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18 and management: No-take MPAs performed better in areas of high human pressure (MPA) types are few. Using 76
19 but similar to multiple use in remote locations. Multiple-use MPA performance was ] g I stud 77
S ! . ) X a quasi-experimental study
20 low in high-pressure areas but improved significantly with better management, produc- desien and global dataset we 78
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32 (3) and often limit or prohibit destructive and extractive activities, most notably fishing, areas they produced similar 90
33 within their boundaries (4). High-profile international agreements are calling for increased outcomes when adeguately 91
34 MPA coverage, including the Sustainable Development Goals [SDGs; (5)] and Target 3 staffed and appropriately 92
35 of the Kunming-Montreal Global Biodiversity Framework that aims for 30% of ocean regulated. We also highlight 93
36 area to be effectively protected by 2030 (“30 by 307) (6). potential biases in existing 94
37 estimates of relative benefits 95
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Scientists and conservationists often contend that areas with total fishing restrictions— . ‘ :
40 . . literature and show how 98
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o expanding global conservation efforts (7-10). Proponents point to empirical studies of counterfactual-based approaches 100
P no-take MPAs that show ecological gains relative to unprotected areas (11-13), in addition can address them. o1
" to studies suggesting greater species density or biomass in no-take MPAs compared to 02

multiple-use MPAs that allow some types of fishing (9, 14-17).
45 However, the social implications of total fishing restrictions can limit no-take MPA 103
46 placement options and thus overall impact. High overlap between areas with high con- 104
47 servation value and high local resource dependency (18, 19) implies that no-take MPA  The authors declare no competing interest. 105
48 expansion will likely impose significant social costs on some societal groups. This can ~ This article is a PNAS Direct Submission. 106
49 generate opposition in some areas, particularly in poorer communities with lower capacity Copyright © 2024 tf;)e Agthorg)- PcubliShed be PNAS. 107
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can be a driver of poor no-take MPA performance [e.g., (15, 32, 33)].
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Given potential social and ecological trade-offs associated with
the level of fishing restrictions, there is an urgent need for rigorous
evaluation of the relative conservation benefits of no-take vs. multiple-
use MPAs, including the role of managementand socio-environmental
context in shaping outcomes (34, 35). Unfortunately, much of the
existing empirical work on MPA impacts suffers from limitations in
study design (36, 37). Few if any comparative studies account for
biases in MPA placement or other social and ecological confounding
factors that may explain observed outcomes. Those that do are lim-
ited to specific geographic contexts (17, 36-38). Thus, as decision-
makers seek to balance conservation goals with sustainable and equi-
table use (6), they require more robust empirical evidence on the
relative benefits of no-take and multiple-use MPAs to inform stra-
tegic placement.

Results

Comparing Conservation Impacts of No-Take and Multiple-Use
MPAs. We compiled a large global dataset of over 14,000 fish surveys
and the social, environmental, and regulatory conditions within
and around 216 MPAs in 43 countries and territories to examine
the absolute and relative performance of both no-take and multiple-
use MPAs (Fig. 14 and SI Appendix, Fig. S1 and Tables S1-S5).
We used statistical matching and a Bayesian hierarchical inference
framework to estimate MPA absolute (protection vs. no protection)
and relative (no-take vs. multiple-use) impacts, controlling for
confounding factors that influence MPA placement and fish
biomass (SI Appendix, Egs. 81 and S2, Figs. S1-S3 and Tables S6—
S8). We estimated MPA impacts on fish biomass density (g/100
m?) as an indicator of ecosystem health and considered the critical
roles of socio-environmental context (particularly the proximity to
human pressure) and MPA management effectiveness in explaining
differences across contexts in the relative performance of these two

Q:9MPA types. This study applies such rigorous quasi-experimental
counterfactual approaches to examine not only absolute impacts
but also the interactions between context, management, and the
level of fishing restrictions globally.

