2e0SC

Project Title

Project Acronym

Grant Agreement No.

Start Date of Project
Duration of Project

Project Website

M5.6 -

Practical

FAIR-IMPACT

Expanding FAIR solutions across EOSC

Expanding FAIR solutions across EOSC
FAIR-IMPACT

101057344

2022-06-01

36 months

fair-impact.eu

tests for automated FAIR software

assessment in a disciplinary context

Work Package

Lead Author (Org)

Contributing
Author(s) (Org)

Due Date
Date
Version

DOl

Dissemination Level

PU: Public

Funded by

WP5 - Metrics, certification, and guidelines

Kara Moraw (UEDIN-SSI)

Mario Antonioletti (UEDIN-SSI), Elena Breitmoser (UEDIN-SSI), Neil
Chue Hong (UEDIN-SSI), Mike Priddy (KNAW-DANS)

2024-03-31

2024-03-28

V1.0

https://doi.org/10.5281/zenodo.10890043

PP: Restricted to other programme participants (including the Commission)
RE: Restricted to a group specified by the consortium (including the Commission)
CO: Confidential, only for members of the consortium (including the Commission)

the European Union

https://doi.org/10.5281/zenodo.10890043

eosc| Far-vacT AR

Versioning and contribution history

Version | Date Author Notes

0.1 08.03.2024 | Kara Moraw (UEDIN-SSI) TOC and V0.1

0.2 22.03.2024 | Kara Moraw (UEDIN-SSI), Mario | Main sections
Antonioletti (UEDIN-SSI), Elena | incorporating

Breitmoser (UEDIN-SSI), Neil Chue Hong | feedback.
(UEDIN-SSI), Mike Priddy (KNAW-DANS)

1.0 28.03.2024 | Kara Moraw (UEDIN-SSI), Mario | Updated TOC,
Antonioletti (UEDIN-SSI), Elena | added details to
Breitmoser (UEDIN-SSI), Neil Chue Hong | evaluation.

(UEDIN-SSI), Mike Priddy (KNAW-DANS)

Disclaimer

FAIR-IMPACT has received funding from the European Commission’s Horizon Europe funding
programme for research and innovation programme under the Grant Agreement no. 101057344. The
content of this document does not represent the opinion of the European Commission, and the
European Commission is not responsible for any use that might be made of such content.

Funded by
the European Union

2 | Page

Expanding FAIR solutions acrass EQSC _

O€e0SC

Table of Contents

1 Introduction 6
2 Description of the Milestone 7
2.1 Role of the milestone 7
2.1.1 Means of verification 7

3 Background information 8
3.1 Metric structure 8

4 Implementation of practical tests for FAIR Research Software Metrics in F-UJI 10
4.1 Extending F-UJI for FAIR4RS 10
4.2 Test implementations 17

5 Evaluation of tests in a disciplinary context 22
6 Conclusions and next steps 25
7 References 27
8 Appendices 28
8.1 Example of a metric definition in F-UJI using YAML 28
8.2 Repository-level evaluation results 28

Funded by
the European Union

3| Page

Expanding FAIR solutions acrass EOSC _

TERMINOLOGY

O€e0SC

Terminology/Acronym Description

CESSDA Consortium of European Social Science Data Archives
FAIR Findable Accessible Interoperable Reusable

FAIR4RS FAIR for Research Software

FRSM FAIR Research Software Metric

FsF FAIRSFAIR project (predecessor of FAIR-IMPACT)

Funded by
the European Union

4| Page

O€e0SC

Expanding FAIR solutions acrass EQSC _

1 Introduction

FAIR-IMPACT" have developed 17 metrics (Chue Hong et al., 2023) that can be used to
automate the assessment of research software against the FAIR Principles for Research
Software (FAIR4RS Principles) (Chue Hong et al., 2022). These build on the outputs of the
RDA/ReSA/FORCE11 FAIR for Research Software Working Group? and existing guidelines and
metrics for research software to define metrics for the assessment of the FAIR4RS Principles.
FAIR software can be defined as research software which adheres to these principles, and
the extent to which a principle has been satisfied can be measured against the criteria in a
metric via a set of tests.

This work has been continued by fully implementing two of the metrics, FRSM-133
(dependencies, build and configuration) and FRSM-15* (licensing information), as well as
providing skeletons for many of the other metrics. This was done by extending the F-UJI tool
(Devaraju and Huber, 2020), which was originally developed for assessing datasets, to
include tests for the research software metrics, and evaluating these discipline-agnostic tests
against a collection of reference repositories provided by FAIR-EASE.> Additionally,
discipline-specific versions of the metrics were implemented based on the version of the
metrics defined by CESSDA, and evaluated against a collection of reference repositories
provided by CESSDA.®

This milestone comes from Task 5.2 (FAIR metrics for research software) on "Practical tests
for automated FAIR software assessment in a disciplinary context” and is part of Work
Package 5 on "Metrics, Certification and Guidelines" within the FAIR-IMPACT project.

This milestone report summarises the way that F-UJI was extended to accommodate
software metrics, describes the implementation of the tests used to check each metric, and
the results of FAIR assessments performed on the provided repositories.

! https://fair-impact.eu/

% https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg

® FAIR Research Software Metric 13 as proposed by Chue Hong et al., 2023.

“ FAIR Research Software Metric 15 as proposed by Chue Hong et al., 2023.

® https://fairease.eu/

® Consortium of European Social Science Data Archives. https://www.cessda.eu/

Funded by
the European Union

5| Page

O€e0SC

Expanding FAIR solutions acrass EQSC _

2 Description of the Milestone

2.1 Role of the milestone

This milestone provides a proof of concept implementation of the FAIR4RS metric
assessments (Chue Hong et al, 2023) as practical automatic tests as an extension to the F-UJI
tool for FAIRSFAIR research data object assessment (Devaraju and Huber, 2020). The
domain-agnostic implementations allow users from any scientific domain to assess the
FAIRness of their research software. The discipline-specific implementation for metric tests
as proposed by the Consortium of European Social Science Data Archives (CESSDA)’ further
allows research software from the social sciences to test their compliance with CESSDA
guidelines®.

2.1.1 Means of verification

The implementation is publicly available on GitHub® and has been merged into the original
F-UJI repository™® maintained by PANGAEA (Felden et al, 2023).

7 https://www.cessda.eu/

& https://docs.tech.cessda.eu/

% https://github.com/FAIR-IMPACT/fuji

10 https://github.com/pangaea-data-publisher/fuji

Funded by
the European Union

6 | Page

eosc | Far-ve:cT SR

3 Background information

The FAIR and FAIR4RS principles are stated as broad principles, which are advisory and not
prescriptive. To evaluate compliance with each principle in an automated manner a set of
abstract criteria have been or are being developed to assess whether a digital object, such as
a dataset or research software, complies with the principle. These abstract criteria are called
metrics and each principle might have one or more of these to assess compliance. For
instance, for the principle “A1.1: The protocol [used to access the data or research software]
is open, free, and universally implementable”, a metric that would satisfy this principle
would be to check that the data/research software is accessible using the HTTP(S) protocol.
A test could then be designed and implemented to check that the digital object can be
accessed using HTTP(S). The results from these tests, and implementations of metrics, can
then be collected together and used to determine whether a FAIR principle is being
observed or give guidance to the end user as to what changes would improve the level of
compliance.

