(v Anoma Research Topics | TECHNICAL REPORT

Compiling to zkVMs

Alberto Centelles®

2Heliax AG

* E-Mail: alberto@heliax.dev

Abstract

With the advent of non-uniform folding schemes, the lookup singularity, generalised
arithmetisations such as CCS and the application of towers of binary fields to SNARKs,
many of the existing assumptions on SNARKSs have been put into question, and the design
space of zkVMs has opened.

Although zkVMs provide a friendly developer experience, their proving time is still sig-
nificantly (around a million times) slower than direct compilation to circuits due to the
overhead of their abstractions (stack, memory, execution unit, etc).

One of the causes of their poor performance is that existing zkVMs are still program
agnostic; their provers haven’t leveraged the structure of a program. Compilers have a
long history of optimising computations by identifying patterns in their structure. We
take advantage of the fact that a program is generally executed before it is proven, so the
prover of a zZkVM is aware of execution trace before establishing a proving strategy. We
explore different ways zkVMs may benefit from identifying identical sub-circuits (data-
parallel circuits) in programs by analysing techniques such as the GKR protocol, uniform
compilers and proof-carrying data (PCD).

Keywords: zkVMs; Compilers; GKR; Data-parallel circuits; Recursion; IVC; NIVC; PCD; Folding schemes;
Binius; Nova; Protogalaxy; Jolt; Mangrove; Nexus

(Received: 7 Feb 2024; Last version: 19 April 2024)

Contents
1 Introduction 2
1.1 zkVMs . . . e 3
1.2 STARKishzkVMs 4
1.3 IVCzKkVMs e 5
14 NIVCzKkVMs e 7
1.4.1 NIVC zkVMs are RAM machines 7
2 zkVM Compilers 8
2.1 Categoriesofproving 11
2.1.1 Monolithic proving 12
2.1.2 Piece-wiseproving 13
2.1.3 Structure-aware proving 13
22 Desiderata 14
2.3 Smart Block Generation, 14

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 1-27

https://art.anoma.net
https://dx.doi.org/10.5281/zenodo.10998758

2.3.1 Groups of identical opcodes (GKR zkVM) 14

2.3.2 Basic Blocks (GKR zkVM Pro) 16
2.3.3 Uniform compiler (Mangrove) 17
2.3.4 Circuits as lookup tables (Jolt and Lasso) 18
2.4 Fast Provers, Small Proofs, Fast Verifiers 19
24.1 Small fields (Plonky2) 19
2.4.2 Smallest Fields (Binius) 21
243 Large fields, but small values (Jolt) 22

2.4.4 Large fields, but non-uniform folding (SuperNova, Hy-
perNova, ProtoStar) 22
25 Modularity Lo 23
2.5.1 Generic accumulation (Protostar) 23
2.5.2 Co-processors (Nexus) 24
3 Conclusion 25
4 Acknowledgements 26
References 26

1. Introduction

Zero-knowledge proof systems allow us to prove the validity of a statement
while hiding some desired information. This statement must be written as
an arithmetic circuit or, equivalently, as a set of polynomial equations. High-
level languages, such as Juvix, must compile to this low-level ZK-friendly
language before the validity of a statement can be proven in zero knowledge.
This is the role of a front-end. Finally, a SNARK for circuit-satisfiability is
applied to a circuit instance. This is what a SNARK backend does. The prover
costs of the SNARK backend grow with the size of the circuit. Keeping a
circuit small can be challenging because circuits are an extremely limited
format in which to express a computation. They consist of gates connected
by wires.

There are two main approaches for compiling and proving the validity of
a statement written in a high-level language

« Monolithic: A program is executed and proven as a single (often giant)
circuit.

« Modular: A program is potentially divided into subprograms, and each
of these subsets of the program becomes a circuit. Other circuits are
used to prove relationships between these circuit subsets.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 2

https://github.com/anoma/juvix
https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

The monolithic approach is naive and is the current approach taken by
most SNARK compilers, such as Vamp-IR, until the advent of folding schemes.
In this monolithic approach, the prover’s memory and time requirements de-
riving from the circuit quickly exceed what is currently reasonable as pro-
grams get complex.

The modular approach can be seen as an arbitrary split of a program into
multiple chunks or pieces that are proven separately and whose combination
ensures the validity of the original statement.

I
W w2 w3
v y v
0—=> F st=—=>| F sl—=>| F sl—>

Figure 1. State machine.

This modular approach is what recursion and, more specifically, Incre-
mentally Verifiable Computation (IVC) offers, and the underlying computa-
tional paradigm of a certain type of zkVMs. The main advantage of a zZkVM,
whether it is STARKish or IVC, is that it allows for the verification of com-
putations that are too large to fit in memory.

1.1. zkVMs

A zkVM is generally defined as an emulation of a CPU architecture into a
universal circuit that allows to compute and prove any program from a given
set of opcodes.

One of the main goals when designing a zkVM is to maximise prover’s
performance. Surprisingly, not all zkVMs are designed to maximise this.

Whether circuits are written manually, through libraries such as arkworks
or through DSLs such as Noir, writing circuits is hard, meaning that it re-
quires expertise and errors can be easily made.

An arguably lesser issue is that different circuits require different verifiers,
thus involving a preprocessing step per circuit.

The main raison d’étre of zkVMs is that of giving a nice developer experi-
ence without any exposure to cryptography. Any program can be compiled
to a defined set of opcodes. Since this set is obviously finite and generally
not very large, it can easily be audited.

Developers can thus leverage an arsenal of tooling and compiler infras-
tructure. One single circuit can suffice for running all programs up to a
certain bound and only a single verifier is needed, since the zkVM circuit is
universal.

However, zkVMs as they currently exist are not the holy grail. They have a
much poorer performance compared to the manual approach due to the extra

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 3

https://github.com/anoma/vamp-ir
https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

overhead of adding abstractions such as a memory or a stack, or embedding
a set of instructions in this universal circuit.

Implementing certain important operations in a zZkVM is extremely expen-
sive. For example, a SHA-256 circuit is 1000 times faster if it is proven outside
the abstraction of a zZkVM.

Last and least, and despite their longer history, compiling a high-level pro-
gram into assembly may incur into some bugs.

If programs directly compiled to circuits suffer principally from memory
use and proving time, this problem is only accentuated with the use of zkVMs.

Generally, a zkVM is comprised of five phases:

1. Compilation of a program into a set of instructions
2. Execution and generation of the execution trace

3. Proving

4. (Optional) Compression. Not all proofs are large

5. (Optional) Zero Knowledge. Not all zkVMs require zero-knowledge

The proving step is the one determining the different categories in which
zkVMs are divided.