Absolute Impacts: Protection vs. No Protection. We estimated
absolute impacts of each type of MPA using statistical matching
to identify the most similar non-MPA site for each MPA site based
on confounding factors that influence MPA placement and local
fish biomass (e.g., likelihood of extractive uses, habitat, depth;

Bayesian linear hierarchical models to estimate the average MPA-level
effect (ST Appendix, Figs. S4-S12 and Tables S9-S13 for additional
results, summary statistics, and diagnostics). Here, we report median
effect sizes in percent biomass differences (S Appendix, Eq. S3).
Compared to no protection, both no-take and multiple-use MPAs
increase fish biomass by about 58.2% and 12.6%, respectively
(Fig. 1B and Table 1). Both no-take and multiple-use MPAs are
over 97% likely to have a positive impact on fish biomass.

Relative Impacts: No-Take vs. Multiple-Use Restrictions. While
matched counterfactual designs help to reduce biases in calculating
absolute impacts, they do not directly explain the difference in
impacts between the two MPA types (39, 40), which could be due
to site-selection biases (24, 41). No-take MPAs may be less likely
to be located in high-use contexts, for instance, because of social
opposition to total fishing restrictions (42). Thus, absolute impact
estimates may be confounded by the fact that one type of MPA is less
likely than the other to be placed in certain contexts. We again used
statistical matching and regression adjustments to directly match
multiple-use with no-take MPA sites. This allowed us to estimate
relative impacts in those locations where each MPA type (multiple-
use or no-take) currently exists, while controlling for confounding
factors (e.g., differences in MPA placement, age, or size; ST Appendix,
Tables S7 and S8). More specifically, this approach provides estimates
of the predicted effect of increasing restrictions to no-take within
existing multiple-use MPAs. Using this approach, we observe an
8.3% median biomass increase from converting from multiple use to
no-take regulations, with an 84% probability of biomass increasing
(Fig. 2B and Table 1). This more rigorous and focused comparison
suggests a markedly smaller difference in fish biomass impacts across
types than is suggested by the absolute impacts (12.6% vs. 58.2%
for multiple use vs. no-take MPAs respectively; Fig. 1B), which do
notaccount for differences in site selection (see S/ Appendix, Fig. S4
and Table S9 for results for other estimands).

Relative Impacts in High-Pressure Contexts. We investigated the
relative impacts in areas where fish populations are likely to be under
high anthropogenic pressure and thus where conservation may be
most needed. Previous work has suggested that total fish biomass
must be at or above 5 kg/100 m® to maintain critical ecosystem
function in tropical marine ecosystems such as coral reefs (43, 44).
As expected, fish biomass in unprotected sites close to population
centers is considerably lower than in those further away (Fig. 24),

SI Appendix, Table S7). We then used regression adjustments and ~ with biomass reaching or exceeding this critical 5 kg level at 100
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Fig. 1.

(A) Location of no-take (red), multiple-use (blue), and non-MPA (gray) sites (n = 216 MPAs) and (B) the absolute impacts of no-take and multiple-use MPAs

on fish biomass. In (B), impacts are presented as effect sizes representing the expected percent difference in total fish biomass, comparing biomass in no-take
(red) and multiple-use (blue) MPA sites to counterfactual unprotected sites. Thick and thin lines show the 80% and 95% credible intervals, respectively, around
the median effect size (white dot). Probability of positive effects are shown above the estimates and number of MPAs (and number of sites, in parentheses) are

