APPENDIX

A. Artifact Appendix

In this appendix, we provide the information for obtaining
the source code for Decentagram, building and reproducing
the experimental results presented in Section VII, and the
hardware and software requirements.

The evaluation of Decenta-
gram comprises of 6 separate experiments:

o (E1) evaluates the gas cost to register, subscribe, and
publish using Decentagram’s Publisher, Subscriber, and
Broker smart contracts.

o (E2) evaluates the gas cost of Decentagram’s six different
revoker contracts.

o (E3) evaluates the throughput of receipt processing imple-
mentation used in Decentagram’s off-chain component,
which is responsible for filtering blocks and notifying
off-chain subscribers.

o (E4) evaluates the end-to-end latency of Decentagram’s
off-chain and on-chain notifications discussed in Section
VIL.D.

o (E5) demonstrates the revocation process of enclave com-
ponents as described in Section VI

o (EO) tests the compatibility of Decentagram with different
blockchain networks. As mentioned in Section VII.A, we
have deployed and tested Decentagram on Avalanche,
Polygon, BNB, and Optimism.

As mentioned in Section VII, the first 2 experiments utilizes
Ganache, a testing environment for the Ethereum blockchain,
which can be installed locally. The next 3 experiments require
a fully-synced Ethereum node and, in the case of block
processing using enclave, Intel SGX hardware. We recognize
that these requirements may be difficult to meet, so we provide
an environment with these resources, and will describe the
steps to access this environment. The last experiment requires
a testnet wallet with enough funds to deploy contracts and
send transactions in the target blockchain network. A testnet
wallet with limited funds can be accessed in the provided
environment.

The source code for Decentagram including
files to run the experiments to produce the results in this paper
is available at https://doi.org/10.5281/zenodo.10224299.

The repository has the following
structure.

+ pubsub-onchain contains the source code for the Pub-
lisher, Subscriber, and Broker contracts. Within this di-
rectory, are files for running experiment E1, and they are
organized in the following subdirectories:

— PubSub. The smart contract code acting as on-chain
broker.

— tests. Scripts to run the gas evaluations for the
PubSubService contract. It should generate a figure
and JSON file containing similar results described

in Section VII.B. Besides, it also contains the min-
imal publisher and subscriber contracts described in
Section VILA.

— utils. Code to send transactions in Ethereum, code
to run network compatibility tests, and project con-
figuration files.

o revoker-onchain contains the source code for the revoker

contracts. Within this directory are files for running
experiment E2, and they are organized in the following
subdirectories:

— EnclaveRevoker. Smart contracts for revoking en-
clave components.

— KeyRevoker. Smart contracts for revoking general
keys.

— libs. Symbolic links pointing to pubsub-onchain and
ra-onchain, since these contracts are used and refer-
enced in the revoker contracts.

— tests. Unit tests for smart contracts.

— utils. Code to run the experiment and produces
results shown in Table II.

Ethereum contains the source code for the Ethereum
client, which acts as an off-chain broker introduced in
our paper. Within this directory are files for running
experiment E3, and they are organized in the following
subdirectories:

— include. Header files for the Ethereum client.

— sre. Source code for the Ethereum client.

— tests. Code to run the experiment and produce results
shown in Figure 6.

* geth-go-throughput-eval. Code to process
Ethereum receipts using Go Ethereum library
running under a regular environment.

x geth-enclave-throughput-eval. Code to process
Ethereum receipts using our Ethereum client im-
plementation running under an enclave environ-
ment.

Revoker contains the source code for the off-chain re-
vocation list monitor. Within this directory are files for
running the revocation demo, and they are organized in
the following subdirectories:

— src. Source code for the Revoker program.

- tests.

* ProblematicApp. The source code of an enclave
program, which intentionally acts maliciously, by
generating conflicting messages, and exposing pri-
vate keys that should never be revealed under
regular circumstances. This app will be providing
credentials to be revoked during the revocation
demo.

x End2EndLatency. Code to run the end-to-end
latency evaluation and produce results shown in
Table III.

o libs contains all the libraries that are needed when com-

pile the programs and contracts. It also contains helper
programs to deploy contracts on the EVM-compatible

https://doi.org/10.5281/zenodo.10224299

networks. Here we will be highlighting some of the
important libraries:

— ra-onchain. This library contains the smart contracts
for on-chain parsing and verification of the Decent
Self-Attestation certificates generated by enclaves.

— PyEthHelper. This is the helper program to interact
with the Ethereum network via JSON-RPC over
HTTP. It is used to deploy contracts, send transac-
tions, and call contract functions.

To reproduce the results for
experiments E1 and E2, no special hardware is needed. To
reproduce the results for experiment E3, the machine must
have SGX enabled, including the corresponding SDKs.

The following software is required
to reproduce the results for our experiments.

e Linux OS (tested on Ubuntu 22.04 LTS on x86_64)
o Node.js version 18.xx

e NPM version 9.x

e Python >= 3.10

o Python3-pip

o Python3-venv

o Ganache. Can be installed with npm.