1.2. STARKish zkVMs

STARKish zkVMs (i.e., those SNARKSs based on hashes and error-correcting
codes), were the first type of zkVM that was of practical use due to:

« Fast provers: At the expense of large proof sizes and slower verifiers,
STARK provers are concretely faster than other SNARKSs not based on
hashes and error-correcting codes. These zkVMs may leverage full
recursion by wrapping a proof with another SNARK to keep proof sizes
and verifier times low.

« Tailored provers: STARKish zkVM come with a fixed Instruction Set
(IS), that allows provers to be optimised to those specific instructions,
in contrast to general purpose SNARK provers, as in Halo2.

These zkVMs apply a SNARK to the constraint system to generate a proof
and only leverage proof recursion to reduce the proof size and verification
costs.

In particular, they use a STARKish protocol, that is a protocol whose com-
mitment scheme is based on hashes and linear error-correction codes, in-
stead of multi-scalar multiplications (MSMs) and homomorphic commitments
as elliptic curve SNARKSs do.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 4

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

Despite their poor asymptotic performance (e.g. their prover time is super-
linear and verifier time is logarithmic), the concrete efficiency of STARKish
protocols currently surpasses that of elliptic curve SNARKSs. This is because
hashes are fast compared to MSM and they use smaller fields, sometimes at
the expense of their security level.

Conventional STARKish VMs run over a pre-defined instruction set. Be-
cause of the generality of these instruction sets, the circuit size or number of
constraints of each opcode tends to be small and zkVMs aim to minimise the
amount of opcodes use (e.g., Cairo paper), since the size of the zkVM circuit
is proportional to the number of opcodes. This results in a vast number of
instructions that need to be proved, each instruction recurring in computa-
tional overhead due to the zkVM abstraction.

STARKish zkVMs are still the most widely deployed type of zkVM. Even
after the continuous engineering work of the past years and the most recent
breakthroughs, STARKish zkVMs such as the Cairo zkVM or STARKNET still
need to delegate the prover computation to machines with large memory
and high computation power, and are only able to prove practically small
programs.

1.3. IVC zkVMs

An alternative approach for proving large statements while reducing mem-
ory costs consists of chunking the statement itself, compared to only chunk-
ing the prover’s computation as STARKish zkVMs do. This approach re-
quires each piece to be proven separately, store intermediate results and
combine the proofs somehow into a single, final one.

The naive approach of instantiating an IVC zkVM involves embedding
a verifier circuit into each chunk and proving each chunk in a sequential
manner. Each chunk in this sequence verifies all prior computation. This
approach is called “full recursion”.

Usually, a chunk in this model is an opcode from the zkVM instruction set,
or more specifically, all the opcodes with a pointer to the right one. Since an
opcode is often just a few constraints, the verifier algorithm may surpass the
number of constraints of an opcode by many orders of magnitude, rendering
this construction highly impractical.

AnIVC zkVM is a particular instance of IVC where the inputs of a repeated
step function F are a state s;_; and some other private or public data w;.

An IVC zkVM will output a proof that asserts that all states from s, to s;_;
reached in i — 1 steps are correct and that the application of a state transition
F to s;_y gives s;. For this to work, we must augment F with the verification
circuit that verifies the proof of the previous step.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 5

https://eprint.iacr.org/2021/1063.pdf
https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

|
w w wd
\J v \J
—_—0 — F — ol —p F sa == F — 3 =2
L= vertier [—rt=3pl verifier |mmra= e [—73=>

Figure 2. IVC zkVMs.

In other words, there are several properties we need to ensure, each of
them encoded as a circuit:

« The previous state s;_; has been correctly recognised and the input s;_;
to the state transition function F is correct. This is known as memory

checking.
« The state transition F process itself is correct.

In short, IVC allows us to obtain proofs for long computations with rela-
tively little memory by splitting them into iterative, verifiable, shorter com-
putations.

While this encapsulates the essence of an IVC zkVM, two important fac-
tors render this original cryptographic primitive, as described in the original
construction of IVC, inefficient:

« The function F representing a state transition is a fixed circuit that en-
codes all instructions. Moreover, if a circuit encodes different branches,
the proving time is also proportional to all branches, whether they are
used or not.

« The verifier algorithm encoded as a circuit that extends each state tran-
sition F is generally bigger than most opcodes. In particular, for the
KZG polynomial commitment scheme, it involves checking openings
in a polynomial commitment scheme using pairings and pairing oper-
ations require many constraints.

Halo [BGH19] introduced the notion of accumulation schemes to address
the embedding of a full verifier algorithm at each step in the scheme. Their
scheme defers the computationally expensive part of the verifier algorithm
(i.e., the linear time polynomial commitment opening checks) and a separate
party (called decider) later verifies the last state transition and accumulated
instance, which already verifies every state transition from genesis.

The accumulation of the most expensive verifier checks to a later stage
opened up the possibilities of suitable SNARKSs in an IVC scheme since the
performance of the verifier is no longer required to be sub-linear, and thus,

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 6

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

we can even choose an SNARK with an expensive verifier such as in Bul-
letproofs [BBB"17]. Because of the Inner Product Argument (IPA) polyno-
mial commitment scheme introduced in Bulletproofs, Halo2 does not need a
trusted setup.

Folding schemes go a step further and defer all verifying checks until all
proofs are generated.

The original folding schemes such as Nova, were not enough to instantiate
an efficient SNARK derived from a given program. In a zkVM with multiple
instructions, these folding schemes require the size of the circuit F to be
linear to the number of instructions.

1.4. NIVC zkVMs

Arguably, the main breakthrough in IVC-based zkVMs was done by Super-
Nova [KS22], where they achieved “non-uniform” folding, meaning that the
time to prove each iteration of the IVC scheme does no longer depend on the
size of the instruction set. They achieve it by carrying an instance of each
instruction in their accumulator.

NIVC zkVMs allow different instruction circuits to be written without the
need to use switches to toggle circuits, reducing circuit size at each state
transition and achieving a “a la carte cost profile”.

A question that may arise is, do we need a zkVM for folding? Not nec-
essarily, but we need at least a way to prove that the gluing of the chunks
was done correctly, that is, that the chunks in this IVC sequence corresponds
to the original NP statement. For example, a zkVM needs to prove that the
stack connected a value between two opcodes

NIVC zkVMs in particular can potentially benefit from compiler passes. A
compiler may leverage the information it gathers from a program to create
the set of step functions F; at compile time. They no longer need to be small
instructions but subsets of the whole program created at compile time.