shown below estimates.
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Table 1. Summary posterior statistics for Bayesian models estimating MPA impacts for each comparison 300
301
% biomass change 302
Comparison type MPA sample # sites #MPAs Median (95% conf. int.) P (positive effect) 303
No covariate predictors ;82
Multiple-use vs. no MPA All 4,626 114 12.6 (-0.8 to 28.7) 97% 306
No-take vs. no MPA 3,101 89 58.2(29.4 t0 93.9) 100% 307
No-take vs. Multiple-use 3,261 79 8.2(-7.1t026.4) 84% 308
Population center distance (near <100 km; far >100 km) 309
Multiple-use vs. no MPA Far 742 41 44.(17.6 t0 80.3) 100% ;(1’
Near 3,884 76 4.0 (-9.6 to 19.9) 71% 312
No-take vs. no MPA Far 846 35 75.4 (30.8 to 135.3) 100% 313
Near 2,255 56 50.2 (19.5 to 89) 100% 314
No-take vs. Multiple-use Far 971 33 1.8(-17.7 to 24.4) 56% 315
Near 2,290 49 15.7 (4.9 to 42.9) 92% 316
Adequate staff capacity 317
Multiple-use vs. no MPA Inadequate 1,896 20 -5.7 (-24.9t0 19.6) 29% :2
Adequate 525 6 103.8 (-26.3 to 340.8) 89% 320
No-take vs. no MPA Inadequate 138 15 27.9 (-18.9 to 104.9) 86% 321
Adequate 201 7 77.5(-18.3 to 325.5) 92% 322
No-take vs. Multiple-use Inadequate 544 13 120.8 (16.2 to 303.7) 99% 323
Adequate 505 6 -27.4 (-61.2 to 34.4) 14% 324
Sustainable use regulations 325
Multiple-use vs. no MPA Weak 1,788 7 -10.7 (-38.6 to 25) 22% :;g
Strong 629 18 8.9(-22.2t061.8) 68% 328
No-take vs. no MPA Weak 9 4 11.8 (-56.7 to 196.5) 59% 329
Strong 325 17 50.6 (2.7 to 146.4) 97% 330
No-take vs. Multiple-use Weak 470 4 189.7 (14.8 to 646.1) 98% 331
Strong 575 14 0.0 (-40.6 to 83.4) 50% 332
Rows display results from models for all MPA comparisons (no fixed effect covariate predictors), those near/far from population centers, with (in)adequate staff capacity, and weak/strong 333
sustainable use regulations. Table also shows the median and 95% Cls in percent biomass increase, and the probability (P) of a positive effect. See S/ Appendix, Table S9 for additional 334
model results S/ Appendlix, Table S6 for comparison descriptions. 335
336
km or further from population centers. We therefore used 100 culturally preferred (e.g., high local resource dependency), strong 337
km from the nearest population center as a threshold distance to ~ management institutions could play a key role in reducing the 338
distinguish between potentially high- and low-pressure locations. relative deficit in multiple-use MPA performance. 339
We find larger gains in biomass if existing multiple-use MPAs To evaluate this hypothesis, we employed a global dataset (45) 340
were converted to no-take MPAs within high-pressure locations  that provides indicators of the adequacy and appropriateness of 341
(15.7% median biomass increase with >92% certainty; Fig. 2B MPA management (8] Appendix, Tables S1 and S4). Here, we = 342
and Table 1). In contrast, if existing multiple-use MPAs located ~ focused on the effects of converting multiple-use to no-take MPAs 343
further from population centers (>100 km) were converted to  within high-pressure contexts (<100 km from population centers), 344
no-take MPAs, we have only 56% certainty that fish biomass would ~ evaluating specific management attributes previously shown tobe 345
increase—and only marginally if so (1.8% median biomass  associated with stronger ecological performance in protected areas: 346
increase; Table 1). The generally stronger conservation performance 1) the presence of adequate staff capacity to carry out critical 347
of no-take MPAs (Figs. 1B and 2B) therefore seems to be driven management functions (“staff capacity”) and 2) the strength and 343
in part by their superior performance when located closer to pop-  contextual appropriateness of MPA regulations to control unsus- 349
ulation centers. This finding also suggests that remoteness confers tainable activities (“sustainable-use regulations”) (10, 45, 46). 350
its own protection (29): if there is less threat to mitigate, then We find that in high-pressure locations, higher staff capacity 55,
stricter protection may offer fewer conservation benefits. This does  results in better conservation performance for both MPA types 55,
not negate, however, the potential of longer-term benefits of pro-  (Fig. 34 and Table 1). This shift in impact is more important for .,
tecting less disturbed locations from current or future threats (10). multiple-use MPAs, which experience a more than three-fold 354
increase in the likelihood of positive impacts (from 29% to 89%; 355
Role of Management Effectiveness in High-Pressure Contexts. Table 1) and double the increase of biomass (median: from -5.7%