3.1 Metric structure

Metrics are used to translate the FAIR guiding principles into practical tests to measure the
FAIRness of a digital object. This report focuses on FAIR4RS metrics (FRSM, Chue Hong et al,
2023), developed for research software, and FAIRSFAIR (FsF) metrics (Devaraju et al, 2022)
for datasets. Both follow a similar structure, as shown in Tables 1 and 2.

Table 1: Structure of a FAIR4RS metric (Chue Hong et al, 2023).

Field Description
Metric Identifier | The local identifier of the metric (FRSM-XX).
Metric Name Metric name in a human readable form.
Description The definition of the metric, including examples.
FAIR4RS The FAIR4RS principle(s) most related to the metric.
principle
Assessment Requirements and methods to perform the assessment against the
metric with respect to three compliance levels.
Compliance | Metric test
level
Essential Requirements to assess compliance with the metric on
an essential level.
Important Requirements to assess compliance with the metric on
an important level.
Useful Requirements to assess compliance with the metric on
a useful level.

Funded by
the European Union

7 | Page

eosc | Far-vCT AR

Table 2: Structure of an FsF metric (Devaraju et al, 2022).

Field Description
Metric Identifier | The local identifier of the metric following the FsF naming convention.
Metric Name Metric name in a human readable form.
Description The definition of the metric, including examples.
FAIR principle The FAIR principle most related to the metric.
Assessment Requirements and methods to perform the assessment against the

metric with respect to three compliance levels, and the score given
upon passing a test.

Compliance Metric test Score
level
1 Requirements to assess compliance with
the metric on compliance level 1.
2 Requirements to assess compliance with
the metric on compliance level 2.
3 Requirements to assess compliance with
the metric on compliance level 3.

Each metric is assessed by evaluating a series of metric tests. Each metric test evaluates the
compliance with the metric on a specific level. The FAIR4RS metrics are defined with respect
to compliance levels essential, important and useful, which can be mapped directly to the
compliance levels 1, 2 and 3 referenced in the FsF metrics.

The FsF metrics explicitly define a score given upon passing a test to allow assigning different
weights to a metric test with respect to the overall score achieved by a dataset.

Funded by
the European Union

8 | Page

O€e0SC

Expanding FAIR solutions acrass EQSC _

4 Implementation of practical tests for FAIR Research
Software Metrics in F-UJI

F-UJI is a tool for the automatic assessment of FAIRness that uses the FAIRSFAIR metrics
proposed in Devaraju et al, 2022. It was initially developed to assess the FAIRness of
research data objects, by Devaraju & Huber, 2021. The automatic assessment process is split
into two stages: harvesting and evaluation, as shown in Figure 1.

@®

l N Metric YAML
GitHub Metadata
e Metric 1
harvester harvester
Evaluator 1 —» -TestA
I | -Test C
0 Metric 3
Evaluator 2 L .
| Harvesting lfresulls
LN
Evaluator N

Figure 1: F-UJI workflow. Only tests A and C are listed for metric 1 in the configuration file, so test B is
not run.

First, multiple “harvesters” collect data and metadata from various sources. The results are
then merged and handed over to the evaluation stage. Each evaluator checks the
compliance with a metric by running a series of test functions.

The metric configuration file (Metric YAML) is used to define the relevant details for all
metrics. An example of a metric definition is shown in the appendix (Listing A.1). Each metric
definition contains a list of metric tests with an associated test score and maturity level
indicating the level of compliance with the metric. Each evaluator test function is associated
with a metric test identifier. In our extension, a test can be mapped to multiple test
identifiers from different metric sources to allow the reuse of similar implementations. Each
test function starts by verifying that one of its identifiers is listed in the metric configuration
file. If no identifier is listed, the test fails immediately. The test score is not added to the
overall score. Otherwise, it carries out the implemented test. If the test passes, the
configured test score is added to the overall evaluation score, and the maturity level is
recorded.

4.1 Extending F-UJI for FAIR4RS

In the F-UJI framework all the information required for the assessment is first collected by
harvesters. To parse the necessary data from software repositories, we needed to add a new
harvester for the relevant sources. We decided to focus on GitHub for the time being as it is

Funded by
the European Union

9 | Page

e0osc | FAIR-IMPAC ‘

a widely used platform in research software and we had prior experience with using the
GitHub API*. Adding support for other platforms would require only the addition of another
harvester, e.g. for Zenodo' or GitLab®, as the metric evaluation is decoupled from the
harvesting. Documentation and standardisation regarding what data is collected and in what
structure it should be provided needs to be in would make the addition of new harvesters
and reuse of existing evaluators for new metrics more straightforward, avoiding complicated
nested harvesting results with duplicated metadata entries.

Chue Hong et al, 2023 proposed two sets of FAIR4RS metrics (FRSM), namely a generic set of
metrics that are agnostic to any subject domain, and a CESSDA-specific set that takes into
account domain-specific requirements and metadata. We added support for both to F-UJI
using two new YAML files'. The metric configuration using YAML files was introduced in
F-UJI version 3.0.0. This made it very easy to add our metrics and specify requirements for
discipline-specific tests. Especially the option to configure test requirements, e.g. to specify a
community standard, was useful for shaping the behaviour of domain-specific tests.

Without our extension, F-UJI only recognises metrics with identifiers that start with “FsF”*.
This is tested with regular expressions in several places throughout the code, which all
needed to be updated to recognise our metric identifier scheme starting with “FRSM”. To
simplify the addition of future metric schemes, it would be beneficial to refactor this, for
example by making the metric identifier pattern configurable. The regular expressions are
also used to extract the FAIR principle; the same information is also included in the metric
configuration file and can be read from there. This suggests that there is potential to ease
the addition of other metric sets simply by leveraging the already existing YAML files.

The next step was to add capability for evaluating the new metrics. Linking our metrics to
evaluator objects was not possible through the metrics file. Instead, every existing evaluator
that we wanted to reuse required additional logic to allow more than one metric identifier
to be associated with it (e.g. FsF-F2-01M and FRSM-04-F2 for minimal metadata). Moreover,
test functions are also associated with metric test descriptions in the code base. This
mapping cannot be set from the configuration file, which would make test reuse much
easier for less technical users. Again, we were able to reuse some test functions and added
the remaining ones.

Some of the FAIR4RS metrics required the addition of new evaluators, for example FRSM-13
(software requirements). Adding a new evaluator class is straightforward based on the
parent class FAIREvaluator. However, in order for it to be called, additional code changes are
required in multiple classes. We added documentation detailing these required changes, but
ideally, the addition could be streamlined. One possibility would be refactoring to a factory
pattern, where each new evaluator is registered with a factory class which ensures that they
all get called and return the results as expected.

