergence.

The pheromone update rule used in the ACO DGB is

the same as the one in the ACO for the EMPP [6].

4.3 Solving Strategy

To minimize the cost function that is expressed in

Eq. (1), not only the launch times but also the total

propellant cost in each launch should be reduced. The

time-related part ci is set as the maximum cost (55

MEUR) in the optimization for the whole mission.

Due to the insufficient optimization performance of

the ACO DGB, we can hardly obtain the optimal so-

lution or even a good solution if using the algorithm

to optimize 123 debris all at once and taking the solu-

tion from the result directly. In order to make the orig-

inal problem easier to be optimized and obtain better

solutions, a chain-by-chain solving strategy is applied,

which is illustrated in Fig. 3.

...

Use ACO_DGB 

to obtain several  

solutions

Determine the 

first chain

Disorganize the 

remaining debris

Obtain the final 

3~4 chains

Use ACO_DGB 

again to obtain 

several  solutions

Disorganize the 

remaining debris

Determine the 

second chain

FIGURE 3. Procedure of the chain-by-chain solving strategy

The main idea of this solving strategy is to deter-

mine the debris chains of the final solution step by step.

2000 runs will be implemented for the ACO DGB to

optimize the remaining debris each time and the first

chain of the best partial solution will be selected and

determined as the next chain of the final solution. Here

the best partial solution refers to the one that owns the

smallest objective function value excluding the deter-

mined chains. The final 3-4 chains are determined all at

once because the search space is small enough and fur-

ther disorganization and reoptimization for the remain-

ing debris will not make the final solution better.

5 Sequence Optimization for the Debris

Chain

5.1 Optimization Model

1) Design variables

The solution of a debris chain Y is made up of a

group of serial integers Y1 and a set of real numbers

Y2.

Y = (Y1,Y2) (11)

where Y1 refers to the rendezvous sequence

(p1, p2, ...pQ), and Y2 refers to the orbital trans-

fer time (dur1, dur2, ...durQ).
Through the sequence of its elements the serial in-

teger vector Y1 represents a rendezvous order. The

search space of Y1 is therefore discrete and its elements

must be manipulated in combination.

2) Objective function

The objective is to minimize the propellant consumed

by orbital maneuvers:

min f2 = (m0 −mdry −Qmde) (12)

where mdry is the spacecraft’s mass after the last re-

moving mission and also denotes the spacecraft’s dry

mass(Generally, mdry should include the propellant

used by spacecraft to deorbit, otherwise, the spacecraft

itself would be a debris now).

5.2 Numerical estimation method of the transfer

∆V and ∆T

The state of a spacecraft can be expressed as

E = (a, u, ξ, η, i,Ω)T (13)

where a is the semi-major axis, i is the orbital in-

clination, Ω is the right ascension of ascending node

(RAAN), u is the argument of latitude, e is the eccen-

tricity, ω is the argument of perigee, and ξ = e cosω
and η = e sinω are the modified orbital elements suit-

able for de-scribing near-circular orbits.
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The state variable used to express orbital differences

between the spacecraft and a debris is

X = (∆a/ar,∆θ,∆ξ,∆η,∆i,∆Ω)T (14)

where the subscript r denotes the reference orbit, ∆a is

the difference in semi-major axis, ∆θ is the difference

in argument of latitude, ∆i is the difference in orbital

inclination, ∆Ω is the difference in RAAN, and ∆ξ and

∆η give the differences in eccentricity vector.

Using the first order approximations, the state

transitions of the orbital element differences

under the J2 perturbation are given by [10]
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∆a0
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C(3− 4sin2ir)

]

∆t− 4C sin(2ir)∆i0∆t

∆ξ = ∆ξ0 cos(ω̇J2∆t)−∆η0 sin(ω̇J2∆t)
∆η = ∆ξ0 sin(ω̇J2∆t) + ∆η0 cos(ω̇J2∆t)
∆i = ∆i0
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7
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)

C∆t

(15)

where the subscript 0 denotes the initial state, ∆t is

the orbital transfer time, µ is the geocentric gravita-

tion constant, ae is the mean equatorial radius of the

Earth, nr =
√

µ
a3
r

is the mean angular motion rate,

C = 3J2ae
2

2

√
µa

−
7
2

r , and ω̇J2
= C

(

2− 5
2 sin

2ir
)

is

the drift rate of perigee.