The finding that multiple-use MPAs generate lower benefits than ~ to 103.8%; Lef? panel, Fig. 34 and Table 1). Adequate staff capac- 356
no-take MPAs for sites closer to population centers (Fig. 2B) raises ity in multiple-use MPAs also appears to dramatically reduce the 357
questions about the role of MPA management and governancein  relative difference in the performance between the two MPA types ¢
high-pressure areas. In locations of high conservation importance ~ when comparing multiple-use MPAs with (in)adequate capacity ~ 3°°
where no-take implementation may not be feasible, ethical, or  with no-take MPAs (Right panel, Fig. 34): at low capacity, no-take 360
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Fig.2. (A)Fish biomass in unprotected locations by distance to a population center, a proxy for human pressure; Horizontal dashed line (5 kg/100 m?) represents
the level of fish biomass needed to maintain critical ecosystem function (43, 44). (B) Relative no-take:multiple-use MPA impacts: effect sizes of the expected
percent difference in total fish biomass from converting existing multiple-use to no-take MPAs for all sites (black) and those near (<100 km; dark blue) and far
(>100 km; light blue) from population centers. Effect sizes are calculated by comparing multiple-use to counterfactual no-take MPA sites where greater values
represent larger expected biomass increases from converting to no-take restrictions. Thick and thin lines show the 80% and 95% credible intervals, respectively,
around the median (white dot). Probability of positive effects are shown above the estimates and number of MPAs (and number of sites, in parentheses) are

shown below estimates.

MPAs outperform multiple-use MPAs with 99% certainty,
whereas with adequate staff capacity, there are little to no gains
(and potentially even a cost) from increasing restrictions (median:
-27.4% Fig. 3A). This aligns with earlier studies of the importance
of MPA staff capacity (45), and the strong performance of no-take
MPAs with both high and low staff capacity (Middle panel,
Fig. 3A) suggests that no-take MPAs may be easier to enforce even
with low capacity, perhaps because of simpler regulations (22, 47).

Similar patterns emerge when examining the facilitating role of
sustainable-use regulations. In high-pressure locations, multiple-use
MPAs with weak regulations offer little to no conservation benefit
(Left panel, Fig. 3B and Table 1), but when regulations are strong,
multiple-use MPAs produce similar impacts to comparable no-take
MPA sites (0.0% median biomass increase, Right panel, Fig. 3B).
These results are consistent with common-pool resource and other
governance theories that suggest that strong and contextually
appropriate rules support more sustainable outcomes (46). Thus,
while adequate capacity and appropriate local governance and
management are important for all MPA types, they may be par-
ticularly important in reducing the potential loss of conservation
benefits when implementing multiple-use or zoned MPAs instead
of no-take MPAs within high-pressure contexts.

Discussion

Our research offers insights useful to marine conservation practitioners
across multiple scales: from marine spatial planners and managers
operating in places with both critical conservation needs and high
local resource dependency to decision makers defining global conser-
vation goals and policies. First, we find that both no-take and muld-
use MPAs generate positive impacts (Fig. 1B) with no-take MPAs
yielding the largest biomass gains in locations likely experiencing high
anthropogenic pressures such as fishing. However, given their prox-
imity to human population centers, these places may also be impor-
tant to livelihoods, food security, and culture for local and indigenous
groups, especially in high-poverty contexts where people may have
limited capacity to adapt to restrictions (21). Top—down implemen-
tation of no-take MPAs in these areas can result in harmful and unjust
outcomes for communities [e.g., (20, 21)] or simply make them func-
tionally multiple-use MPAs due to low compliance (32, 48). Thus,
as progress is made toward the 30 x 30 (6) and other conservation
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targets, the global conservation community may be facing an uphill
battle in designating no-take MPAs in the locations where they can
make the biggest conservation difference. Expansion efforts focused
primarily on no-take MPAs could undermine local support for MPAs
and conservation more generally. This could result in a lower total
amount of area effectively conserved globally than could be achieved
with more diverse yet sustainable approaches (22, 49).

