
1 Introduction

On May 28th 2018, the version history of the QDYN repository was rewritten to address a problem in the
history tree itself. All developers that have cloned the QDYN repository before that date should follow the
steps below to re-synchronise their local repository with the upstream repository. Users of QDYN that did
not make any code changes can simply delete the old repository and clone the latest version to get a clean
QDYN repository.

2 Creating and restoring back-ups

Before making any changes, you should always back-up your local QDYN repository. In case things don’t
turn out as expected (e.g. unpushed work is lost), you can always revert your actions. If you have made any
code changes that are not pushed upstream (i.e. are not present in https://github.com/ydluo/qdyn), you
will first need to ensure that your work is properly stored away.

First, commit all code changes (also stashed changes):

git stash apply

git commit -a

Once all code changes are committed, you can proceed to create a back-up. The following commands will
create and verify a back-up of your entire repository (including branches), all bundled into a single file
(qdyn.bak, or some other file name of your choice):

git bundle create qdyn.bak --all

git bundle verify qdyn.bak

You should then move this back-up file to some place safe. In case of emergency, you can restore this back-up
with

git clone /path/to/qdyn.bak qdyn

This will create a directory qdyn and restore all source and git files in that directory. You will now need to
re-define the origin location, which currently points to the back-up file:

cd qdyn

git remote set -url origin https :// github.com/ydluo/qdyn.git

The above procedure should now have fully restored your original repository.

3 Storing unpushed commits

In the case that your local repository contains commits that are not pushed upstream, you will need to store
them on a temporary branch so that they do not get overwritten by the upstream changes. I will demonstrate
this using a simplified example. If you have no unpushed commits, you can skip this section.

Say we have a repository with a history tree as shown in Fig. 1. In this example, the last common ancestor
(i.e. the last commit that is shared between your local and the upstream repository) is commit 227e39f1d4ce.
First we create a temporary branch, and force all commits that have been made since the last common
ancestor into the temporary branch:

git branch temp

git reset --hard 227 e39f1d4ce

1

570cab20b2fd

Initial commit

8ba90a83551f

Implemented Runge-Kutta solver

12b48182ee8f

Fixed a bug in solver

227e39f1d4ce

Added new benchmark

efad6ef1ebe5

Started working on new mesh

392aa751a3df

Triangular elements

570cab20b2fd

Initial commit

8ba90a83551f

Implemented Runge-Kutta solver

12b48182ee8f

Fixed a bug in solver

227e39f1d4ce

Added new benchmark

Local repository Upstream repository

Fig. 1: Local and upstream structure of an example repository. The local repository has unpushed commits
which need to be stored away while the upstream fix is applied.

The master branch is now in sync again with the upstream repository, with all of the later commits stored
away in temp. You can verify this with:

git checkout temp

git log

Your local commits should be listed in the log. Return to the master branch with:

git checkout master

If you are satisfied with the results proceed to fetch the upstream history fix once it is applied. Note that the
commit hashes used in the above example do not correspond to those in the actual QDYN repository, so you
need to check for yourself which commit hash you need to use.

4 Fetching the upstream fix

After the upstream history fix is applied, you may fetch the upstream changes with:

git fetch origin

git reset --hard origin/master

The version history of the master branch will now be identical to that upstream. If you had any unpushed
commits that you stored on the temp branch, you can merge them back onto the master branch using the
rebase command (Fig. 2). Otherwise you are done.

git checkout temp

git rebase -i master

In the command line a new interface will appear, in which you can specify which commits you wish you
include in the rebase. In the above example, we only wish to keep the last two commits, so we remove all
lines that have a commit hash except for the bottom two (note that the order is reversed in rebase, the
youngest commits are at the bottom of the list). The terminal should now look something like this:

2

ne
w

 b
ra

nc
h

m
as

te
r

br
an

ch
 t
em
p

ol
d

br
an

ch
 m

as
te

r

Initial situation

ne
w

 b
ra

nc
h

m
as

te
r

ne
w

 b
ra

nc
h

m
as

te
r

br
an

ch
 t
em
p

rebase onto temp rebase onto master

ne
w

 b
ra

nc
h

m
as

te
r

ne
w

 b
ra

nc
h

m
as

te
r

br
an

ch
 t
em
p

Fig. 2: After the upstream history fix has been fetched, the temp is connected to the old master branch.
First, the new master branch is copied onto the temp branch, after which the unpushed commits can
be safely rebased onto the master branch.

pick efad6ef Started working on new mesh

pick 392 aa75 Triangular elements

Rebase <hash > onto <hash > (n commands)

#

Commands:

etc.

By removing all previous commits that are present on the old master branch, we override them with those
on the new master branch. Run a git log to verify that the last commits are on top of the new master
branch. Then, execute

git checkout master

git rebase temp

This will copy all unpushed commits on the temp branch onto master. You are now in sync with the upstream
repository, with your unpushed commits on top of the rewritten master branch. If you want to keep a clean
history tree, you can delete the temp branch with (although there is no harm in keeping it)

git branch -d temp

3