1.4.1. NIVC zkVMs are RAM machines

A useful conceptual framework for handling state in a zkVM is by thinking of
it as a RAM (Random Access Memory) machine that supports [/ instructions,
s registers of width w bits and memory of size 2.

Each of the step functions F; in {Fj,-- -, F,} represents the instruction i
that the machine supports. The input of this state transition F; consists of
s + 1 field elements, where the first entry (the “program counter”) holds a
commitment to a memory (e.g., the root of a Merkle tree with 2" leaves) that
stores both a program and its state, and the remaining entries are the values
of s registers. The output of each F; consists of s + 1 field elements that are
updated values of the provided input.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 7

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

For step i, state s;_; and non-deterministic witness w;_1, the selector func-
tion ¢(sj—1, w;—1) picks the instruction in the memory (whose commitment
is at s;_1[1]) at address in the program counter register s;_;[2]. The initial
state so[1] holds a commitment to the verifier’s desired memory of size 2"
with its program stored in it, and the rest of s contains the verifier’s desired
initial values of the machine’s registers.

Remark 1. Designing zkVMs is as much a cryptography problem (i.e., find-
ing the most efficient schemes or back-ends to prove a given NP statement)
as it is a compilers problem (i.e., designing the right transformations of a
program to improve the performance of the scheme).

2. zkVM Compilers

One of the main disadvantages of the IVC-based scheme sketched above is
that computation is sequential. Proof-Carrying Data (PCD) is a generalisa-
tion of IVC that enables parallel proving by structuring computation as a
tree, where the proof of each node is only dependent on its children.

Figure 3. Proof-carrying data

Notice that before proving a program, this must be executed in full, to
generate its witness or trace. Then, knowing which opcodes were used and
their inputs and outputs, the prover generates a proof for correct execution.

However, the above schemes are fixed, or program agnostic; they don’t
take into account the structure of a program or the information encoded in
the trace before proving it.

While a zkVM is not a compiler, any end-to-end architecture for proving
computation of a program involves the design of a compiler with that of a
zkVM. The role of a compiler is to identify the sequence of opcodes used in
a program and pass this information as an input to the zkVM circuit.

A zkVM is a universal circuit comprised by a set of instructions and other
abstractions such as a stack or a memory, so these are encoded into a gener-
ally large circuit.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 8

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

If a zZkVM is defined as a universal circuit that encodes a set of instructions,
what happens if we modify this set of instructions, leaving everything else
unchanged? Do we still have the same zkVM or do we have a different one?
If the latter, every time we modify an instruction set by adding or removing
an instruction, we are compiling to a different zkVM. The same logic applies
to memory checking algorithms.

Similarly, since a main goal of a zkVM is maximising the efficiency of the
prover and different proving systems benefit from different designs, does
a backend determine a zkVM? For example, how does a logarithmic time
verifier of a particular proving system affect the design of a zkVM?

These questions may be too technically nuanced, but it is also here where
we enter the realm of compilers. There is a long history of compilers where
optimisations are made depending of the structure of the program. For exam-
ple, if a program has a repeated structure, a compiler may be able to optimise
it.

We want to use the structure of a program to compile to a suitable zkVM
for that particular program. This awareness of the structure of a program
can be also applied to provers.

What is a program? One very common abstraction used in compilers is
that of a control flow graph, which splits a program into a series of blocks
and arrows of blocks based on jumps. A compiler takes a program written
in a high-level language and outputs a circuit. The inputs and outputs of a
circuit are finite field elements. A compiler should be able to decide which
circuits or blocks are derived from a program and a prover would aim to
minimise the cost of proving such subset of circuits.

]]
N
N N

\F o

\-

Control Flow Groph Path token

Figure 4. Control Flow Graph.

For example, given a program C = {A, B,C, D, E, F, G} and inputs x, w for
which the path P = [A, C, F] is taken, a compiler will output the set of circuits

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 9

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

while the prover’s costs will only depend on this path P, not on the blocks
not taken. With folding schemes, each path in P can be folded into a single
instance.

Different back-ends provide different trade-offs that will affect how the
output of the compiler. This dance between compilers and proving systems
is the main focus of this report.

Whatever zkVM will be suitable for a given program will be determined
at compile time.

A compiler recognises patterns in a program, that is, repeated structures
that are used to optimise the performance of that program.

What are these patterns in the context of a zkVM? They can be a new in-
struction set, or they can be blocks containing a sequence of opcodes within,
or something else such as co-processors.

If the set of instructions {Fy,- - -, Fy} of the zkVM is set dynamically at
compile time, we find ourselves back in the scenario that zkVMs address:
compiling directly to circuits is hard. On the other hand, how can we treat
each blocks dynamically while preserving the universal property of a zZkVM?

Contirol Flow Gragh

Source Code
—— I Prook of

\EI Instruction Set (IS) Execution path Folded instance computation
— e~ A —— — ——
— ""’\ ----> 4B edEFRe Ttt> AGR - * Eon
— A

\

Figure 5. Compiling to zkVMs.

When splitting a program into multiple chunks, we want to strike a bal-
ance between the size of each step function and the number of steps. Every
step incurs in some overhead while large steps take more computational and
memory resources. On one end of this spectrum, we have the whole program
being one big circuit; on the other end (using a folding scheme as example),
we fold of all primitive operations such as addition, equality or multiplica-
tion. There is no folding in the former case. As we have seen, this monolithic
approach is impractical for the majority of programs, since they exceed both
memory and computational resources that a prover generally has access to.
The base overhead of folding in the latter case may be comparable to the cost
of proving due to having such small circuits (and there are many of them!).
Adding a small folding overhead to many small circuits removes almost all
the advantages of folding. So, where is the balance?

NIVC zkVMs can benefit from compiler passes. While it is common to fix
the set of functions {Fy, - - - , F,} to a basic instruction set, it does not have to

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 10

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

be so. A compiler can leverage the information it gathers from a given pro-
gram to create these step functions F; at compile time. They no longer need
to be small instructions, but subsets of the whole program created at compile
time. Given some design constraints, the compiler, acting as a front-end to a
SNARK, can split the program F into a set of {Fj, - - - , F,,} subprograms. The
compiler must be given a heuristic of this desired balance between circuit
size and number of circuits. For example, equilibrium might be found by
creating bounded circuits of 2!? gates with only one witness column. The
compiler must have an educated guess of how to decompose larger circuits
into smaller ones.