" https://docs.github.com/en/rest

2 https://zenodo.org/

3 https://about.gitlab.com/

* YAML is a human readable data serialisation language. (https://yaml.org/)

13 FsF is the acronym used for the FAIRSFAIR metrics that F-UJI was originally developed for.

Funded by
the European Union

10 | Page

eosc | Far-ve:cT SR

The F-UJI implementation expects each metric to be mapped to one FAIR principle. This is
not always the case for the FAIR4RS metrics, they often relate to multiple principles. In these
cases, we decided to choose one principle as the main guiding principle for the metric.

Table 3 lists the mapping from FAIR4RS metrics to their main principle, as well as the F-UJI
evaluator class that was reused or added. For those that were reused, the FsF metric for

which the evaluator was originally designed is stated.

Table 3: Mapping of FAIR4RS metrics to F-UJI evaluators and their FsF metrics.

FRSM metric FAIR4RS F-UJI evaluator (reused or added) | FsF metric
principle
(mainin
bold)
FRSM-01: Does | F1, R3 FAIREvaluatorUniquePersistentlde | n/a
the software ntifierSoftware (added)
have a globally
unique and
persistent
identifier?
FRSM-02: Do F1.1,F1 FAIREvaluatorSoftwareComponen | n/a
the different tldentifier (added)
components of
the software
have their own
identifiers?
FRSM-03: Does | F1.2, F1 FAIREvaluatorVersionldentifier n/a
each version of (added)
the software
have a unique
identifier?
FRSM-04: Does | F2,R1, R3 | FAIREvaluatorCoreMetadata FsF-F2-01M: Metadata
the software (reused) includes descriptive
include core elements
descriptive (creator, title, data
metadata identifier, publisher,
which helps publication date,
define its summary and
purpose? keywords) to support
data findability.
FRSM-05: Does | R1, F2, R3 | FAIREvaluatorDevelopmentMetad | n/a
the software ata (added)

Funded by

11 | Page

the European Union

O€e0SC

rair-111ACT S
include
development
metadata
which helps
define its
status?
FRSM-06: Does | F2, R3 FAIREvaluatorDataProvenance FsF-R1.2-01M:
the software (reused) Metadata includes
include provenance
metadata information about
about the data creation or
contributors generation.
and their
roles?
FRSM-07: Does | F3, R3 FAIREvaluatorDataldentifierinclud | FsF-F3-01M: Metadata
the software ed (reused) includes the identifier
metadata of the data it
include the describes.
identifier for
the software?
FRSM-08: Does | F4, A2, R3 | FAIREvaluatorMetadataPreserved | FsF-A2-01M: Metadata
the software (reused) remains available,
have a publicly even if the data is no
available, longer available.
openly
accessible and
persistent
metadata
record?
FRSM-09: Is Al, Al1.1, FAIREvaluatorStandardisedProtoc | FsF-A1-03D: Data is
the software Al1.2,R3 olData (reused) accessible through a
developedina standardized
code communication
repository / protocol.
forge that uses
standard
communicatio
ns protocols?
FRSM-10: Are 11, 12 FAIREvaluatorFileFormat (reused) | FsF-R1.3-02D: Data is
the formats available in a file
used by the format recommended

Funded by

12 | Page

the European Union

neosc |FAR-IvPAcT S

data consumed by the target research
or produced by community.

the software
open and a
reference
provided to the
format?

FRSM-11: Does |11 FAIREvaluatorAPI (added) n/a
the software
use open APIs
that support
machine-reada
ble interface

definition?

FRSM-12: Does | 12 FAIREvaluatorRelatedResources FsF-13-01M: Metadata
the software (reused) includes links between
provide the data and its
references to related entities.

other objects
that support its

use?
FRSM-13: Does | R1, R2 FAIREvaluatorRequirements n/a
the software (added)

describe what
is required to
use it?

FRSM-14: Does | R1 FAIREvaluatorTestCases (added) n/a
the software
come with test
cases to
demonstrate it
is working?

FRSM-15: The |R1.1 FAIREvaluatorLicenseFile (added) | n/a
software
source code
includes
licensing
information for
the software
and any
bundled

Funded by
the European Union

13 | Page

eosc| Far-vacT AR

external

software.

FRSM-16: Does | R1.1 FAIREvaluatorLicense (reused) FsF-R1.1-01M:

the software Metadata includes
metadata licence information
record include under which data can
licensing be reused.

information?

FRSM-17: Does | R1.2 FAIREvaluatorCodeProvenance n/a
the software (added)
include
provenance
information
that describe
the
development
of the
software?

With these changes, all FAIR4RS metrics have a corresponding evaluator and set of test
functions in F-UJI. Not all tests are implemented. Those that are not implemented are
present in the tool as skeleton functions and add a warning message indicating this to the
user as shown in Figure 2.

Funded by
the European Union

14 | page

“Heosc | FAIR-IMPACT

Expanding FAIR solutions across EOSC

FRSM-13-R1 - Does the software describe what is required to use it?

FRSM-14-R1 - Does the software come with test cases to demonstrate it is working?

FAIR level:
Score:

Qutput:

Metric tests:

Debug messages:

Qof3
Dof3
[1

Test:

FRSM-14-R1-1

FRSM-14-R1-2

FR5M-14-R1-3

Level:
WARNING
WARNING
WARNING
INFO

INFO

INFO
WARNING

Test name: Score:

Tests and data are provided to check that the software is operating as expected,

Automated unit and system tests are provided.

Code coverage / test coverage is reported.

Message:

Test for presence of tests and test data is not implemented.

Test for Automated unit and system tests is not implemented.

Test for code coverage is not implemented.

This test is not defined in the metric YAML and therefore not performed: FRSM-14-R1-CESSDA-1
This test is not defined in the metric YAML and therefore not performed: FRSM-14-R1-CES5DA-2
This test is not defined in the metric YAML and therefore not performed: FRSM-14-R1-CES5DA-3

Failed to check the software version identifier.

FRSM-15-R1.1 - The software source code includes licensing information for the software and any bundled external software.

FAIR level:
Score:

Qutput:

Metric tests:

Debug messages:

3of3
20of3

“license”: “Apache Licenze 2.87,
“osi_aspproved™: true,
“details_url™: “htip:\/\/spdx.crg\/licenses\/apache-2.@.himl™

Test:

FRSM-15-
R1.1-1

FRSM-15-
R1.1-2

FRSM-15-
R1.1-3

Level:
INFO
INFO
SUCCESS
SUCCESS
INFO

INFO
WARNING
INFO

INFO

Test name:

License file is included.

The source code includes licensing information for all components bundled with that
software.

Recognized licence is in SPDX format,

Message:

License verification name through SPDX registry - Apache License 2.0

Found SPDY¥ license representation - http://spdx.org/licenses/Apache-2.0,json

Found SPD¥ license representation (spdx url, osi_approved)

Found licence file: [LICEMNSE'].