$ npm install -g ganache@7.8.0

Experiments E1 and E2 can
be run on any machine provided it meets the hardware and
software requirements described above. For experiment E3 as
well as the revocation demo and the end-to-end latency evalua-
tion, we provide a machine with access to a full Ethereum node
and SGX hardware that can be used to run these experiments.

To access our machine, use the following command

$ ssh -p 56615 aereviewer@decent-aurora.soe.ucsc.edu

e (C1) Efficiency: The cost to add a new publisher or
subscriber to the on-chain broker remain constant as
the number of publishers and subscribers increase, re-
spectively. Additionally, the cost to notify subscribers
increases linearly with the number of subscribers.

e (C2) Performance: Decentagram’s receipt processing
code is able to process receipts from new blocks at a rate
much faster than that produced by Ethereum’s network,
allowing it to make timely notifications to subscribers.

E1 & E2: on-chain gas eval [10 minutes]: The results of
experiment E1 are discussed in Section VIL.A, and the results
of experiment E2 are shown in Table II.

[Setup] Under the Decentagram-main directory, run the
following command:

$./Al_contracts_setup.sh

This setup script will first compile all the smart contracts,
and then it will set up a Python virtual environment that will
be used to run the tests.

[Execution] Under the Decentagram-main directory, run the
following command:

$./A2_contracts_tests.sh

[Results - E1] After the tests are finished, the file
Decentagram-main/pubsub-onchain/build/gas_cost.pdf
will contain the results that are discussed in Section VILA.

We have configured a public Github repo with Github
Action that automatically runs the gas evaluation on each
release, which can be found at: https://github.com/Isd-ucsc/
decent-pubsub-onchain/releases. You may audit the full output
log generated from the last GitHub Action run at: https:
//github.com/lsd-ucsc/decent-pubsub-onchain/actions/

[Results - E2] Under the
Decentagram-main/revoker-onchain/build directory, the fol-
lowing results are generated:

e build/gas_cost_decent_revokerjson Gas cost of three

types of Decent Revoker contracts

o build/gas_cost_key_revoker.json Gas cost of three types

of general key revoker contracts

The results from these files are used to generate Table II.

Similar to the gas evaluation for E1, we have configured
a public Github repo with Github Action that automati-
cally runs the gas evaluation on each release, which can be
found at: https://github.com/lsd-ucsc/decent-revoker-onchain/
releases. You may audit the full output log generated from the
last GitHub Action run at: https://github.com/Isd-ucsc/decent-
revoker-onchain/actions

E3: off-chain throughput [30 minutes]: This experiment
produces the results shown in Figure 6.

[Setup] Under the Decentagram-main directory, run the
following command:
$./Bl_offchain_setup.sh

This setup script will compile the Ethereum client and the
Revoker.

[Execution - Non-enclave] Under the
/Decentagram-main/Ethereum/tests/geth-go-throughput-eval/
directory, run the following command:

$ go run .

[Results - Non-enclave] The output will show the through-
put of receipt processing rate for the non-enclave version of
receipt processing implementation.

[Execution - Enclave] Under the
/Decentagram-main/Ethereum/build/tests/geth-enclave-
throughput-eval directory, run the following command:
$./GethThroughputEval

[Results - Enclave] The output will show the throughput

of receipt processing rate for the enclave version of receipt
processing implementation.

https://github.com/lsd-ucsc/decent-pubsub-onchain/releases
https://github.com/lsd-ucsc/decent-pubsub-onchain/releases
https://github.com/lsd-ucsc/decent-pubsub-onchain/actions/
https://github.com/lsd-ucsc/decent-pubsub-onchain/actions/
https://github.com/lsd-ucsc/decent-revoker-onchain/releases
https://github.com/lsd-ucsc/decent-revoker-onchain/releases
https://github.com/lsd-ucsc/decent-revoker-onchain/actions
https://github.com/lsd-ucsc/decent-revoker-onchain/actions

E4: End-to-end Latency [off-chain and on-chain] [5
minutes]: This experiment evaluates the end-to-end latency
of the Decentagram, and produces results shown in Table III.

[setup] This experiment uses the smart contracts and
Ethereum client that were built in the previous experiments.
Under the Decentagram-main directory, run the following
command:
$./Al_contracts_setup.sh
$./Bl_offchain_setup.sh
$./B2_contracts_deploy.py \

--geth-addr http://172.17.0.1:8548 \

—-key-file /etc/testnet_keys.json
$./B3_project_config.py —-—host-ip 172.17.0.1

These scripts will compile the contracts, deploy them to the
Ethereum testnet.

NOTE: The contracts are deployed on the Ethereum
Holesky testnet, and the Geth client can take some time to
find peers in this network, so you may run into a timeout
error. When this happens, please wait a few minutes and try
again. Additionally, when retrying the deployment, the old
transaction may still be stuck in the cache and you can get
a replacement transaction underpriced error. In this case, also
please wait a few minutes and try again.