This holistic or dynamic approach that leverages the structure of a pro-
gram using compilers is not commonly seen. We’ll analyse different novel
approaches in the next section.

2.1. Categories of proving

Let us use an example to highlight the different ways of compiling a program.
Let multi_algorithms be a program that serves as a database of algorithms:
given a program identifier, it proves knowledge of the outcome of that algo-
rithm. We have mixed some algorithms together to illustrate how real-world
applications tend to be assembled.

For example, in the first program (i.e., program_id=0), we prove both knowl-
edge of the n-th Fibonacci number and that it is a prime number.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 11

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

n mu[‘ti__,algori‘thms(f.\rosram__iol: Fie_[ol, ni Fﬁe_ld, private answer: Feld) §
range_check(progrom_id, 2)
P Pr‘o?r‘am__ja! == 0 f
let m = Bbonnacciln);
assert_eqlanswer, wm)
assef"t(is_f:ﬁme_(m))

P Pr‘o?r‘am__ja! == 1 f
range__check(n, 16);
let m = Pactorialln);
assert_eqlanswer, wm)

+

R pr‘osram__.Io! ==2 %
assef"t(is_f:ﬁme_(m))
let m = power_of_sevenn);
assert_eqlanswer, w)

+

Rs Pr‘osram__,lo! == 3 f
asse.r't__.e,q(answer, collatz(n))
P

Figure 6. The multi_algorithms example.

Let us revisit the three different compiling and proving approaches studied
so far:

2.1.1. Monolithic proving

This would be a direct compilation into a circuit for an arithmetisation (e.g.,
Halo2 Plonkish) or the approach that conventional STARKish zkVMs use.

—— Pmﬁm”-—:“’tl " e

mu[‘t;,_algon‘thms —_— _;

— o NSO _ﬁ

Figure 7. Monolithic circuits.

The circuit derived from this approach contains all the unused branches,
since the compiler does not know the inputs of the program. For a complex
application, this turns to be a large circuit with high memory requirements.
Since, proving time is at least O(n), where n is the number of gates (including

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 12

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

[l
—»

Control Flow Graph

Subrogeam Tdentification Instruction Set

Figure 9. Dynamic instruction set.

all the unused branches), and memory consumption is also often linear, this
approach turns out to be inefficient for large applications.

STARKish zkVMs only make this problem worse, since the abstraction of
a zkVM makes the proving of most programs around a million times slower
than directly proving the program without this abstraction.

2.1.2. Piece-wise proving

The prover do not prove the whole program at once, but proves each of these
primitive operations, one at a time.

— i W |—x, V: — v w: R l—m V>| —_— e
- wul " loadt > " Jump . range_check —

Figure 8. Fixed instruction sets.

Having a set of fixed instructions for any possible program turns out to be
quite inefficient when the prover provides a proof for each of these opcodes,
since these opcodes happen to be too small to justify the overhead of proving.

2.1.3. Structure-aware proving
Fixed-instruction-set zkVMs do not have knowledge of the program (so they
may include instructions that a particular program might never use).

In contrast, using some heuristic, a compiler may leverage the patterns of a
given program. For our naive example, a possible instruction set is depicted
below. The aim of such compiler is to choose blocks of computation that
are big enough to justify the overhead of folding and small enough to avoid
blowing up memory resources and other issues derived from large circuits.

This set must be crafted with some considerations. Notice that functions
such as range_check, which checks that a value is between 0 and 2", or is_-
prime are independent of the rest of the computation. They are not too com-
plex but not too small, and are used multiple times.

Data-parallel circuits are circuits that contain a repetitive pattern, or iden-
tical copies of smaller sub-circuits. These are also referred as “single instruc-
tion, multiple data” (SIMD) computations.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 13

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

The GKR protocol is particularly suited to leverage data parallelism. It
consists of d sumcheck protocols for a layered circuit of depth d, each layer
linked via a chain of reductions. The first and last layers are dedicated to the
circuit outputs and inputs.

Compared to some of the previous approaches, one of the many advan-
tages of the GKR protocol is that the prover doesn’t need to commit to inter-
mediate data (i.e. the trace or witness), but only to the inputs and outputs
of the circuit. The prover runs in linear time, since it consists on reductions
via the sumcheck protocol.

So, given a data-parallel layered circuit, the GKR proving time is linear in
the size of the circuit and it can be reduced by a factor of M if the proving is
distributed over M machines.

2.2. Desiderata

« Smart Block Generation: We want to leverage the structure of a pro-
gram and provide a compiler that decomposes any program into a set
of circuit blocks that can be proven efficiently using folding schemes,
the GKR protocol, lookups or otherwise.

« Fast Provers, Small Proofs, Fast Verifiers: We want short proof
generation time and fast verification, both in terms of asymptotic per-
formance and overheads. Recursion, and specially folding schemes,
allow for slow verifiers and large proofs, since they can be overcome
with folding. Small fields and small value also improve the perfor-
mance of the prover.

« Modularity: We want to reason about a specific proving system with-
out tying ourselves to a concrete Intermediate Representation (IR), spe-
cific arithmetisation or fixed finite field. Most novel proving systems
such as ProtoStar are agnostic to their arithmetisation, and others such
as Jolt and Lasso also allow us to be flexible with the field of choice.

2.3. Smart Block Generation
2.3.1. Groups of identical opcodes (GKR zkVM)
One of the main ideas behind the GKR zkVM (as introduced in the paper Par-
allel Zero-Knowledge Virtual Machines [HLZ*24]) is identifying repeated
opcodes in a program (patterns), grouping them together and proving them
in batches using the GKR protocol.

The GKR zkVM consists of two main circuits:

« Opcode circuit: A data-parallel circuit that proves correct execution
of each opcode. They use a global state to track the state transitions.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 14

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/2008-DelegatingComputation.pdf
https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

« Chip circuit: A circuit consisting on mainly set equality checks (i.e.
permutation arguments) and lookup arguments that proves that the
opcode circuits are executed in the correct order and global states are

updated correctly.
ADD 3 MUL1 ¥ ADD2 3y MUL2 3 MUL3 ¥ RET
(a) Classic zkVM design
ADD1 ADD2 MUL1 MUL2 MUL3 RET

r

Chip

(b) Our design

Figure 10. GKR zkVM

One of the advantages of this zZkVM is that the prover is dynamic; it adapts
to the execution trace. In other words, the number of opcodes in each group
varies depending on the program.