Our results also point to the potential benefits of strengthening
management capacity and local governance institutions within
high-pressure locations, particularly for multiple-use MPAs
(Fig. 3). Such MPAs could provide comparable conservation out-
comes to no-take MPAs in contexts where banning all fishing
might be inappropriate or infeasible. This could provide conser-
vation gains without compromising local food security and overall
well-being (22, 50)—key goals in the post-2020 Global Biodiversity
Framework (6). Although not thoroughly assessed in this study,
improvements in other aspects of governance and management
in multiple-use MPAs (e.g., clear boundaries, inclusive decision
making) could also support greater conservation efficacy and social
equity (SI Appendix, Fig. S5). Furthermore, if managers are
allowed greater flexibility in high-dependency contexts (e.g., abil-
ity to incorporate traditional sustainable fisheries management)
and are able to improve both MPA management and conservation
outcomes, there may be more support for continued MPA expan-
sion (22, 27, 49, 51). This increased support could also lead to
increased local involvement in management thereby increasing
management capacity (52). Thus, the global conservation com-
munity should invest in enhancing capacity and contextually
appropriate management and governance, particularly for multiple-
use MPAs. These findings are also relevant to the implementation
of Other Effective Conservation Measures (OECMs). OECMs
can be functionally similar to multiple-use MPAs as they represent
a diverse suite of area-based management tools that produce con-
servation benefits whilst being designated for multiple purposes,
with biodiversity conservation often not being the primary (49).
These tools are receiving increasing global attention as a potential
major contributor toward achieving global conservation coverage
targets (e.g., 30 x 30). There is a tremendous opportunity given
the thousands of multiple-use MPAs and OECMs that exist glob-
ally and that 90% and 30% of the world’s MPAs have low staff
capacity and weak regulations, respectively (45).
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Fig. 3. Absolute and relative no-take:multiple-use MPA impacts in high-pressure locations (<100 km from population center) by (A) staff capacity and (B) 564
sustailjable use regulationg. Effect sizes gfthe expected percent difference in totql fish biomass, comparing biomass in no-take (Left) and muIFipIe-usg (middle) 565
MPA sites to unprotected sites, and multiple-use to counterfactual no-take MPA sites (Right) where greater values represent larger expected biomass increases
from converting to no-take restrictions. Effect sizes are shown separately for (4) MPAs with adequate (purple) vs. inadequate (green) capacity to conduct critical 566
management activities (staff capacity); and (B) MPAs with weak (green) vs. strong (purple) regulations to control unsustainable activities (sustainable use 567
regulations). Thick and thin lines show the 80% and 95% credible intervals, respectively, around the median effect size (white dot). Probability of positive effects
are shown above the estimates and number of MPAs (and number of sites, in parentheses) are shown below estimates. See S/ Appendlix, Table S4 for indicator 568
definition and thresholds. 569
570
Improving Rigor of MPA Impact Evaluation. Compared to several programs to advance understanding of the varied impacts of MPAs. 571
existing studies, our estimated magnitudes of absolute impacts  This includes assembling time-series data on MPA outcomes (e.g., 57
(MPA vs. no MPA) are noticeably smaller, particularly for no- changes in biomass, diversity, function, etc.) and governance, man- 573
take MPAs, which have been reported to result in five-fold or  agement, and socio-ecological trends (e.g., changes in fishing activ- 54
higher increases in biomass relative to areas without MPAs ity, oceanic conditions, local participation in management, etc.). 55
le.g., (9, 12)]. This could be attributed to two factors. First, our Ideally monitoring should occur before and after MPA implemen- 576
methodology utilizes statistical matching and other inference tation at both MPA and comparable non-MPA sites (36, 55). More 577
techniques that reduce potential biases and the influence of other in-depth, rigorous assessments could facilitate investigations into 57
confounding factors. Indeed, our results are in line with studies  the roles of other aspects of MPA management and governance 579
employing similarly rigorous methods in various contexts (15, 17, (e.g., inclusive decision-making; SI Appendix, Fig. S5) (46, 56).
31). Second, our study compiled a large number of monitoring Another limitation of this study is using fish biomass to com- >80