Will consider all SPDX licenses as community specific licenses for FRSM-15-R1.1

This test is not defined in the metric YAML and therefore not performed: FRSM-15-R1.1-CESSDA-1
Test for license information of bundled components is not implemented [FRSM-15-R1.1-2}.

This test is not defined in the metric YAML and therefore not performed: FRSM-15-R1.1-CESSDA-3

This test is not defined in the metric YAML and therefore not performed: FRSM-15-R1.1-CESSDA-2

FRSM-16-R1.1 - Does the software metadata record include licensing information?

Maturity:

Score:

Figure 2: Web client view including tests that are not implemented.

PRl Funded by
LU the European Union

15 | Page

Maturity:

1

Result:

o

e0osc | FAIR-IMPAC ‘

4.2 Test implementations

As a proof-of-concept, we fully implemented the FAIR4RS metrics 13 and 15, both the
generic tests and the CESSDA-specific tests. The metrics and corresponding tests, proposed
in Chue Hong et al, 2023, are included below for reference, and implementation notes have
been added (see Tables 4 to 7).

Some of the tests were straightforward to implement, like the generic test FRSM-15-useful
(“The recognised licence is in SPDX format’). The required data are clearly stated (the licence
name), and the condition for passing the test is specific: the licence name must be on the
SPDX licence list.

Other tests were vague in terms of scope or strictness, or impossible to check automatically.
For example, we were not able to implement the generic test FRSM-15-important (‘The
source code includes licensing information for all components bundled with that software’),
as it required solving two hard problems: automatically recognising bundled components,
and mapping the content of the software licence to see whether it covers all those bundled
components.

The CESSDA-specific test FRSM-15-CESSDA-useful asks that ‘The build script (Maven POM,
where used) checks that the standard header is present in all source code files.”. Maven POM
checks this using a plugin, license-maven-plugin, which can be configured to fail if not all
code files contain the standard header. Otherwise, it just displays a warning. The expected
strictness of the metric test is unclear: is it enough for the plugin to be included for the test
to pass, or is the additional configuration expected? On the other hand,
FRSM-15-CESSDA-essential (‘Include a LICENSE.txt file in the root of the repository.’) is
unnecessarily strict for evaluating GitHub repositories. The licence files generated by GitHub
do not have a ‘txt’ file extension, but arguably, the compliance with the metric isn’t
increased by adding that extension after creation.

When the scope of a metric test is unclear, it is difficult to decide how many aspects need to
be considered. For example, the CESSDA-specific test FRSM-13-CESSDA-essential asks that
‘linting and other relevant checks are present in the automated build and test process (e.g.
via the Jenkinsfile)’. As the ‘other checks’ are not specified, we did not consider additional
checks apart from linting.

The ability to configure test requirements in the metrics YAML file makes it easy to extend
the scope of such vague tests as they become more specific over time, for example, to cater
to a variety of tools and programming languages.

Table 4: Description of the generic FSM-13.

Field Description
Metric Identifier | FRSM-13
Metric Name Does the software describe what is required to use it?
Description Software is made more reusable by providing suitable

machine-actionable information on dependencies, build and
configuration.

Metric Tests Essential The software has build, installation and/or execution
instructions

Funded by
the European Union

16 | Page

eosc | Far-ve:cT SR

Important | Dependencies are provided in a machine-readable format
and the building and installation of the software is

automated.
Useful N/A
Notes from FRSM-13-Essential:
Implementation - Scope:

- Where in a repository are instructions expected? The
current implementation considers the README file and
files in a ‘docs/’ folder. More locations can be
configured.

- How can instructions be recognised? The current
implementation looks for a list of configurable
keywords like ‘build’.

FRSM-13-Important:
- Scope:

- There is a wide variety of machine-readable
dependency formats. The current implementation
checks the presence of files from a configurable list of
such formats, for example a “requirements.txt” file as
commonly used in Python projects.

- A variety of automation tools is available. The current
implementation considers Jenkins and GitHub actions.

- Strictness: It would be difficult to check whether the
dependencies are up to date and whether the automation tool
covers the entire piece of software.

Table 5: Description of the CESSDA-specific version of FSM-13.

Field Description
Metric Identifier | FRSM-13-CESSDA
Metric Name Does the software describe what is required to use it?
Metric Tests Essential Dependency information and build instructions are

included in the README file. Linting and other relevant
checks are present in the automated build and test
process (e.g. via the Jenkinsfile).

Important | The README file includes a badge that links to the
automated build tool (Jenkins). Deployment to
development and staging environments is automated
(conditional on test results).

Useful The build badge indicates the status of the latest build
(passing or failing)
Notes from Both FRSM-13-CESSDA-Important and FRSM-13-CESSDA-Useful both

Implementation | test for badges. The difference in the current implementation is:
- FRSM-13-CESSDA-Important looks for a badge that links to
some Jenkins (or other automated tool) page.

Funded by
the European Union

17 | Page

eosc | Far-ve:cT SR

- FRSM-13-CESSDA-Useful looks for a badge that links to a job

status.
FRSM-13-CESSDA-Essential:

- Difficult to implement: It is unclear how linting checks are
defined in a Jenkinsfile. We could not find documentation on
whether this test should look for a specific plugin.

- Scope: What are “other relevant checks”? The -current
implementation does not consider checks other than linting,
but keywords can be added to the test requirements later on.

FRSM-13-CESSDA-Useful:

- Difficult to implement: The test requires distinguishing
between multiple environments. Searching for a section in the
tool configuration that implements that is not straightforward
as there are various ways to do so. Instead, the test currently
just looks for the keyword "deploy" in an automation tool
configuration file (again using test requirements for keyword
search).

Table 6: Description of the generic FSM-15.

Field Description
Metric Identifier | FRSM-15
Metric Name Does the software source code include licensing information for the
software and any bundled external software?
Description Clear software licensing enables reuse.
Metric Tests Essential The software includes its LICENCE file.

Important | The source code includes licensing information for all
components bundled with that software.

Useful The software licensing information is in SPDX format.
Notes from We initially extended FsF-R1.1-01M, but found this was more aligned
Implementation | with FRSM-16 (licence in metadata).

FRSM-15-Important:
- Difficult to implement: Checking component licence requires
an automated way of checking for components (=bundled
dependencies), which is less straightforward.

Table 7: Description of the CESSDA-specific version of FSM-15.

Field Description
Metric Identifier | FRSM-15-CESSDA
Metric Name Does the software source code include licensing information for the
software and any bundled external software?
Metric Tests Essential Include a LICENSE.txt file in the root of the
repository.

Funded by
the European Union

18 | Page

e0osc | FAIR-IMPAC ‘

Important Include licensing information in the source code
header.
Useful The build script (Maven POM, where used)

checks that the standard header is present in all
source code files.

Notes from These tests do not check bundled components, even though they are
Implementation | explicitly mentioned in the metric name. Is it important that bundled
external software licensing is known to be FAIR? Do the principles
apply to software as well or just generally to digital objects?