Although the branching overhead in sequential branching is addressed
in recent folding schemes such as SuperNova with their application of non-
uniformity, the step function still needs to assert the type of opcode used. In
contrast, with this two-step proving system (i.e. first proving opcodes, then
“gluing” them in the chip circuit), GKR zkVMs avoid such overheads when
proving an opcode, since opcodes within the same group are of the same type
and they can be proven in parallel. This renders an extremely fast prover.

However, the prover is no longer creating a proof for a universal circuit,
since each program is now a different circuit. As mentioned, one of the
biggest advantages of a zkVM is having a single verifier for all programs.

A workaround proposed consists of having a smaller zkVM as a second
layer that verifies these non-universal proofs (i.e. the proofs corresponding
to different programs) and outputs a universal one. The intuition behind this
seemingly incredibly expensive approach is that the verifier runs logarithmi-
cally on the size of the circuit.

While the GKR zkVM design managed to leverage the structure of a pro-
gram to provide a faster prover, it grouped together basic instructions from
the instruction set to prove in parallel. These shallow circuits don’t take full
advantage of the GKR protocol, in which the prover only needs to commit to

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 15

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

the inputs. In a shallow circuit, the ratio between inputs and total number
of gates is large.
A compiler may find more complex patterns in a program to parallelise.

2.3.2. Basic Blocks (GKR zkVM Pro)

The main idea behind this variant of the GKR zkVM is the distinction be-
tween basic blocks and opcodes. A basic block is a chunk of a program
that doesn’t contain branches, so opcodes are always executed sequentially.
Branches are what makes circuits dynamic. Within a basic block, the stack
will behave identically for different programs.

1 Bl: PUSH 0 # [sum]

2 PUSH n # [sum, n]

3 B2: DUP # [sum, i, 1i]

1 LOAD # [sum, i, ali]]

5 SWAP1 # [sum, al[i], il (s)

6 SWAP2 # [i, alil, suml

7 ADD # [i, sum’] B1

8 SWAP1 # [sum?’, i] \ .
1 int n = input(); 9 SUB 1 # [sum’, i’] B‘2
2 10 DUP # [sum’, i’, i°]
3 int sum = 0; 11 NZ # [sum?, i,)
i for(int i = n; i > 0; i--) {12 is_zero(i’)] B3
5 sum += al[i]; 13 CIMP B2 # [sum’, i’] S|
6} 14 B3: POP (&)

(a) Toy program (b) Toy program in assembly (c) Basic Block

Figure 11. GKR zkVM Pro

If a program contains multiple identical basic blocks, these can be seen as
data-parallel circuits and proved in parallel, as in the case of a loop.

Compared to the previous GKR zkVM design, opcodes are now grouped
in basic blocks, instead of by type. The conceptual division between opcode
circuits and chip circuits remains the same.

To summarise, these are the steps that take place in the GKR zkVM Pro:

1. Compile program into assembly
2. Identify basic blocks
3. Prove each block separately

4. Prove the chip circuit

This basic block abstraction enables removing some control overhead at
the opcode level within, such as handling the stack, checking the timestamp
or handling global states.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 16

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

2.3.3. Uniform compiler (Mangrove)

The main idea of Mangrove [NDC*24] is compiling a program into identical
simple steps and applying a tree-based PCD construction. This approach
disregards the instruction set abstraction and is not considered a zkVM.

As with the previous case, Mangrove’s compiler also uses the patterns in
a program to produce chunks to fold. In this case, these chunks are identical
or uniform. Thus, Mangrove’s scheme does not require a universal circuit.
By creating identical chunks, these become data-parallel circuits and can be
proven in parallel.

However, the uniform circuit they produce for folding incurs into some
overhead as it must be big enough to accommodate the different computa-
tions that the chunk generalises. To avoid the high overhead in the form of
constraints for opening commitments they use a commit-and-fold optimisa-
tion. In short, they introduce a generalised foldable relation that supports
proving over committed values without encoding the commitment opening
constraints.

One advantage of this approach, compared to the dynamic prover of the
GKR zkVM, is that the verifier is naturally fixed (since chunks are identical).

Another significant innovation of Mangrove’s tree-based folding construc-
tion (PCD) is the decoupling of the core leaf computation from the recursive
control merging computation, removing the unnecessary work on the leaves
(i.e. the merging logic). Notice that when the arity of the tree is high, the
majority of the work is performed at the leaves.

Folding PCD with decoupling

Folding PCD without decoupling [BCL+21]

Figure 12. Mangrove PCD

Using different techniques to the GKR zkVMs, Mangrove SNARKSs are also
well-suited for both streaming (memory efficiency) and distributed comput-
ing (parallelism efficiency). The proving time of their construction is compa-
rable to leading monolithic SNARKSs, while being able to prove much larger
programs with much fewer resources.

Although Mangrove’s SNARK is also IVC-based, it is not a zkVM, since it
is not a universal circuit and does not require a set of instructions, in contrast

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 17

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

to the IVC zkVMs described above. Their uniform compiler generates one
single instruction that is folded. One would expect future work in which
a non-uniform compiler uses non-uniform IVC techniques to improve the
performance of the scheme.

2.3.4. Circuits as lookup tables (Jolt and Lasso)

Just One Lookup Table (Jolt) [AST23] is a compiler that takes a program and
generates giant structured matrices consisting of all the evaluations of the
different opcodes used in the zkVM abstraction. These structured matrices
are called decomposable, and allows the circuits produced by Jolt to only
perform lookups to these lookup tables that never materialise in full. Jolt
produces a universal circuit from combining all the opcode evaluation tables
into one.

The main techniques they use to avoid the materialisation of these gigan-
tic lookup tables are multi-linear extensions and the sumcheck protocol. Jolt
decomposes the lookup computations into chunks and glues the results to-
gether, achieving surprising results. Decomposable means that one lookup
into the evaluation table t of an instruction, which has size N, can be an-
swered with a small number of lookups into much smaller tables ti, ..., 1],
each of size N'/°.

For example, if an instruction takes one 64-bits-input, this would result
in a 2% size lookup table. This is generally too large to materialise. But if
instead we chunk that evaluation table 4 times, this costs goes down to 21°,
which is entirely practical. The reduction is exponential.

Jolt claims that the other zkVMs are wrongly designed from focusing on
artificial limitations of existing SNARKs . That is, all other proving systems
have been hand-designing VMs to be friendly to the limitations of today’s
popular SNARKS, but these assumed limitations are not real.