Thus, the orbital transfer of the qth ren-

dezvous operation can be expressed as

X(tqf ) = Φ(∆tq0)X0 +

2
∑

j=1

Φv(∆tqj , uqj)∆vqj (16a)
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0 0 cos τq0 − sin τq0 0 0
0 0 sin τq0 cos τq0 0 0
0 0 0 0 1 0

7
2C cos ir∆tq0 0 0 0 C sin ir∆tq0 1





















(16b)

Φv(∆tqj , uqj) =



























0 2 0

0





−3nr−
7C

(

3−
4sin2ir

)



∆tqj −4C sin(2ir) cosuqj∆tqj

sin (uqj + τqj) 2 cos(uqj + τqj) 0
− cos (uqj + τqj) 2 sin(uqj + τqj) 0

0 0 cosuqj

0 7C cos ir∆tqj

(

sinuqj

sin ir
+

C sin ir cosuqj∆tqj

)



























(16c)
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where τqj = ω̇J2
∆tqj , ∆tq0 = tqf − tq0 = durq is

orbital transfer time, ∆tqj = tqf − tqj , uqj is the ar-

gument of latitude of the jth maneuver, and ∆vqj =

(∆vqjx,∆vqjy,∆vqjz)
T

is the impulse vector. The or-

bital coordinate system used to describe the impulse is

given as follows: x is along the orbital radial direc-

tion, y is along the in-track direction and z is along

the orbital normal direction and completes the rand-

handed system. The last maneuver is executed at tqf ,

i.e. tqf = tq2.

Eq. (16) is a linear relative dynamic equation under

the J2 perturbation. Only two maneuvers are consid-

ered for each orbital transfer that six unknown impulse

components correspond to six equations, and then the

solution to Eq. (16) can be easily obtained using Gaus-

sian elimination. The details of this linear dynamics

model can be found in the references [14, 15].

Long-duration rendezvous problems under the J2
perturbation have multiple local minima both in the

duration of one orbital period and in the duration of

multiple orbital period [15]. In order to overcome the

property of multiple local minima in one orbital pe-

riod, the burn time of the first maneuver tq1 is enumer-

ated from tq0 to tq0 + Tr with a step of Tr/Nenum,

where Tr is the reference orbital period and Nenum is

the number of enumerations. For each value of tq1, a

group of values for ∆vq1 and ∆vq2 can be obtained,

and is referred to as ∆vq1(tq1) and ∆vq2(tq1). The

Nenum + 1 groups of ∆vq1(tq1) and ∆vq2(tq1) in

total are calculated and then are compared with each

other to find the group with the local minimum value

of ‖∆vq1(tq1)‖ + ‖∆vq2(tq1)‖, and the values of the

∆vq1 and ∆vq2 in this group are used as the impulses

for the orbital transfer of the qth rendezvous.

Based on the method provided above, the maneuver

impulses of each rendezvous orbital transfer are only

functions of the initial state, the required ending state

and the orbital transfer time, and then the propellant

cost can be evaluated with small computation cost.

6 Optimization for the Debris-to-debris

Transfer

6.1 Optimization Model

1) Design variables

4n design variables are contained in an n-impulse

maneuver plan:

D = [ti,∆vix,∆viy,∆viz], i = 1, 2, ...,K (17)

where K is the total number of the maneuvers, ti is

the ith maneuver time and ∆vi = [∆vix,∆viy,∆viz]
T

is the ith maneuver impulse vector. Herein, 4-impulse

maneuver plan is adopted.

