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Note: This documents acts as an introduction to the method of road detection that was
developed within the project.
Here, we combine background information and runnable
Python code. By running this embedded code, it is possible
to either run inference using a
provided pre-trained model on new data, or to train a new model provided a reference
road dataset is given along with satellite imagery.

Note: Please see the accompanying project report for more information on the algorithms,
the results and discussion.
A pdf version of that project report is available here.

Introduction
Caribou populations have been in decline for many years due to a variety of human-caused
factors, including the construction of forest roads. To properly protect and manage caribou
populations, it is important to identify and map their habitats and the pathways of disturbance
caused by forest roads.

Roads act as more than linear disturbances separating two areas of closed canopies. First, they
introduce and allow human access to remote areas, which would otherwise be very limited. This
comes with increased human presence, leading to e.g. increased noise. Furthermore, roads allow
predator movement into the caribou habitat areas. Especially Wolves take advantage of roads for
fast travel, in turn threatening Caribou.

Remotely sensed satellite data can be used to map caribou habitat and to identify roads that
could be having a negative impact on caribou populations. By using models that incorporate
satellite data, it is possible to understand and manage the effects of roads on caribou populations
and develop strategies to mitigate their impact.

Background

Satellite imagery is becoming available at increasing resolutions, and over large areas, with high
temporal density.
For example, PlanetLabs creates a monthly worldwide mosaic from data

file:///c%3A/Users/Lukas/Documents/Projects/road-cnn/repo/report/Report%20-%20CNN%20Extraction%20of%20Forest%20Road%20Information.pdf
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recorded by a network of roughly 250 miniature satellites.
The high temporal density ensures that
cloud-free images can be selected in mosaicing. With common ground sampling
distances of 3-5
meters, linear features such as forest roads are well visible in the images. Especially when the
spectral contrast to the surrounding pixels is large, as it is the case for unpaved roads in densely
wooded areas,
roads can be identified easily.

In contrast, existing road data in remote areas is often poor and outdated. Furthermore, roads
that have been
closed off still provide access for predators, even if human presence is reduced.
Such roads may have been removed
from a dataset, as they are not considered drivable, yet
continue to influence habitability.

Method proposal

The proposed method consists of a convolutional neural network to predict the probability of a
road occurring for each
pixel of the input images. The network thereby considers spatial
neighbours on multiple scales to improve the predictions.
Evaluation of the classifier's
performance is carried out using a buffering approach, which allows for varying road widths
and
to consider spatial misalignment or inaccuracies in the digitization. Finally, the raster probabilities
are
converted to a vectorized dataset which allows further analyses to be carried out. In this
document, we show (a) how
a CNN can be used to derive roads, (b) how these roads can be
vectorized, and (c) how a road density layer can be calculated
from these maps.

Installation and package requirements
The method was developed and implemented in Python, QGIS, and R. The following packages are
required to run the code:

pytorch

matplotlib

scikit-learn

tqdm

gdal (via osgeo)

ogr (via osgeo)

xarray

rioxarray


To set up a Python-environment with these (and a few extra) packages, you can run the following
command (assuming conda has been installed):

conda env create -f cnn_env.yml


To enable GPU accelerated training and inference of the CNN, CUDA needs to be installed. Follow
the instructions here.
While not strictly required, it is highly recommended to utilize the GPU.

For the preparation of the reference dataset and the seeds for the vectorization we use QGIS.

https://developer.nvidia.com/cuda-downloads
https://qgis.org/en/site/forusers/download.html
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In the road vectorization step, we use vecnet (Roussel et al., 2023, submitted). This is
implemented in an R package, which can be installed as such:

install.packages('remotes', 'terra', 'sf')

remotes::install_github("Jean-Romain/vecnet")


Data and data management

Input datasets

The following datasets were considered as input to the neural network:

RapidEye satellite imagery (2017) with 5 bands and 5 m pixel size
Planet satellite imagery (2017) with 4 bands and 3 m pixel size
Planet satellite imagery (2021) with 4 bands and 3 m pixel size

Furthermore, a road network layer was supplied as a shapefile. As the input dataset was supplied
in tiles, a virtual raster dataset was created.

The final model was using Planet imagery from 2017 with three bands (RGB). Compared to the
four-band RGBI, the difference in prediction quality is marginal, yet the runtime is significantly
lower. RapidEye imagery was tested as it was used by Kearney et al. (2021) for a similar task.
However, the RapidEye constellation has been discontinued since April 2020, while imagery from
Planet's Dove constellation continues to be available as of 2023.