Jolt eliminates the need to hand-design instruction sets for zkVMs or to
hand-optimise circuits implementing those instruction sets because it re-
places those circuits with a simple evaluation table of each primitive instruc-
tion. This modular and generic architecture makes it easier to swap out fields
and polynomial commitment schemes and implement recursion, and gener-
ally reduces the surface area for bugs and the amount of code that needs to
be maintained and audited.

Jolt’s companion work and backend, Lasso [STW23], is a new family of
sum-check-based lookup arguments that supports gigantic (decomposable)
tables.

As we mentioned, Jolt is a zkVM technique that avoids the complexity of
implementing each instruction’s logic with a tailored circuit. Instead, primi-
tive instructions are implemented via one lookup into the entire evaluation
table of the instruction. The key contribution of Jolt is to design these enor-

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 18

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

mous tables with a certain structure that allows for efficient lookup argu-
ments using Lasso. Lasso differs from other lookup arguments in that it
explicitly exploits the cheapness of committing to small-valued elements.

In their paper, Jolt demonstrates that all operations in a complex instruc-
tion set such as Risc-V are decomposable, thus efficiently convertible into
lookup tables.

By using only lookup arguments, Jolt overcomes one of the main issues
of handwritten circuits or even in zkVMs programs: the large attack sur-
face that compilers represent. The simplicity of the Jolt design allows for
improved auditability.

How can we use a compiler in this context? Jolt is already a frontend
compiler that converts computer programs into a lower-level representation
and then uses Lasso to generate a SNARK for circuit-satisfiability. Jolt is
extensible in the sense that any custom instruction encoded as an evaluation
table can be appended directly to the giant evaluation table the the Jolt zkVM
represents. If a compiler wants to optimise a Jolt zkVM, it must ensure that
generated lookup tables are decomposable.

Giiant lookup table

- -

ppppp

Figure 13. Compiler + Jolt pipeline.

We refer to appendix ?? for a summary of the main ideas of Jolt.

2.4. Fast Provers, Small Proofs, Fast Verifiers

2.4.1. Small fields (Plonky2)

STARKSs pioneered in 2018 an alternative design of proving systems, based
on linear error-correcting codes and collision-resistant hash functions, and
characterised by the use of smaller fields (specifically of 64-bit-sized prime
fields instead of the usual 128, 192 or 256 bits). They were able to use a
smaller field because their polynomial commitment scheme, FRI, does not
require a large-characteristic field (in fact, FRI was originally designed to
work over towers of binary fields).

Plonky2 claims to achieve the performance benefits of both SNARKs and
STARKSs, although the difference between Succinct Non-interactive ARgu-
ment of Knowledge (SNARKSs) and Scalable Transparent ARgument of Knowl-
edge (STARKS) is blurry. Most modern SNARKSs do not require trusted setup
and their proving time is quasilinear (i.e., linear up to logarithmic factors),

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 19

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

Elliptic Curve SNARKSs STARKish Protocols

Smaller proofs (1 Kb) Larger proofs (100 Kb)

Fast verifier Slower verifier

Slow prover Faster prover

Aggregation & Folding friendly | Native-field full recursion friendly
Big fields (256 bits) Small fields support (32 bits)
Compute-bound Bandwidth-bound

Table 1. Comparison of Elliptic Curve SNARKs and STARKish Protocols.

so they are Scalable and Transparent. On the other hand, STARKSs today are
deployed Non-interactively and thus they are SNARKS.

Instead, we define a STARK as the specific construction from the STARK-
WARE team. We define a STARKish protocol as a SNARK from linear codes
and hash functions, in contrast to elliptic-curve-based SNARKs. FRI-based
or Brakedown-based SNARKs are STARKish protocols. Thus Plonky2 is a
STARKish protocol.

The main mathematical idea behind using arithmetic over smaller fields in
a SNARK is field extensions or towers of fields. That is, using smaller fields
operations while employing their field extensions when necessary (e.g., for
elliptic curve operations) promises to improve performance and maintain
security assumptions.

However, elliptic curves based on extension fields are likely suffering from
specific attacks that do not apply to common elliptic curves constructed over
large prime fields [SSS22].

STARKish protocols leverage the relative efficiency of small-field arith-
metic and achieve state-of-the-art proving performance for naive proving,
mainly because collision-resistant hash functions are much faster than ellip-
tic curve primitives.

Plonky2 and its successor, Plonky?3, take the Interactive Oracle Proof (IOP)
from PLONK and mix it with the FRI Polynomial Commitment Scheme (PCS)
to construct their SNARK.

Plonky2 use smaller field than in other elliptic-curve-based SNARKS, called
the Goldilocks field, which is of size 2%, making native arithmetic in 64-
bit CPUs efficient. Plonky3 utilises an even smaller prime field F, called
Mersenne31, where p is 231 — 1, thus suitable for 32-bit CPUs (it fits within a
32-bit word).

It is unclear how Plonky3 and similar approaches will benefit from folding
schemes, since FRI is not an additively homomorphic PCS. However, recent
work [BMNW24] introduces a technique for accumulating without a homo-
morphic PCS.

Research on combining operations in small fields with other operations in
their extension fields for SNARK protocols is currently active.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 20

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

Plonky2 Plonky3 Binius
p=201-2%11] p=25-1 [p=2
Goldilocks Mersenne31 | Binary

Table 2. Comparison of Prime Fields in Plonky2, Plonky3, and Binius.

2.4.2. Smallest Fields (Binius)

As we have seen, one of the main disadvantages of SNARKs over elliptic
curves compared to STARKish protocols is that elliptic-curve-SNARKSs re-
quire a bigger field in their circuits, which affects negatively the performance
of their provers.

In the case of a SNARK, an element of their field of choice generally decom-
poses into 256 bits, whereas STARKish protocols leverage the fact that the
characteristic of a field F,, is equal to the characteristic of any of its extension
fields Fpn, allowing for small overheads for certain operations and then us-
ing extension fields to achieve the desired cryptographic security. The most
widely used field in STARKS is F, where p = 26 — 2% + 1, see Table 2. This
field is called the Goldilocks field. Among other properties, every element
in this field fits in 64 bits, allowing for more efficient arithmetic on CPUs
working on 64-bit integers

The question that “Succinct Arguments over Towers of Binary Fields” (also
known as Binius) [DP23] raised and addressed was: “what is the optimal field
to use in any arithmetisation?”. The obvious answer is binary fields, since
arithmetic circuits are essentially additions and multiplications, and these
operations over binary fields are ideal. They propose using towers of binary
fields to overcome the overhead of embedding F; < F, that are a waste
of resources specially in SNARKs (compared to STARKS), since they require
256-bit prime fields and many gates take 0 or 1 values.