2) Objective function

The objective is to minimize the total velocity incre-

ment:

minJ = ∆v =

K
∑

i=1

‖∆vi‖ (18)

3) Constraints

The duration between two adjacent maneuvers

should be larger than a given value, i.e.,

{

ti − ti−1 ≥ ∆Ti,
ti ∈ [t0, tf ], i = 1, 2, ...,K

(19)

where t0 = 0, tf = 30 days, ∆T1 = 5 days, ∆Ti can

be set as zeros for i = 2, ...,K. In addition, at the final

time, the deviation between the spacecraft’s state vector

xf = [rf , vf ]
T and the state vector xnext of the next

debris should be smaller than the given tolerant error,

i.e.,

{

‖rf − rnext‖ ≤ 100 m,
‖vf − vnext‖ ≤ 1 m/s

(20)

6.2 Feasible Solution Iteration Optimization

Approach

Based on the impulsive maneuver assumption, a feasi-

ble solution iteration approach is used to solve this op-

timization problem, which can be divided into the fol-

lowing two parts.

1) Dealing with the Linear Constraints

A group of proportionality coefficients η1, · · · , ηK ∈
[0, 1] is used to substitute the maneuver times

t1, · · · , tK as optimization variables. Then, the maneu-

ver times can be calculated as

ti = ti−1 + ηi(tf − ti−1)+∆Ti
{

∆T1 = 5 days,
∆Ti = 0, i = 2, ...,K

(21)

2) Dealing with the Nonlinear Constraints

The last two impulses ∆vK−1 and ∆vK are cho-

sen to satisfy the nonlinear equality constraints, and

that they are obtained by solving a perturbed two-point
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boundary value problem. Otherwise, the number of de-

sign variables in Eq. (17) is reduced to 4K − 6, and the

equation can be expressed as

X = [η1, · · · , ηK ,∆v1, · · · ,∆vK−2] (22)

After the proportionality coefficients and the first

K − 2 nominal impulses ∆vi (i = 1, 2, · · · ,K − 2)
are provided by the optimization algorithm, the

maneuver time can be computed using Eq. (21).

Then the spacecraft’s trajectory is propagated to

tK−1 by substituting ∆vi (i = 1, 2, · · · ,K − 2)
into the dynamics of Eq. (2), and the spacecraft’s

state x(tK−1) can be obtained. Following this, the

last two nominal impulses are computed by solv-

ing a two-point boundary value problem so that

the final rendezvous conditions of Eq. (20) can be

automatically satisfied. Here the homotopic per-

turbed Lambert algorithm proposed by Yang et al. [10]

is used to calculate these two impulses as described by:

(∆vK−1,∆vK) = Lambert p ((tK−1),x(tK), tK − tK−1) (23)

where x (tK) = xnext, and the position and veloc-

ity error tolerances for the perturbed Lambert algorithm

are respectively set as 100 m and 1 m/s. This perturbed

Lambert algorithm allowed the perturbed solutions that

included the successful computation of the gravitational

potential terms J2 through a homotopic targeting tech-

nique in which the two-body Lambert solution is used

as an initial value and the Runge-Kutta integration is

used as a perturbed trajectory propagator. A set of mid-

dle target points along the position offset vector (i.e.,

the offset between the initial and the final perturbed tra-

jectories) is chosen to approach the final target point

iteratively so that the iteration from two-body Lam-

bert solution can converge for this long-duration, multi-

revolution Lambert problem.

7 Results

Table 1 presents the best solution we obtained during

the competition, in which the start and end epoch as

well as the sequence and the start mass of each mis-

sion are listed. It can be found that the number of the

removal debris in each mission are mainly distributed

from seven to twelve except for the first mission.

The total velocity increments for rendezvous of each

mission are presented in Fig. 4. It can be seen that the

total velocity increments of most missions are between

1500 m/s and 2500 m/s while only that of the fifth mis-

sion is beyond 3000 m/s. However, it should be no-

ticed that the first mission has also removed the most

debris. Consequently, the average velocity increments

of each mission are better indexes to evaluate the perfor-

mance of each mission, which are shown in Fig. 5. We

find that the average velocity increments of the first four

missions are below 250 m/s while for most of other mis-

sions the average velocity increments are near 300 m/s.