FRSM-15-CESSDA-Essential:

- Strictness: The TXT suffix is not present in licence files
automatically generated by GitHub. The current
implementation does therefore not fail when the suffix is
missing. However, the CESSDA guidance does include this
requirement. Note also that alternative spellings like LICENCE
are not recognised in this test.

FRSM-15-CESSDA-Important:

- Strictness:

- What should be recognised as a licence header? The
current implementation checks the first 30 lines of
source code files for the word “license”. This is
reasonably meaningful, but a more explicit definition
after prior investigation about what licence headers
usually look like would be preferable.

- Do all source code files need to be checked? The
current implementation parses a sample of five source
code files.

FRSM-15-CESSDA-Useful:

- Strictness: Should the test fail if the Maven plugin is not
configured to stop the build if headers are missing?

- Scope: What other tools are to be expected and tested?

Each metric test is assigned a test score. For the FAIR4RS metrics, we decided to assign each
test the same score of 1 so as not to give some metric tests a higher weight. F-UJI also
expects a maturity level for each metric test, indicating the level of compliance with the
metric assured by the test. We mapped this to the FRSM compliance levels as outlined in
Table 8. In F-UJI, the overall level of maturity reached for a metric after the evaluation is
determined as the highest maturity level from all passed tests of that metric. However, the
metric tests both in the FRSM and the FsF framework are defined with respect to
compliance levels, not maturity levels. A test for the level ‘useful’ can pass even when the
tests for ‘essential’ and ‘important’ fail, as the requirements for each level do not have to
build on each other. This results in unexpected behaviour during evaluation with F-UJI: The
overall reported maturity level for that metric will be 3 (advanced), even though the test for
compliance level ‘essential’ failed. We did not modify this behaviour as we believe a wider
discussion is necessary to determine how maturity levels should be assessed.

Funded by
the European Union

19 | Page

e0osc | FAIR-IMPAC ‘

Table 8: Mapping of compliance and maturity levels.

Compliance level as used in FAIR4RS metrics | Maturity level as expected in F-UJI

Essential 1 (initial)
Important 2 (moderate)
Useful 3 (advanced)

The focus of the domain-specific tests for CESSDA often differs from that of the generic tests,
as is expected for the discipline-specific versions because of the underlying varying
standards in different communities. Sometimes, this is expressed as the requirement of a
specific software stack, for example tests referring to Jenkins where the generic tests look at
automation tools in general, including but not limited to Jenkins. We also encountered
different interpretations of the metric. For example, FRSM-15 looks for licensing information
in both the software and any bundled external software components. The generic tests
broadly cover bundled components in the ‘important’ test. The CESSDA-specific tests instead
check for a licence header in all source code files. This might cover components bundled as
source code files, but not components bundled as binary files. While the aim of the FAIR4RS
metrics is to provide a practical translation of the principles, these kinds of discrepancies
might hinder the understanding of how to comply with the FAIR principles.

Overall, the CESSDA tests tend to be more specific, which makes them easier to assess
automatically. The generic tests on the other hand are designed to leave room for various
processes and tools, therefore requiring automatic assessment to look for a variety of
different artefacts. The possibility of defining test requirements in the metric configuration
file is helpful here, as the accepted artefacts can grow over time, and the selection can be
narrower in a disciplinary context.

A difficulty in both the generic tests and the CESSDA tests is that the strictness is often
unclear. Should a test pass when keywords are found, or should the content be checked
more rigorously? When formulating tests for a disciplinary context, it could be valuable to
specify technical details, for example the keywords, plugins or code snippets to look for in a
file. In our implementation, we decided to opt for the least strict interpretation for each test,
as we are aiming to encourage software developers to comply with the metrics. Ensuring
that every deviation from the metrics is found complicates the automatic assessment
implementation and might obfuscate clear actions that developers can take to improve the
FAIRness of their software.

Funded by
the European Union

20 | Page

eosc | FAIR-IVPACT g

5 Evaluation of tests in a disciplinary context

We tested the automatic assessment of research software in a disciplinary context using a
set of 33 repositories provided by CESSDA. We evaluated them against the two implemented
FAIR4RS metrics described above, FRSM-13 and FRSM-15, using the CESSDA-specific tests.
The results of the automatic assessment are shown in Figure 3. Note that the test identifier
nomenclature used here is adapted from the identifier scheme F-UJI expects: it includes the
FAIR principle and ends with a test number instead of the compliance level. For each metric,
test number 1 corresponds to the test for “essential”, number 2 corresponds to “important”,
and number 3 to “useful”. This is also compliant with the maturity level mapping.

fail

FRSM-13-R1-CESSDA-1 pass

FRSM-13-R1-CESSDA-2

FRSM-13-R1-CESSDA-3

FRSM-15-R1.1-CESSDA-1 A

FRSM-15-R1.1-CESSDA-2 A

FRSM-15-R1.1-CESSDA-3

0 5 10 15 20 25 30
count

Figure 3: Evaluation of 33 CESSDA repositories against CESSDA-specific metric tests.

Interestingly, the number of repositories that pass the FRSM-13 tests increases with a higher
compliance level. This might be because, as outlined in section 3, the scope of the lower
compliance level tests was in parts vague. The corresponding proof-of-concept
implementation might be too strict, disregarding other options for complying with the test.

We manually verified the assessment results for two repositories. We found that the results
for FRSM-15 were as expected both with respect to the metric test definition as proposed by
Chue Hong et al, 2023, as well as with respect to the practical implementation of these tests,
confirming that the implementations appropriately match the definition. However, we
observed that one of the repositories did not match the expected software stack (Java and
Maven), so any checks for licence headers in the build script would not be recognised by
F-UJI. We could not determine whether any such checks were included in the build process.
Further investigation would be needed to add support for other such checks, as well as a
discussion whether they should be recognised as in line with the CESSDA guidelines.

The verification of the results for FRSM-13 showed that the implementation for
FRSM-13-CESSDA-essential (FRSM-13-R1-CESSDA-1) does not use a large enough vocabulary
to recognise information about dependencies in the README file, as it did not pick up on
keywords such as “prerequisites”. This metric test also requires linting checks in the
Jenkinsfile. Both repositories use SonarQube in their Jenkinsfile, a code review tool which

Funded by
the European Union

21 | Page

e0osc | FAIR-IMPAC ‘

can provide linting information. It is unclear whether the call in the Jenkinsfile does indeed
perform linting checks. Further input from CESSDA might clarify whether this is a community
standard that should be recognised to conform with the metric. The verification of
FRSM-13-CESSDA-useful (FRSM-13-R1-CESSDA-3) highlighted an ambiguity in the metric test
definition. In both cases, the links from the README file to the Jenkins build job lead to an
inaccessible web page, and one of the badges displayed the status “not run” instead of “fail”
or “pass”. The metric test definition does not clearly state whether the badge should lead to
an accessible web page.

These results can inform further improvements of the implemented FRSM tests and inform
any potential refinement of the metric test definitions. Detailed notes are included in the
appendix (Table A.3).