They remark that the FRI polynomial commitment scheme that lies at the
heart of STARKs was designed to work over binary fields. They apply tech-
niques from other works such as Lasso and Hyperplonk [CBBZ22]. In par-
ticular, they leverage the sum-check protocol and “small” values protocols,
where the prover commits only to small values. They revive the polynomial
commitment scheme Brakedown [GLS*21], which was mainly discarded be-
cause of its slow verifier and the large proofs it produces, despite having
an incredibly efficient prover O(N). Their SNARK, based on HyperPlonk,
makes Plonkish constraint systems a natural target.

The main consequences of using towers of binary fields are:

« Efficient bitwise operations like XOR or logical shifts, which are heav-
ily used in symmetric cryptography primitives like SHA-256. This
turns “SNARK-unfriendly” operations into friendly.

« Small memory usage from working with small fields.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 21

https://eccc.weizmann.ac.il/report/2017/134/
https://zkproof.org/2020/03/16/sum-checkprotocol/
https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

« Hardware-friendly implementations. This means they can fit more
arithmetic and hashing accelerators on the same silicon area, and run
them at a higher clock frequency.

This work on towers on binary fields advocate hash-based polynomial
commitment schemes such as FRI or Brakedown because they allow using
smaller fields, which in turn reduces storage requirements and more effi-
cient CPU operations, flexibility of fields that enables modular reduction,
and cheaper cryptographic primitives (hash functions are faster than elliptic
curve primitives).

In particular, Binius adapts HyperPlonk to the multivariate setting and is
not fixed to a single finite field. They partition the representative Plonkish
trace matrix into columns, each corresponding to different subfields in the
tower (e.g., some columns will be defined over Fy, others over Fy«, etc.), and
the gate constraints may express polynomial relations defined over particu-
lar subfields of the tower.

2.4.3. Large fields, but small values (Jolt)

Although Jolt is compatible to binary fields and other small fields, their un-
derlying lookup argument, Lasso, is designed to work mainly over small val-
ues, independently of the size of the field, by avoiding random values. The
intuition is that the cost of multi-scalar multiplication depends on the size
of values, not on the size of the field. Multiplying a point by a small scalar is
cheaper than by a larger one.

2.4.4. Large fields, but non-uniform folding (SuperNova, HyperNova,
ProtoStar)

Despite the benefits of using small fields, the commitment schemes used in
STARKish protocols are not additively homomorphic. In contrast, elliptic-
curves-based polynomial commitment schemes such as KZG or IPA are ad-
ditively homomorphic and thus folding is possible.

NIVC enables us to select any specific “instruction” (or generated block)
F; at runtime without having a circuit whose computation is linear in the
entire instruction set. NIVC reduces the cost of recursion from O(N-C-L) to
O(N(C+L)), where N is the number of instructions actually called in a given
program, C is the number of constraints or size of the circuit (upper bound)
and L is the number of sub-circuits or size of the instruction set {Fy,-- -, F1}.
Generally, the size of the circuit C is much bigger than L, so effectively the
number of sub-circuits or instructions {F, - - - , F; } do not come at any cost
to the prover.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 22

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

2.5. Modularity
2.5.1. Generic accumulation (Protostar)

ProtoStar is a folding scheme built with a generic accumulation compiler. In
their paper, they show the performance of an instance of this protocol that
uses Plonk as a backend. As ProtosStar was conceived, the work of Cus-
tomisable Constraint Systems (CCS), providing an alternative, more generic
arithmetisation capable of expressing high-degree gates. In an appendix, Pro-
toStar took the opportunity to show how their general compiler can adopt
a different arithmetisation such as CCS while remaining the most efficient
folding scheme to date.

So, modularity means that each step in the workflow below for building
an IVC can be implemented in different ways, that is, one could change any
component, from the arithmetisation to the commitment scheme in isolation,
as long as they preserve certain properties.

For example, the commitment scheme in this recipe requires the commit-
ment function to be additively homomorphic. As we’ve seen above, this
renders the works around STARKIish protocols not directly applicable here.

CVLT_sps] FSLemleVIT_sps]1] IVCLacelFsLemleViT_sps1137]
compress commit (noi‘:;\t‘t-::::;;e) accumulate I\J/C
\ r \ |
M_sps emleVITT_spsd] acelFSLemlevii_sps]Idd

Figure 14. ProtoStar progressive blocks.

The diagram above can be read as follows:

« We start from a special-sound protocol Il for a relation R. A special-
sound protocol is a simple type of interactive protocol where the ver-
ifier checks that all of equations evaluate to 0. The inputs to these
equations are the public inputs, the prover’s messages and the veri-
fier’s random challenge.

« Then, we transform II;,, into a compressed verification version of it
(CV[IIps]), i-e., a special-sound protocol for the same relation R that
compresses the [degree-d equations checked by the verifier into a sin-
gle degree-(d + 2) equation using random linear combinations and 2VI
degree-2 equations.

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 23

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

« We construct a commit-and-open scheme from this sound-protocol
CV [II,ys] that renders another special-sound protocol I1,,, for the same
given relation.

« A special-sound protocol is an interactive protocol. Thus we can ap-
ply the Fiat-Shamir transform to make it non-interactive, and FS[I1.,,]
becomes a NARK.

« Next, we accumulate the verification predicate Vs of the NARK scheme
FS[I1.n,] and so we have an accumulation scheme acc[FS[II.,]].

« From a given accumulation scheme acc[FS[Il.,]], there exists an ef-
ficient transformation that outputs an IVC scheme, assuming that the
circuit complexity of the accumulation verifier V. is sub-linear in its
inputs.

2.5.2. Co-processors (Nexus)

The Nexus zkVM is a simple, minimal, extensible and parallelisable folding-
based zkVM, so it also realises PCD. It is simple in its architecture, memory
model and I/O model. It is minimal in the sense that its instruction set, which
is defined in the setup phase, can contain as many instructions as desired and
it is empty by default. This setup phase can be seen as a compiler to zkVMs.

IT = PCD[NIVC[FS[CF[MFS[Rccs]]]]]

Figure 15. Nexus zkVM signature.

The Nexus zkVM is obtained by the following sequence of transforma-
tions:

« MFS[RCCS]: Multi-folding scheme for a CCS relation
+ CF: CycleFold
« FS: Fiat-Shamir transformation for multi-folding

« NIVC: SuperNova non-uniform IVC transformation for non-interactive
multi-folding schemes

« PCD:Parallelization (proof-carrying-data) transformation for NIVC schemes

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 24

https://www.nexus.xyz/whitepaper.pdf
https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

NVM 1 RAM

CPU

CCS Coprocessors

SHA-256 ECDSA SMARK.W

KECCAK256 POSEIDON MATRX MUL

Figure 16. Nexus zkVM co-processors.