Dataloader framework

To enable processing these different datasets, a framework for loading raster datasets was
developed and implemented in gdal_dataloader.py in the class RoadDataset.
The basic idea is
the following:

1. A gdal-compatible raster dataset with multiple bands as features is given
2. An aligned (exactly the same pixel-grid) binary raster is given as training labels (1=road,

0=no road)

1. This raster can e.g. be created from a vector layer by using
qgis_prepare_binary_reference.model3 in QGIS. Simply
load the vector dataset
and the raster imagery, then drag+drop the QGIS model into the main window. A
popup will
appear and ask you to select input layers and provide an output path:

https://www.r-project.org/
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Be sure to save the output to an actual file rather than a temporary layer.

2. An alternative without QGIS would be using gdal_rasterize. The commands to
create the dataset are

gdal_create -if [feature_raster.tif] [label_raster.tif] -burn 
0 -bands 1 -ot Byte

gdal_rasterize -burn 1 -l [layername] [shapefile.shp] 
[label_raster.tif]


3. The framework then does a scan of the input dataset and identifies
1. locations of 244x244 pixels where too few pixels are given as 'road' in the training

labels (user defined threshold)
2. (optional) locations outside a user-provided polygon or locations where NaN values

fully cover the 244x244 pixel footprint.
3. (optional, when using SplitRoadDataset) which of the k spatial splits the sample

belongs to (see below for details)
4. The overlap of the locations can be set by the user and is 50% by default (after selecting

244x244 pixels, the center
of the aoi is moved by 122 px).
5. A list of locations (ids) with valid training samples is generated.

Additionally, the gdal_dataloader has a function to provide a spatial split of the data into
training and test/validation
data. The spatial split is created with a number of k folds, where the
algorithm tries to make them as square as possible.
Furthermore, not all values of k are valid
(prime numbers are not, for example). In these cases, a larger or smaller number of
folds may be
created. To use this feature, load the data using the SplitRoadDataset rather than the
RoadDataset class.

The value k_split_approx is given as a parameter when creating the dataset and internally calls
gdal_dataloader.spatial_split(k), which returns a list of coordinate tuples [x_min,
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x_max, y_min, y_max] for each of the approximate k folds.
The patches of 244x244 pixels are
then assigned to each of the k folds during the data scanning.

Which of the k splits should be used for training/testing can be set by using the
.set_iterate_set() function of the SplitRoadDataset.
Subsequent calls to __getitem__ (as
e.g. done when using a torch.DataLoader) will only return samples in the selected subsets
(identified by their indices).

Example code

Note: Example data and a trained model are available as a release on the GitHub
repository

The following snippet loads a raster dataset with multiple bands and one (binary) label into a
SplitRoadDataset:

from gdal_dataloader import SplitRoadDataset


train_set = SplitRoadDataset(r"planet_data.tif",

                             r"planet_data_label.tif",

                             None, k_split_approx=10, 
augmentation=False, 

                             overlap=122, num_channels=3, 
min_road_pixels=-1)


The first two arguments are the raster feature (multiband) and labels, the third argument is an
optional shapefile.

Setting augmentation to True enables flipping and rotating the image segments to create more
training data (7-times increase). The overlap is given in pixels
and refers to how much the
window of 244x244 pixels moves with each step. We want to use a split of k=10, and read the first
3 channels
(num_channels=3, corresponding to Red, Green, and Blue) in the input data. Further,
we impose no requirement of minimum pixels classified
as road in each data sample
(min_road_pixels=-1). Since patches with no roads present only aid little in the detection of
actual roads,
setting this value >0 would increase the learning speed by skipping these patches all
together and focussing on the locations where roads are,
in fact, present in the reference data.

Network design and architecture
As a network, the SegNet architecture is used (Badrinarayanan et al., 2015,
https://arxiv.org/abs/1511.00561).
Using an existing architecture (i.e., number of layers, size of
filters, number of input bands) has the
advantage that a pretrained network can be used. This
speeds up training immensely, as the weights
are not initialized randomly, in which case the
network would have to learn to recognize basic shapes (corners, edges, ...)
first.

SegNet consists of two parts: the encoder, where spatial information is aggregated iteratively by
repeated convolutional
and pooling layers in the network, and the decoder, where this

https://github.com/lwiniwar/roadCNN/releases
file:///c%3A/Users/Lukas/Documents/Projects/road-cnn/repo/report/report_tmp.html
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information is subsequently upscaled to the original
raster, as every input pixel should be
assigned exactly one output value.

For SegNet, the "VGG16" pretrained weights can be used in the encoder part of the network.
Subsequently, these
weights are trained at half the learning rate compared to the decoder part
(which is initialized randomly). This allows
the network to adapt to the different domain (VGG16 is
trained on the ImageNet dataset), while still retaining information
it has learned.