We also evaluated a small set of repositories against the domain-agnostic metric tests.
FAIR-EASE provided us with a list of nine software objects of which four hosted their source
code on GitHub. The results of evaluating these four repositories against FRSM-13 and
FRSM-15 are shown in Figure 4. Note that the domain-agnostic metric tests for FRSM-13 do
not include a test of level “useful,” so only two tests are listed. FRSM-15-important
(FRSM-15-R1.1-2) was not implemented as explained above, so it automatically fails.

fail
FRSM-13-R1-1 pass

FRSM-13-R1-2

FRSM-15-R1.1-1 A

FRSM-15-R1.1-2 4

FRSM-15-R1.1-3 4

T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
count

Figure 4: Evaluation of 4 FAIR-EASE repositories against domain-agnostic metric tests.

Notably, FRSM-15-essential (FRSM-15-R1.1-1), which checks the inclusion of a licence file, is
passed for all repositories. On the other hand, FRSM-13-important (FRSM-13-R1-2) was not
passed for any of them, which could be due to the narrow implementation. There are a
multitude of machine-readable formats for dependencies, and the current implementation
only considers a small set as proof of concept.

Again, we manually verified the results for two of the repositories. This confirmed that
further machine-readable formats should be taken into account for FRSM-13-important as
one of the repositories included a Maven POM file that is not recognised by the current
implementation.

Funded by
the European Union

22 | Page

reosc 1 A

The evaluation results for each software repository are listed in the appendix of this
document (Tables A.1 and A.2).

Funded by
the European Union

23 | Page

eosc | FAIR-IVPACT g

6 Conclusions and next steps

We extended F-UJlI to automatically assess FAIR4RS metrics. The process was mostly
straightforward due to the modularity of the tool design. Our contributions to the
documentation specifically address the addition of new metrics and expanding existing test
functions, which will lower the entry barrier for other contributors. Small refactoring steps in
F-UJI, as well as keeping this documentation updated and easily accessible, will allow a wider
community to contribute their own discipline-specific metric implementation.

We found that defining metric tests with clear technical requirements with respect to scope
and strictness eases the implementation. Discipline-specific tests tend to have a more
narrow definition, for example requiring specific software stacks, whereas the generic tests
are expected to allow for a variety of possible tools and techniques. The discipline-specific
tests are thus easier to implement. As our implementation is a proof-of-concept however,
the practical implementations of the generic tests don’t always cover the full scope allowed
in the metric test description. The returned score is thus often lower than it would be if
support for more tools or file formats was added. Input from the wider community on such
tools and formats will be vital to the future improvement of these practical
implementations. Fortunately, due to the high degree of configurability in F-UJI, the
implementation can be extended to cover a wider range without major code changes.

The strictness of discipline-specific metric tests raises a question about the expected next
steps for the developers of the research software. If they achieve a low score with respect to
the discipline-specific metric tests because they chose a different mechanism to comply with
a metric than widely used in the discipline, should they switch to the expected mechanism?
Or should the discipline-specific metric tests act as recommendations, to point developers to
commonly used mechanisms in case the software object is not at all compliant with the
metric? The former might be discouraging for the developers, instead of helping them
improve the FAIRness of their software. In the latter case, it might be more helpful to use
the discipline-specific tests for discipline-tailored feedback rather than for assessment.
These considerations are to be discussed in the wider FAIR-IMPACT project and inform
future activities.

Our contributions have been merged back into the original F-UJI repository, maintained by
PANGAEA. The next version release will include our changes and make the implemented
tests available through their web client. Our extension will be presented in a workshop
session at Collaborations Workshop 2024 followed by a discussion about the practical
implementation of the metric tests, addressing some of the challenges we observed with a
wider community. The updated version of F-UJI will also be used in the FAIR-IMPACT Support
Action “Assessing and improving existing research software”!’, which, depending on the

® Organised by the Software Sustainability Institute (SSI), more information available at

https://www.software.ac.uk/workshop/collaborations-workshop-2024-cw24
7 https://fair-impact.eu/support-offer-1-assessment-and-improvement-research-software

Funded by
the European Union

24 | Page

eosc | Far-vCT AR

participants’ research backgrounds, should allow a broader evaluation on a wider range of
research software objects. Both events will provide valuable insights into existing
mechanisms and the expectations developers have regarding the automated assessment.
The results will inform future improvements.

Funded by
the European Union

25 | Page

Expanding FAIR solutions acrass EQSC _

O€e0SC

7 References

Chue Hong, N. P, Katz, D. S., Barker, M., Lamprecht, A.-L., Martinez, C., Psomopoulos, F. E.,
Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., Honeyman, T., Struck, A., Lee,
A, Loewe, A., van Werkhoven, B., Jones, C., Garijo, D., Plomp, E., Genova, F., ... RDA
FAIR4RS WG. (2022). FAIR Principles for Research Software (FAIR4ARS Principles) (1.0).
Zenodo. https://doi.org/10.15497/RDA00068

Chue Hong, N., Breitmoser, E., Antonioletti, M., Davidson, J., Garijo, D., Gonzalez-Beltran, A.,
Gruenpeter, M., Huber, R., Jonquet, C., Priddy, M., Shepeherdson, J., Verburg, M., &
Wood, C. (2023, October 27). D5.2 - Metrics for automated FAIR software assessment
in a disciplinary context. Zenodo. https://doi.org/10.5281/zenodo.10047401

Devaraju, A., & Huber, R. (2020). F-UJI - An Automated FAIR Data Assessment Tool. Zenodo.
https://doi.org/10.5281/zenodo.6361400

Devaraju, A., & Huber, R. (2021). An automated solution for measuring the progress toward
FAIR research data. Patterns, 2(11), 100370.
https://doi.org/10.1016/j.patter.2021.100370

Devaraju, A., Huber, R., Mokrane, M., Herterich, P., Cepinskas, L., de Vries, J., L'Hours, H.,
Davidson, J., & Angus White. (2022). FAIRSFAIR Data Object Assessment Metrics (0.5).
Zenodo. https://doi.org/10.5281/zen0do.6461229

Felden, J., Moller, L., Schindler, U. et al. PANGAEA - Data Publisher for Earth & Environmental
Science. Sci Data 10, 347 (2023).
https://doi.org/10.1038/s41597-023-02269-x

Funded by
the European Union

26 | Page

https://doi.org/10.15497/RDA00068
https://doi.org/10.5281/zenodo.10047401
https://doi.org/10.5281/zenodo.6361400
https://doi.org/10.1016/j.patter.2021.100370
https://doi.org/10.5281/zenodo.6461229
https://doi.org/10.1038/s41597-023-02269-x

O€e0SC

FAIR-IMPACT

Expanding FAIR solutions across EOSC

8 Appendices

8.1 Example of a metric definition in F-UJI using YAML

metric_identifier: FRSM-15-R1.1
metric_number: 15
metric_short_name: Software Source Code License
metric_name: The software source code includes licensing
information for the software and any bundled external software.
description: It is dimportant that software licences are included
with the source code as many tools and processes look for licensing
information there to determine licence compatibility.
fair_principle: R1.1
target: Software
evaluation_mechanism: Metric evaluation is based on the presence of
a machine readable license file.
test_scoring_mechanism: cumulative
metric_tests:
- metric_test_identifier: FRSM-15-R1.1-1
metric_test_name: License file is included.
metric_test_score: 1
metric_test_maturity: 1
- metric_test_identifier: FRSM-15-R1.1-2
metric_test_name: The source <code includes licensing
information for all components bundled with that software.
metric_test_score: 1
metric_test_maturity: 2
- metric_test_identifier: FRSM-15-R1.1-3
metric_test_name: Recognized licence is in SPDX format.
metric_test_score: 1
metric_test_maturity: 3
created_by: FAIR4RS
date_created: 2023-11-10
date_updated: 2023-12-13
version: 0.1
total_score: 3

Listing A.1: YAML definition of a metric.