It is extensible in the sense that its fixed instruction set can be extended
with custom instructions, or co-processors. It decouples instructions (inside
the CPU abstraction) and user-defined co-processors (outside the CPU ab-
straction) without affecting per-cycle prover performance and minimising
the size of the zkVM circuit being proven. Leveraging the non-uniform tech-
niques introduced in Supernova, the prover only pays for those instructions
when they are actually executed.

3. Conclusion

What does the future look like? Compared to STARKish zkVMs, using a
compiler to chunk the statement itself and combine the pieces as IVC or
GKR approaches do, seems to be a more promising avenue.

Since the goal of a zkVM is to prove efficiently a program, there is still
work to do in removing some of the overhead that this abstraction brings.
Non-uniformity was the key innovation that enabled IVC zkVMs to be prac-
tical. Abstractions such as co-processors help to reduce the size of the zkVM

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 25

https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

circuit.

Parallelism as an alternative to sequential proving may finally render IVC
zkVMs comparable to monolithic SNARKSs, as Mangrove hints. For this, a
compiler that discerns patterns in programs and creates data-parallel circuits
seems to be key in achieving an optimal parallelisation of the prover.

We are seeing that decoupling is a promising approach to optimisation,
whether it is applied to PCD in decoupling the leaf and the merging compu-
tation, or to blocks and co-processors in contrast to fixed opcodes.

Mangrove SNARKSs offered a simple exploration of what a uniform com-
piler can achieve with vanilla Plonk. While it is not presented as a zkVM, it
can be easily turned into one. Mangrove is just touching the surface of what
a compiler may be able to do if it were non-uniform.

Is there anything else that can be decoupled, extended, or make it non-
uniform? Will zkVM stand as the right abstraction in the long run? Will we
realise the lookup singularity? How else can compilers be used?

4. Acknowledgements

I want to thank Lukasz Czajka, Christopher Goes, Adrian Hamelink, Ferdi-
nand Sauer and Xuyang Song for their technical feedback and fruitful discus-
sions, and Jonathan Cubides for supporting this type of research work.

References

AST23. Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines
via lookups. Cryptology ePrint Archive, Paper 2023/1217, 2023. https://eprint.
iacr.org/2023/1217. (cit. on p. 18.)

BBB*17. Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and
more. Cryptology ePrint Archive, Paper 2017/1066, 2017. https://eprint.iacr.
org/2017/1066. (cit. on p. 7.)

BGH19. Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition
without a trusted setup. Cryptology ePrint Archive, Paper 2019/1021, 2019.
https://eprint.iacr.org/2019/1021. (cit. on p. 6.)

BMNW?24. Benedikt Biinz, Pratyush Mishra, Wilson Nguyen, and William Wang. Accu-
mulation without homomorphism. Cryptology ePrint Archive, Paper 2024/474,
2024. https://eprint.iacr.org/2024/474. (cit. on p. 20.)

CBBZ22. Binyi Chen, Benedikt Biinz, Dan Boneh, and Zhenfei Zhang. Hyperplonk:
Plonk with linear-time prover and high-degree custom gates. Cryptology ePrint
Archive, Paper 2022/1355, 2022. https://eprint.iacr.org/2022/1355. (cit. on p. 21.)

DP23. Benjamin E. Diamond and Jim Posen. Succinct arguments over towers of binary
fields. Cryptology ePrint Archive, Paper 2023/1784, 2023. https://eprint.iacr.
org/2023/1784. (cit. on p. 21.)

GLS*21. Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S.
Wahby. Brakedown: Linear-time and field-agnostic snarks for rics. Cryptol-
ogy ePrint Archive, Paper 2021/1043, 2021. https://eprint.iacr.org/2021/1043.
(cit. on p. 21.)

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 26

https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2024/474
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2021/1043
https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

HLZ*24. Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang.
Parallel zero-knowledge virtual machine. Cryptology ePrint Archive, Paper
2024/387, 2024. https://eprint.iacr.org/2024/387. (cit. on p. 14.)

KS22. Abhiram Kothapalli and Srinath Setty. Supernova: Proving universal ma-
chine executions without universal circuits. Cryptology ePrint Archive, Paper
2022/1758, 2022. https://eprint.iacr.org/2022/1758. (cit. on p. 7.)

NDC*24. Wilson Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh. Man-
grove: A scalable framework for folding-based snarks. Cryptology ePrint
Archive, Paper 2024/416, 2024. https://eprint.iacr.org/2024/416. (cit. on p. 17.)

SSS22. Robin Salen, Vijaykumar Singh, and Vladimir Soukharev. Security analysis of
elliptic curves over sextic extension of small prime fields. Cryptology ePrint
Archive, Paper 2022/277, 2022. https://eprint.iacr.org/2022/277. (cit. on p. 20.)

STW23. Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity
with lasso. Cryptology ePrint Archive, Paper 2023/1216, 2023. https://eprint.
iacr.org/2023/1216. (cit. on p. 18.)

DOI: 10.5281/zenodo.10998758 Anoma Research Topics | April 19,2024 | 27

https://eprint.iacr.org/2024/387
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2024/416
https://eprint.iacr.org/2022/277
https://eprint.iacr.org/2023/1216
https://eprint.iacr.org/2023/1216
https://dx.doi.org/10.5281/zenodo.10998758
http://art.anoma.net

	Introduction
	zkVMs
	STARKish zkVMs
	IVC zkVMs
	NIVC zkVMs
	NIVC zkVMs are RAM machines

	zkVM Compilers
	Categories of proving
	Monolithic proving
	Piece-wise proving
	Structure-aware proving

	Desiderata
	Smart Block Generation
	Groups of identical opcodes (GKR zkVM)
	Basic Blocks (GKR zkVM Pro)
	Uniform compiler (Mangrove)
	Circuits as lookup tables (Jolt and Lasso)

	Fast Provers, Small Proofs, Fast Verifiers
	Small fields (Plonky2)
	Smallest Fields (Binius)
	Large fields, but small values (Jolt)
	Large fields, but non-uniform folding (SuperNova, HyperNova, ProtoStar)

	Modularity
	Generic accumulation (Protostar)
	Co-processors (Nexus)

	Conclusion
	Acknowledgements
	References