datasets, resulting in a larger sample size and wider geographic pare no-take and multiple-use MPA performance. Fish biomass >81
coverage, thereby avoiding potential publication biases toward isa well-established measure of MPA fish population recoveryand %2
high-performing MPAs (53). Potential biases toward MPA thus MPA performance (10-17), however, multiple-use MPAs 583
studies with positive effects, combined with the lack of attention ~ represent a broad array of conservation interventions with diverse 84
to confounding factors, are suspected to affect meta-analyses, =~ management objectives (e.g., sustainable harvest, food security, ~ 585
literature reviews, and other synthetic research (36, 38). recreational use). As a result, maximizing fish biomass may notbe 586
When controlling for potential differences in placement and ~ a primary management goal or the most appropriate performance 587
MPA attributes (e.g., MPA size and age), we also found smaller indicator for all multiple-use MPAs. 588
differences in relative impacts for multiple-use vs. no-take MPAs (8 589
to 18% median difference in performance; Fig. 2B and SI Appendix, Advancing Conservation and Equity through Diverse and Strong 590
Fig. S4 and Table 1) than when simply comparing the absolute =~ Management Portfolios. The results suggest that well-managed 591
impacts of the two MPA types (i.e., MPA vs. no MPA: 46% differ-  and designed multiple-use MPAs represent a viable and potentially 592
ence; Fig. 1B and Table 1). While further research is needed to more equitable strategy to achieve conservation gains in locations 593
explain these disparate results, the smaller estimate for relative ~ where total fishing restrictions are not possible or appropriate. 594
impacts is consistent with several studies showing similar perfor- ~ However, multiple-use MPAs (and similar OECMs) are not a 595
mance across MPA types under varying contextual settings (17, 28, panacea, given their lower average performance compared to no- 596
31, 45, 54). Thus, without applying more rigorous methods for  take MPAs (especially when inadequately staffed or inappropriately 5o
assessing relative performance, studies that compare absolute effects  regulated) and expectations should be adjusted based on the type ~ Jo¢
could be overestimating the relative benefits of no-take MPAs. and intensity of fishing that they allow (10, 57, 58) and the specific 599
Despite the size of the fish survey dataset, we were limited by =~ MPA management goals. In some instances, strict regulations 600
available management and baseline data and unable to apply more ~ might be the optimal solution to protect against current and 601
rigorous approaches to some analyses (e.g., directly matching high- future threats (10). For example, despite showing almost equivocal 0o
and low-capacity multiple-use MPAs or high capacity multiple-use ~ performance in remote areas, no-take MPAs can act as refugia for
to high capacity no-take MPAs). These limitations highlicht the ~ overfished species and against future threats. They may also be easier 003
need for more comprehensive and counterfactual-based monitoring ~ to implement in these locations now while opportunity costs for 604
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605 other uses are low. Furthermore, MPAs should be considered within
606 abroader portfolio of policy options suitable to address local (and
607 future) stressors and management priorities (59). A diverse suite
608  of approaches, including MPAs with different types of restrictions
609  (e.g., multiple-use MPAs and OECMs with no-take areas), is likely
610 to be necessary to adapt to ongoing climate impacts (10, 22, 31).
611 Therefore, we recommend carefully considering the local and
612 broader social, ecological, and governance context to inform the
613 optimal configuration of MPA types and supporting governance
614 and management to achieve conservation objectives (27). This
¢15  includes, when feasible, implementing robust monitoring and eval-
616 uation to inform adaptive management when conditions change
617 (10, 31, 55). As conservation actors define local to global strategies
618 for MPA design and implementation in the next decade and beyond
(6), we urge decision-makers and the conservation community to
619 avoid one-size-fits-all approaches towards more contextually appro-
620 priate and comprehensive solutions that consider the relative costs,
22 benefits, and barriers to effective and equitable conservation.
Zz Materials and Methods
625 Data Sample and Compilation.
6211 Fish biomass outcomes. Using a global dataset of underwater visual census sur-
627 veys assembled by Gill etal. (6), we estimated total fish biomass from 15,978 sur-
628 veys conducted in and around 287 MPAs in 58 countries (S/ Appendix, Table S1).
We averaged transect-level observations to calculate total fish biomass at each