8.2 Repository-level evaluation results

Table A.1: Results for domain-agnostic evaluation of FAIR-EASE software repositories.

FRSM-13 |FRSM-13 | FRSM-15 (FRSM-15 FRSM-15

URL -R1-1 -R1-2 -R1.1-1 |[-R1.1-2 (-R1.1-3
https://github.com/HCBScienceProducts/CANY

ON-B fail fail pass fail pass
https://github.com/ESSI-Lab/DAB pass fail pass fail pass

27 | Page

Funded by
the European Union

https://github.com/HCBScienceProducts/CANYON-B
https://github.com/HCBScienceProducts/CANYON-B
https://github.com/ESSI-Lab/DAB

eosc | Far-vCT AR

https://github.com/gher-uliege/DIVAnd.jl fail fail pass fail pass

https://github.com/Geomatys/examind-commu
nity pass fail pass fail fail

Table A.2: Results for CESSDA-specific evaluation of CESSDA software repositories.
FRSM-13- |FRSM-13- |[FRSM-13- |FRSM-15- | FRSM-15- |FRSM-15-
R1-CESSD |R1-CESSD |R1-CESSD |R1.1-CESS |R1.1-CESS |R1.1-CESS
URL A-1 A-2 A-3 DA-1 DA-2 DA-3

https://github.com/cessda/cess
da.cvs.contentguide fail fail fail pass fail fail

https://github.com/cessda/cess
da.metadata.profiles fail fail fail pass fail fail

https://github.com/cessda/cess

da.cdc.versions fail fail fail pass fail fail

https://github.com/cessda/cess
da.cafe.waiter fail pass pass pass fail fail

https://github.com/cessda/main
tenance.notification fail fail fail fail fail fail

https://github.com/cessda/cess

handler fail fail pass pass fail fail

https://github.com/cessda/cess

da.cafe.coffee.carsten fail fail fail pass fail fail

https://github.com/cessda/cess
da.cdc.aggregator.doc-store fail fail pass pass fail fail

https://github.com/cessda/cess
da.documentation.theme fail fail fail pass fail fail

https://github.com/cessda/cess
.m .harv r fail pass pass pass pass pass

https://github.com/cessda/cess
da.training-resources.issues fail fail fail fail fail fail

https://github.com/cessda/cess
da.cmv fail pass pass pass fail fail

https://github.com/cessda/cess
da.code.nesstar fail fail fail pass fail fail

https://github.com/cessda/cess

da.twitter.api.stats fail fail pass pass fail fail

Funded by
the European Union

28 | Page

https://github.com/gher-uliege/DIVAnd.jl
https://github.com/Geomatys/examind-community
https://github.com/Geomatys/examind-community
https://github.com/cessda/cessda.cvs.contentguide
https://github.com/cessda/cessda.cvs.contentguide
https://github.com/cessda/cessda.metadata.profiles
https://github.com/cessda/cessda.metadata.profiles
https://github.com/cessda/cessda.cdc.versions
https://github.com/cessda/cessda.cdc.versions
https://github.com/cessda/cessda.cafe.waiter
https://github.com/cessda/cessda.cafe.waiter
https://github.com/cessda/maintenance.notification
https://github.com/cessda/maintenance.notification
https://github.com/cessda/cessda.cdc.aggregator.oai-pmh-repo-handler
https://github.com/cessda/cessda.cdc.aggregator.oai-pmh-repo-handler
https://github.com/cessda/cessda.cdc.aggregator.oai-pmh-repo-handler
https://github.com/cessda/cessda.cafe.coffee.carsten
https://github.com/cessda/cessda.cafe.coffee.carsten
https://github.com/cessda/cessda.cdc.aggregator.doc-store
https://github.com/cessda/cessda.cdc.aggregator.doc-store
https://github.com/cessda/cessda.documentation.theme
https://github.com/cessda/cessda.documentation.theme
https://github.com/cessda/cessda.metadata.harvester
https://github.com/cessda/cessda.metadata.harvester
https://github.com/cessda/cessda.training-resources.issues
https://github.com/cessda/cessda.training-resources.issues
https://github.com/cessda/cessda.cmv
https://github.com/cessda/cessda.cmv
https://github.com/cessda/cessda.code.nesstar
https://github.com/cessda/cessda.code.nesstar
https://github.com/cessda/cessda.twitter.api.stats
https://github.com/cessda/cessda.twitter.api.stats

eosc | Far-vCT AR

https://github.com/cessda/cess

da.cmv.console fail pass pass pass pass pass

https://github.com/cessda/cess
da.cdc.aggregator.client fail fail pass pass pass fail

https://github.com/cessda/cess
da.resource-directory.issues fail fail fail fail fail fail

https://github.com/cessda/cess
da.cvs.userguide fail fail fail pass fail fail

https://github.com/cessda/cess
da.cmv.documentation fail fail fail pass fail fail

https://github.com/cessda/cess
da.cdc.osmh-indexer.cmm fail pass pass pass pass pass

https://github.com/cessda/cess
da.code.dataverse fail fail fail pass fail fail

https://github.com/cessda/cess
da.cmv.core fail pass pass pass pass pass

https://github.com/cessda/cess

da.cdc.fuji.runner fail pass pass pass fail fail

https://github.com/cessda/cess
da.cdc.aggregator.shared-library |fail fail pass pass fail fail

https://github.com/cessda/cess
da.cdc.userguide fail fail fail pass pass fail

https://github.com/cessda/egb.