NOTE: The Ethereum testnets are subject to network
congestion which will increase the price to send transactions.
If the congestion is high enough, this can cause transactions
from our Geth client to fail. To ensure the transaction succeeds
in a congested network, please increase the deposit amount
in our Geth proxy located at line 204 of Decentagram-
main/Revoker/tests/End2EndLatency/contracts/GethProxy.py
from value=w3.to_wei (0.0001, "ether") to
value=w3.to_wei (0.1, "ether").

[Execution]

Step 1. Under the
Decentagram-main/Revoker/tests/End2EndLatency/contracts
directory, run the following command:
$ python3 GethProxy.py \

-—geth-addr http://172.17.0.1:8548 \
--key-file /etc/testnet_keys.json

Wait for the message that says ”Geth Proxy starts to listen
to incoming requests...”, and keep the terminal open with this
process running.

Step 2. In a second terminal, under the
Decentagram-main/Ethereum/build/src directory, run the fol-
lowing command:

$./EthereumClient

Keep the terminal open with this process running.

Step 3. In a third terminal, under the
Decentagram-main/Revoker/build/tests/End2EndLatency
directory, run the following command:

$./End2EndLatency

Once the tests are finished, the results will be in the
Decentagram-main/Revoker/build/tests/End2EndLatency
directory.

The process of this test is described in the following file:
Decentagram-main/Revoker/tests/End2EndLatency/doc.

ES5: Revocation Demo [off-chain and on-chain] [5 min-
utes]: This demo shows the end-to-end process of revoking
enclave components, which includes deploying the revocation
contracts, having the enclave generate conflicting messages,
and then reporting these messages to the contract to have the
enclave revoked. The setup is similar to the end-to-end latency
evaluation, with the option to configure the revoker to run the
leaked key demo.

[Setup] Under the Decentagram-main directory, run the
following command:

./Al_contracts_setup.sh
./Bl_offchain_setup.sh
./B2_contracts_deploy.py \

-—geth-addr http://172.17.0.1:8548 \
--key-file /etc/testnet_keys.json

$./B3_project_config.py —--host-ip 172.17.0.1

v« v

the above will run the conflicting message demo.
To run the leaked key demo
$./B3_project_config.py \
--host-ip 172.17.0.1 \
——revoker EnclaveRevokerByLeakedKey

[Execution]
Step 1. Go to the Decentagram-main/Ethereum/build/src
directory and run the following command:

$./EthereumClient

Keep the terminal open with this process running.

Step 2. In a second terminal, under the
Decentagram-main/Revoker/build/src directory, run the fol-
lowing command:

$./Revoker

Keep the terminal open with this process running.

Step 3. In a third terminal, run the following commands:

$ cd Decentagram-main/Revoker/build/tests/
ProblematicApp

./ProblematicApp

cd ../).

./B4_report_credential.py \

--geth-addr http://172.17.0.1:8548 \

-—key-file /etc/testnet_keys.json \

--server-cert-path /etc/decent_svr_cert.hex

R

to run the leaked key demo
./B4_report_credential.py \

-—geth-addr http://172.17.0.1:8548 \
—-—-key-file /etc/testnet_keys.Jjson \
--server-cert-path /etc/decent_svr_cert.hex \
—-revoker EnclaveRevokerByLeakedKey

Uy ==

Observe the revocation message to be shown on the terminal
running Revoker (Step 2).

E6: Network Compatibility Test [S minutes]: This exper-
iment will determine whether Decentagram works with your
blockchain network of choice.

[Setup] Under the Decentagram-main directory, run the
following command:

optional if already ran in E1
$./Al_contracts_setup.sh

[Execution] Under the Decentagram-main directory, run the
following command:

$./venv/bin/python3 pubsub-onchain/utils/
NetworkCompatibility.py \
—-—api-url https://chain-proxy.wallet.coinbase.com?
targetName=ethereum-holesky \
--key-file /etc/testnet_keys. json

$./venv/bin/python3 libs/ra-onchain/utils/
NetworkCompatibility.py \
——api-url https://chain-proxy.wallet.coinbase.com?
targetName=ethereum-holesky \
--key-file /etc/testnet_keys.json

$./venv/bin/python3 revoker-onchain/utils/
NetworkCompatibility.py \
—-—api-url https://chain-proxy.wallet.coinbase.com?
targetName=ethereum-holesky \
--key-file /etc/testnet_keys. json

For each of the commands above, a log with details about
the network compatibility and a JSON file containing the
contract deployment info will be saved in the current directory.

Network Name

targetName

Ethereum Holesky

ethereum-holesky

Avalanche Fuji

avalanche-fuji

Polygon Mumbai

polygon-mumbai

BNB

bsc-testnet

Optimism Sepolia

optimism-sepolia

TABLE 1
LIST OF NETWORKS THAT PASSES THE COMPATIBILITY TEST.

Table I shows the list of networks that we have tested on.
You may replace the targetName in the URL to test on
other networks.

	Appendix
	Artifact Appendix