It indicated that the performances of the first four mis-

sions are better than others. It is clear that the average

velocity increment of the eighth mission is the largest

with a number of near 400 m/s, which indicates that the

mission is not optimal. The minimum and maximum

velocity increments of each mission are illustrated in

Fig. 6. The smallest velocity increment of all 12 mis-

sions is 38.6 m/s while the largest one is 798.3 m/s. It

can be seen that the range of velocity increments for a

single rendezvous process of each mission is very wide.

FIGURE 4. Total ∆V of each mission

The histories of the RAAN of the active spacecraft
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TABLE 1. Details of the best solution from NUDT

Mission Start Epoch End Epoch Debris Debris Removal Sequence Start Mass
Order (MJD) (MJD) Number (kg)

1 23517.00 23811.52 17 0, 115, 12, 67, 19, 48, 122, 7, 63, 5478.12
61, 82, 107, 41, 11, 45, 85, 47

2 23893.80 24092.29 11 58, 28, 90, 51, 72, 69, 10, 66, 73, 64, 52 4106.88
3 24122.30 24427.74 12 84, 86, 103, 16, 121, 92, 49, 23, 20, 54, 27, 36 3809.97
4 24461.50 24660.15 10 8, 43, 9, 55, 95, 14, 102, 39, 113, 110 4081.09
5 24785.00 24975.41 12 83, 75, 22, 35, 119, 24, 108, 37, 112, 104, 32, 5782.68

114
6 25006.00 25198.32 9 118, 65, 74, 50, 94, 21, 97, 79, 120 4024.43
7 25281.60 25454.87 10 62, 1, 40, 76, 89, 99, 15, 59, 98, 116 4877.61
8 25555.40 25669.64 8 117, 91, 93, 70, 18, 105, 88, 46 4909.98
9 25702.40 25860.22 9 5, 53, 33, 68, 71, 80, 57, 60, 106 4419.99

10 25912.74 26055.85 8 2, 81, 96, 6, 100, 30, 34, 26 3902.24
11 26087.53 26262.18 10 87, 29, 101, 31, 38, 25, 4, 77, 13, 3 4267.35
12 26292.26 26381.58 7 44, 111, 56, 78, 17, 109, 42 3584.37

FIGURE 5. Average ∆V of each mission

FIGURE 6. Minimum and maximum ∆V of each mission

and corresponding debris removed in the last mission

are shown in Fig. 7, where the red line with circles in-

dicated the history of RAAN of the spacecraft. We can

find that the RAAN of the spacecraft increases grad-

ually as it rendezvouses the debris one by one. The

RAAN of debris #42, as shown in the figure, is not

close to others in this sequence. However, there is an

intersection of the RAAN between debris #42 and de-

bris #109 around 26377 MJD. Thus, the spacecraft can

wait to transfer from debris #42 to debris #109 until to

that epoch so as to reduce the velocity increments for

maneuvers caused by a large initial RAAN error.

FIGURE 7. History of the RAAN of the active spacecraft and

corresponding debris for mission #12

8 Conclusions

A three-level optimization framework is presented to

solve the problem of GTOC9, wherein the competitors
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are called to design a series of missions able to remove

a set of 123 orbiting debris pieces while minimizing the

overall cumulative cost. The top level is similar to a dy-

namic TSP, wherein the debris pieces are divided into

several groups and each group of debris is removed by

one mission. The middle level is a mixed-integer opti-

mization problem, wherein the impulses and durations

of each rendezvous in one mission are designed. And

the bottom level is the precise and detailed optimiza-

tion of the flight trajectory in one rendezvous. The re-

sult of GTOC9 obtained by this framework is then il-

lustrated. The result indicates that the three-level op-

timization framework is efficient and can obtain good

solutions in considerable time.

Acknowledgement

The NUDT team thanks the Advanced Concepts Team

of the European Space Agency for organizing such

a wonderful GTOC. The innovation of the real-time

leaderboard makes GTOC9 more exciting than the past

edition and the interesting problem brings us many

ideas for further research.

References

[1] GTOC Portal. https://sophia.estec.

esa.int/gtoc_portal/.
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