colectica.issues fail fail fail fail fail fail

https://github.com/cessda/cess
da.cdc.aggregator.devguide fail fail fail fail fail fail

https://github.com/cessda/cess
da.cvs.two fail pass pass pass pass pass

https://github.com/cessda/cess
da.cdc.searchkit pass pass pass pass fail fail

https://github.com/cessda/cess
da.cafe.cashier fail fail fail pass fail fail

https://github.com/cessda/cess

da.dmeg-dag.issues fail fail fail fail fail fail

https://github.com/cessda/cess

da.cmv.server fail pass pass pass pass pass

Funded by
the European Union

29 | Page

https://github.com/cessda/cessda.cmv.console
https://github.com/cessda/cessda.cmv.console
https://github.com/cessda/cessda.cdc.aggregator.client
https://github.com/cessda/cessda.cdc.aggregator.client
https://github.com/cessda/cessda.resource-directory.issues
https://github.com/cessda/cessda.resource-directory.issues
https://github.com/cessda/cessda.cvs.userguide
https://github.com/cessda/cessda.cvs.userguide
https://github.com/cessda/cessda.cmv.documentation
https://github.com/cessda/cessda.cmv.documentation
https://github.com/cessda/cessda.cdc.osmh-indexer.cmm
https://github.com/cessda/cessda.cdc.osmh-indexer.cmm
https://github.com/cessda/cessda.code.dataverse
https://github.com/cessda/cessda.code.dataverse
https://github.com/cessda/cessda.cmv.core
https://github.com/cessda/cessda.cmv.core
https://github.com/cessda/cessda.cdc.fuji.runner
https://github.com/cessda/cessda.cdc.fuji.runner
https://github.com/cessda/cessda.cdc.aggregator.shared-library
https://github.com/cessda/cessda.cdc.aggregator.shared-library
https://github.com/cessda/cessda.cdc.userguide
https://github.com/cessda/cessda.cdc.userguide
https://github.com/cessda/eqb.colectica.issues
https://github.com/cessda/eqb.colectica.issues
https://github.com/cessda/cessda.cdc.aggregator.devguide
https://github.com/cessda/cessda.cdc.aggregator.devguide
https://github.com/cessda/cessda.cvs.two
https://github.com/cessda/cessda.cvs.two
https://github.com/cessda/cessda.cdc.searchkit
https://github.com/cessda/cessda.cdc.searchkit
https://github.com/cessda/cessda.cafe.cashier
https://github.com/cessda/cessda.cafe.cashier
https://github.com/cessda/cessda.dmeg-dag.issues
https://github.com/cessda/cessda.dmeg-dag.issues
https://github.com/cessda/cessda.cmv.server
https://github.com/cessda/cessda.cmv.server

O€e0SC

FAIR-IMPACT

Expanding FAIR solutions acros

s EQSC

https://github.com/cessda/cess

da.guidelines.public

fail fail

fail

pass fail fail

Table A.3: Manual verification notes for CESSDA-specific evaluation. Discrepancies between the
expected and observed outcome are highlighted in bold.

Software
Object

Metric Test
Identifier

Metric
Test
Outcome

Expected
metric test
outcome

Comment

CESSDA Café:
Cashier®®

FRSM-13-R1-
CESSDA-1

fail

unclear

Instead of “dependencies”, the
README file lists
“prerequisites”, which is not
recognised during automatic
assessment. It possibly should
be recognised.

The Jenkinsfile does not
explicitly define a linting check,
but it uses SonarQube, a code
review tool that might include
linting checks. This should
possibly be recognised in the
assessment. It is unclear what
other checks should be
included.

FRSM-13-R1-
CESSDA-2

fail

fail

The README includes a link to
the Jenkins job, but not through
a badge. Incidentally, the link
leads to a “Server not found”
error, which is not considered in
the test definition but should
possibly be.

A Docker image is deployed
automatically regardless of the
results of tests. There is no
distinction between different
environments, e.g. development
and staging. This part of the test
implementation passes (though
it should not), as it can only
evaluate whether the Jenkinsfile
includes a deployment stage.

FRSM-13-R1-

fail

fail

There is no build badge.

'8 https://github.com/cessda/cessda.cafe.cashier

Funded by

30 | Page

the European Union

https://github.com/cessda/cessda.guidelines.public
https://github.com/cessda/cessda.guidelines.public

eosc | Far-vCT AR

CESSDA-3
FRSM-15-R1.1 | pass pass LICENSE.txt was found.
-CESSDA-1
FRSM-15-R1.1 | fail fail No licence headers in the source
-CESSDA-2 code.
FRSM-15-R1.1 | fail unclear The project uses .NET, not
-CESSDA-3 Maven, so the implementation
would not recognise checks for
a licence header if there are any.
We cannot determine if there
are any.
CESSDA FRSM-13-R1- | fail fail Dependencies are included but
Metadata CESSDA-1 not recognised by the test as
Validator they are listed as “Dependency
Core® information”. There are no
explicit build instructions, only
instructions for test execution.
The Jenkinsfile does not
explicitly define a linting check,
but it uses SonarQube, a code
review tool that might include
linting checks. This should
possibly be recognised in the
assessment. It is unclear what
other checks should be
included.
FRSM-13-R1- | pass pass There is a build badge.
CESSDA-2
FRSM-13-R1- | pass unclear The build badge points to an
CESSDA-3 inaccessible Jenkins job (“Not
found”), and it indicates that the
build job has “not run”. It is
unclear whether this qualifies
for the required indication of
the status of the latest build.
FRSM-15-R1.1 | pass pass LICENSE file was found (though
-CESSDA-1 not .txt).

9 https://github.com/cessda/cessda.cmv.core

Funded by
the European Union

31| Page

eosc | Far-vCT AR

FRSM-15-R1.1 | pass pass Licence headers are included.
-CESSDA-2

FRSM-15-R1.1 | pass pass The Maven POM file includes
-CESSDA-3 the license-maven-plugin, and

the build fails when headers are
missing.

Table A.4: Manual verification notes for generic evaluation. Discrepancies between the expected and
observed outcome are highlighted in bold.

Software Metric Test Metric Expected Comment
Object Identifier Test metric test
Outcome | outcome
CANYON-B*® | FRSM-13-R1-1 | fail fail The README file does not
include any instructions.
FRSM-13-R1-2 | fail fail The dependencies are not
provided in a separate
machine-readable format.
Building and installation are not
automated.
FRSM-15-R1.1 | pass pass A licence is included.
-1
FRSM-15-R1.1 | fail unclear There are no bundled
-2 components. Possibly the test
should pass. Currently, the test
implementation is not able to
recognise bundled components
so the test fails automatically.
FRSM-15-R1.1 | pass pass The included GPL-3.0 licence is
-3 on the SPDX licence list.”!
Discovery FRSM-13-R1-1 | pass pass The README includes
and Access instructions for installation,
Broker (DAB) compilation, launching and
Community building a Docker image.
Edition (CE)*
FRSM-13-R1-2 | fail fail The repository includes a Maven
POM file including

2 https://github.com/HCBScienceProducts/CANYON-B
2 https://spdx.org/licenses/
2 https://github.com/ESSI-Lab/DAB

Funded by
the European Union

32 | Page

eosc| Far-vacT AR

machine-readable
dependencies. This is not
recognised by the generic
metric test implementation, but
it should be.

Build and installation do not
seem to be automated.

FRSM-15-R1.1 | pass pass Two licence files are included

-1 (LICENSE and LICENSE.txt). They
seem to be identical.

FRSM-15-R1.1 | fail unclear It is wunclear whether the

-2 software contains bundled
components.

FRSM-15-R1.1 | pass pass The included AGPL-3.0 licence is

-3 on the SPDX licence list.

Funded by
the European Union

33 | Page

