1 Introduction

On May 28*" 2018, the version history of the QDYN repository was rewritten to address a problem in the
history tree itself. All developers that have cloned the QDYN repository before that date should follow the
steps below to re-synchronise their local repository with the upstream repository. Users of QDYN that did
not make any code changes can simply delete the old repository and clone the latest version to get a clean
QDYN repository.

2 Creating and restoring back-ups

Before making any changes, you should always back-up your local QDYN repository. In case things don’t
turn out as expected (e.g. unpushed work is lost), you can always revert your actions. If you have made any
code changes that are not pushed upstream (i.e. are not present in https://github.com/ydluo/qdyn), you
will first need to ensure that your work is properly stored away.

First, commit all code changes (also stashed changes):
git stash apply

git commit -a

Once all code changes are committed, you can proceed to create a back-up. The following commands will
create and verify a back-up of your entire repository (including branches), all bundled into a single file
(qdyn.bak, or some other file name of your choice):

git bundle create gdyn.bak --all
git bundle verify qdyn.bak
You should then move this back-up file to some place safe. In case of emergency, you can restore this back-up
with
git clone /path/to/qdyn.bak qdyn
This will create a directory qdyn and restore all source and git files in that directory. You will now need to
re-define the origin location, which currently points to the back-up file:
cd gdyn
git remote set-url origin https://github.com/ydluo/qdyn.git

The above procedure should now have fully restored your original repository.

3 Storing unpushed commits

In the case that your local repository contains commits that are not pushed upstream, you will need to store
them on a temporary branch so that they do not get overwritten by the upstream changes. I will demonstrate
this using a simplified example. If you have no unpushed commits, you can skip this section.

Say we have a repository with a history tree as shown in Fig. 1. In this example, the last common ancestor
(i.e. the last commit that is shared between your local and the upstream repository) is commit 227e39f1d4ce.
First we create a temporary branch, and force all commits that have been made since the last common
ancestor into the temporary branch:

git branch temp
git reset --hard 227e39fld4ce

Local repository Upstream repository

392aa751a3df
Triangular elements

efadéeflebe5
Started working on new mesh

227e39fld4ce 227e39fld4ce

Added new benchmark Added new benchmark

12b48182ee8f 12b48182ee8f

Fixed a bug in solver Fixed a bug in solver
8ba90a83551f 8ba90a83551f

Implemented Runge-Kutta solver Implemented Runge-Kutta solver
570cab20b2fd 570cab20b2£d

Initial commit Initial commit

Fig. 1: Local and upstream structure of an example repository. The local repository has unpushed commits
which need to be stored away while the upstream fix is applied.

The master branch is now in sync again with the upstream repository, with all of the later commits stored
away in temp. You can verify this with:

git checkout temp
git log
Your local commits should be listed in the log. Return to the master branch with:
‘git checkout master
If you are satisfied with the results proceed to fetch the upstream history fix once it is applied. Note that the

commit hashes used in the above example do not correspond to those in the actual QDYN repository, so you
need to check for yourself which commit hash you need to use.

4 Fetching the upstream fix

After the upstream history fix is applied, you may fetch the upstream changes with:

git fetch origin
git reset --hard origin/master

The version history of the master branch will now be identical to that upstream. If you had any unpushed
commits that you stored on the temp branch, you can merge them back onto the master branch using the
rebase command (Fig. 2). Otherwise you are done.

git checkout temp
git rebase -i master

In the command line a new interface will appear, in which you can specify which commits you wish you
include in the rebase. In the above example, we only wish to keep the last two commits, so we remove all
lines that have a commit hash except for the bottom two (note that the order is reversed in rebase, the
youngest commits are at the bottom of the list). The terminal should now look something like this:

Initial situation rebase onto temp rebase ontomaster

a =X a
£ £ £
o o o
+ -+ +
< < < 1 /_N
o o v
c c c
© IS <
o o o
o o o
N :

. - - - - -
T] 7]]] 9]
g et et o o -1
7S %] 0 %] %] %)
B © © © © ©
g £ £ £ £ £
= < < < < <
] o o o o =
e c c = c c
S © © © © ©
5 5 5 5 5 5
o
e} 2 2 2 2 2
3 1] [}]]]

= = = = c

Fig. 2: After the upstream history fix has been fetched, the temp is connected to the old master branch.
First, the new master branch is copied onto the temp branch, after which the unpushed commits can
be safely rebased onto the master branch.

pick efad6ef Started working on new mesh
pick 392aa75 Triangular elements

Rebase <hash> onto <hash> (n commands)

Commands :
etc.

#
#
#
#

By removing all previous commits that are present on the old master branch, we override them with those
on the new master branch. Run a git log to verify that the last commits are on top of the new master
branch. Then, execute

git checkout master

git rebase temp

This will copy all unpushed commits on the temp branch onto master. You are now in sync with the upstream
repository, with your unpushed commits on top of the rewritten master branch. If you want to keep a clean
history tree, you can delete the temp branch with (although there is no harm in keeping it)

git branch -d temp

