
1 Static Analysis Warnings Collection

In this section, we describe the study setup utilized to collect the data from
each SAT and the data collection process. We analyzed a single snapshot of
each project, namely the release available in the dataset of each of the 112
available systems.

Checkstyle. The JAR file for the Checkstyle analysis was downloaded
directly from Checkstyle’s website 1

to engage the analysis from the command line. The executable JAR file used
in this case was checkstyle-8.30-all.jar. In addition to downloading the JAR
executable, Checkstlye offers two different types of rule sets for the analysis1.
For each of the rule sets, the configuration file was downloaded directly from
Checkstyle’s website2. To start the analysis, the files checkstyle-8.30-all.jar
and the configuration file in question were saved in the directory where all the
cloned repositories from Java Qualitas Corpus resided. A bash script was made
to execute the analysis for each project in one go to make the analysis more
swift.

This can be seen in Listing 1.

1 #!/bin/bash

2 while read in; do java -jar checkstyle-8.30-all.jar

3 -c /RULESET -f xml "$in"/ > "$in"_CS_RULESET.xml ;

4 done < projectList.txt"

Listing 1: Checkstyle bash script tailored towards each rule set
where RULESET represents the rule set used for the analysis, “$in” repre-

sents the project name which is imported from projectList.txt, and “$in” CS -
RULESET.xml represents the export file name of the analysis results in XML
format. The text file projectList.txt consists of all the project names to execute
the analysis for all projects in one go.

Listing 2 show an example of how the projects were analyzed with Checkstyle
according to the rule set Google Java Style3.

1 #!/bin/bash

2 while read in; do java -jar checkstyle-8.30-all.jar

3 -c /google_checks.xml -f xml "$in"/ >

4 "$in"_CS_Google_Checks.xml ;

5 done < projectList.txt"

Listing 2: Example of Checkstyle bash script for Google Java Style configura-
tion.

1ttps://checkstyle.org/
2https://github.com/checkstyle/checkstyle/tree/master/src/main/resources
3https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/

google_checks.xml

1

https://checkstyle.org/
https://github.com/checkstyle/checkstyle/tree/master/src/main/resources
https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml
https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

Findbugs. FindBugs 3.0.1 was installed by running brew install findbugs
in the command line. Once installed, the GUI was engaged by writing spot-
bugs. From the GUI, the analysis was executed through File → New Project.
The classpath for the analysis was identified to be the location of the project
directory. Moreover, the source directories were identified as the project JAR
executables. Once the classpath and source directories were identified, the anal-
ysis was engaged by clicking Analyze in the GUI. Once the analysis finished,
the results were saved through File → Save as using the XML file format.

PMD. PMD 6.23.0 was downloaded from GitHub4 as a zip file. After un-
zipping, the analysis was engaged by identifying several parameters: project
directory, export file format, rule set, and export file name. In addition to
downloading the zip file, PMD offers 32 different types of rule sets for Java
written projects5. To make the analysis swifter, a bash script was made to
engage the analysis for each project in one go. This can be seen in Listing 3.

1 #!/bin/bash

2 while read in;

3 do $HOME/pmd-bin-6.23.0/bin/run.sh pmd -dir "$in"/

4 -f xml -R rulesets/java/RULESET

5 -reportfile "$in"_PMD_RULESET.xml;

6 done < projectList.txt"

Listing 3: PMD bash script tailored towards each rule set.
where “$HOME” represents the full path where the binary resides, “$in”

represents the project name which is imported from projectList.txt, RULESET
represents the rule set used for the analysis, and “$in” PMD RULESET.xml
represents the export file name of the analysis results in XML format. Like
in Listing 1, projectList.txt consists of all the project names. An example
of how the projects were analyzed with PMD according to the rule set Clone
Implementation6 is shown in Listing 4.

1 #!/bin/bash

2 while read in;

3 do $HOME/pmd-bin-6.23.0/bin/run.sh pmd -dir "$in"/

4 -f xml -R rulesets/java/clone.xml

5 -reportfile "$in"_PMD_Clone.xml;

6 done < projectList.txt

Listing 4: Example of PMD bash script for Clone Implementation configuration.
SonarQube. We first installed SonarQube LTS 6.7.7 on a private server

with 128 GB RAM and 4 processors. Because of the limitations of the open-
source version of SonarQube, we are allowed to use only one core, therefore more

4https://github.com/pmd/pmd/releases/download/pmd$_$releases%2F6.23.0/

pmd-bin-6.23.0.zip
5https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/

java
6https://github.com/pmd/pmd/blob/master/pmd-java/src/main/resources/rulesets/

java/clone.xml

2

https://github.com/pmd/pmd/releases/download/pmd$_$releases%2F6.23.0/pmd-bin-6.23.0.zip
https://github.com/pmd/pmd/releases/download/pmd$_$releases%2F6.23.0/pmd-bin-6.23.0.zip
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java
https://github.com/pmd/pmd/blob/master/pmd-java/src/main/resources/rulesets/java/clone.xml
https://github.com/pmd/pmd/blob/master/pmd-java/src/main/resources/rulesets/java/clone.xml

cores would have not been beneficial for our scope. We adopted the LTS version
(Long-Time Support) since it is the most stable and best-supported version.
We executed SonarQube on each project using SDK 8 (Oracle) and the sonar-
scanner package version 4.2. Each project was analyzed using the sources and
the binaries provided in the dataset. Moreover, we configured the analysis (in
the file sonar-project.properties) reporting information regarding the project
key, project name, project version, source directories, test directories, binary
directories, and library directories. It is important to note that the analysis
performed using the original binaries reduced the compilation errors and missing
libraries. Moreover, it also helped to reduce issues related to false positives7.
After all the projects had been analyzed, we extracted the data related to the
projects using the “SonarQube Exporter” tool8. “SonarQube Exporter” makes
it possible to extract SonarQube project measures and issues in CSV format.

2 Architectural Smells Collection

AS were detected on a Windows machine with 4 cores and 24 GB of RAM.
The entire Qualitas Corpus dataset was analyzed using ARCAN in less than
24 hours. The tool is freely available and easy to install and use 9. We should
notice that for subsystem (component) we mean a set of packages and classes
which identifies an independent unit of the system responsible for a certain
functionality.

7https://docs.sonarqube.org/latest/analysis/languages/java/
8https://github.com/pervcomp/SonarQube-Exporter/releases
9http://essere.disco.unimib.it/wiki/arcan

3

https://docs.sonarqube.org/latest/analysis/languages/java/
https://github.com/pervcomp/SonarQube-Exporter/releases
http://essere.disco.unimib.it/wiki/arcan

	Static Analysis Warnings Collection
	Architectural Smells Collection