629 o 2 . .
site in grams per 100 m?, using natural log values to reduce the effect of outliers.
630 site level covariates. e assembled covariate data on social and environmental
631 conditions at each site (e.g., habitat type, wave energy, distance to population
632 centers; S| Appendix, Table S7)to control for observable and unobservable factors
633 that could bias the estimate of MPA impacts.
634 MPA spatial data.\We compiled spatial and regulatory information on MPAand
635 MPAzone boundaries to identify the fishing regulations at each survey site, defin-
636 ing no-take as sites that did not allow any forms of fishing (subsistence, commer-
637 cial, recreational) atany period of time.To accomplish this, we first compiled over
638 one thousand documents that described the activities permitted or prohibited
639 in each zone of each MPA. We then extracted spatial and attribute data for these
MPAs from a larger spatial dataset of over 17,000 MPA and zone boundary shape-
640 files compiled by the authors and other research partners (S| Appendix, Table S2).
041 After removing observations and sites that may impact estimation (e.g., insuffi-
642 cient covariate data or unclear regulations), the final dataset comprised 14,044
643 sites (89.9% of original dataset) from within 335 zones in 217 MPAs (Fig. 14).
644 MPA management and governance. We assessed MPA management and gov-
645 ernance using a database compiled by Gill et al. (6) of management assess-
646 ments completed in 433 MPAs in 70 countries (S/Appendix, Table S1). Here, MPA
647 management staff and/or other stakeholders provided responses to Likert-scale
648 questions on the adequacy and appropriateness of MPA management (e.g.,
649 staff capacity, appropriate_ regulations to support sustainablg use; SIAppendix,
650 Table S4). See SI Appendix, Fig. S1 for an overview of the major analytical steps
and diagnostic tests used in this study and S/ Appendix for more information on
2; data sources, compilation, and processing.
653 Estimating MPA Treatment Effects.
654  Site-level treatment effects. We estimated relative impacts of no-take and
655 multiple-use MPAs by comparing fish biomass outcomes in each MPA type to
656 two counterfactual outcomes: no MPA and the alternative MPA type, resulting
657 in four treatment effects (S/ Appendix, Table S6). Here, we define treatment as
no-take or multiple-use MPA establishment and treatment effects (specifically,
658 average treatment effect on the treated [ATT]) as the expected difference in total
659 fish biomass in treated sites and the same sites if they were not treated (i.e., coun-
660 terfactual outcomes). For example, we define the absolute impact of multiple-use
661 MPA establishment as the expected difference in biomass at sites in protected
662 multiple-use MPA/zones compared to the same sites if they were not protected
663 atall (S/ Appendix, Table S6). On the other hand, we define relative multiple-use
664 to no-take impacts as the expected difference between biomass in multiple-use
665  MPA/zones compared to the same sites if they were under no-take regulations
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instead. We estimated these counterfactual outcomes used statistical matching, 666
selecting comparable untreated (control) sites to pair with each treated site 667
based on factors that affect both treatment (e.g., MPA placement, level of restric- 668
tions) and fish biomass outcomes (i.e., social and environmental site covariates; 669
Sl Appendix, Table S7). We also used post-matching regression adjustmentsto (-
accountfor residual differences in covariate values between matched treated and 671
control sites that could bias the impact estimate. 672
MPA-level treatment effects. We used Bayesian linear hierarchical models to
estimate MPA-level treatment effects for each comparison (S/ Appendix, Table Sé). 673
These models included the site-level bias-adjusted treatment effects described 674
above as the response variable, a binary fixed effect term for the population center 675
distance, staff capacity, and regulations models, and random effects for MPAand 676
matched control units to account for dependence between observations that 677
shared the same MPAand control site (S/Appendix, Eqs. $5-89). See Sl Appendix 678
for more information on the matching and model estimation procedures along 679
with relevant sensitivity and model assumption tests and study limitations. 630
Data, Materials, and Software Availability. All study data are included in Q:1981
the article and/or supporting information. Some study data available (Processed, Q:1882
MPA level data is provided with paper. For those interested in original, survey- 683
level data, please contact the organizations and researchers listed in S/Appendix, 684
Table S1). 685
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