Architecture

SegNet takes a (by default) 3-band raster, which is processed in patches of max. 244x244 px size.
Smaller patches can
be used facultatively. A larger patch size corresponds to a larger focal area,
i.e., more neighbourhood information
available to the neural network, at a cost of a longer
processing time and larger memory footprint.

The architecture of SegNet is as follows:

Encoder:

1. Convolutional block (2 layers) with 3x3 kernel, 2x 64 filters, and ReLU activation
2. Max pooling layer with 2x2 pooling size
3. Convolutional block (2 layers) with 3x3 kernel, 2x 128 filters, and ReLU activation
4. Max pooling layer with 2x2 pooling size
5. Convolutional block (3 layers) with 3x3 kernel, 3x 256 filters, and ReLU activation
6. Max pooling layer with 2x2 pooling size
7. Convolutional block (3 layers) with 3x3 kernel, 3x 512 filters, and ReLU activation
8. Max pooling layer with 2x2 pooling size
9. Convolutional block (3 layers) with 3x3 kernel, 3x 512 filters, and ReLU activation

10. Max pooling layer with 2x2 pooling size

Each convolutional block is accopanyied by a batch normalization layer.

Decoder:

1. Up-sampling layer with 2x2 up-sampling size
2. Convolutional block (3 layers) with 3x3 kernel, 3x 512 filters, and ReLU activation
3. Up-sampling layer with 2x2 up-sampling size
4. Convolutional block (3 layers) with 3x3 kernel, 3x 512 filters, and ReLU activation
5. Up-sampling layer with 2x2 up-sampling size
6. Convolutional block (3 layers) with 3x3 kernel, 3x 256 filters, and ReLU activation
7. Up-sampling layer with 2x2 up-sampling size
8. Convolutional block (2 layers)with 3x3 kernel, 2x 128 filters, and ReLU activation
9. Up-sampling layer with 2x2 up-sampling size

10. Convolutional layer with 3x3 kernel, 64 filters, and ReLU activation
11. Convolutional layer with 3x3 kernel, 2 filters (corresponding to the number of output

classes), and Softmax activation
12. Classification via argmax

The output of the network is a raster with two classes (road and no road) with a probability value
for each class.

https://www.image-net.org/index.php
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In the program code, the architecture is created in SegNetModule.py. To allow for a different
number of input bands
than 3, the user can give the number of bands as an additional argument.
In the first layer, transitioning from 3 bands
by default to 64 bands, the weights of the first band
(Red) are copied for all bands beyond Red, Green, and Blue.
The assumption here is that all bands
are equally able to identify basic geometric shapes, and as the weights are adapted
during
training on the satellite imagery anyway, pretrained weights from either band will help. After the
first layer,
no changes to the architecture are made, as it is assumed that the additional
information from the added bands can be
incorporated in the existing 64 filters (corresponding to
64 bands).

Hyperparameter tuning

The following hyperparameters were selected and tuned to their final values:

Optimizer: Adam (Adaptive Moment Estimation) (betas=(0.9, 0.999),
weight_decay=0.0005)
Base learning rate: 0.0001 for the decoder, 0.00005 for the encoder
Learning rate scheduler: decrease learning rate after each full epoch (each full pass of the
training set), by a factor of 0.1 (divide by 10)
Batch size: 16
Number of epochs: 3

Hyperparameter tuning was not carried out systematically, but rather by selecting appropriate
values from previous research
(mainly from the original SegNet publication, Badrinarayanan et al.,
2015) and experimenting with selected values
(the batch size, the number of epochs, and the
initial learning rate) within the constraints given by system memory (64 GB),
realistic training time
(< 1 week for a single experiment) and dataset size.

Training and Evaluation

The training and evaluation of the neural network are shown in the CNN_CV_eval.py file. The
main functions are explained here:

Assume, training data has been loaded as above (cf. Section Data and data management). Using
the 10
splits we have created, we want to train on splits 1-6 and 8-9, while we keep 0 and 7 for
testing. So, we first
duplicate the training set:

import copy

test_set = copy.deepcopy(train_set)  # makes a copy of all elements in 
train_set


Then, we set the indices for the iterate sets of the respective SplitRoadDatasets:

train_index = [1,2,3,4,5,6,8,9]

test_index = [0,7]

train_set.set_iterate_set(train_index)

test_set.set_iterate_set(test_index)


https://arxiv.org/abs/1511.00561
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Next, we initialize the network. Note that this step downloads the VGG16 weights from pytorch,
if they are not
available in the working directory. Then, all weights are initialized randomly and the
encoder weights are overwritten
by the VGG16 data. As the network needs to be adapted for a
different number of input channels, it is adamant to set
this number on initializing the neural net.

from CNN_CV_eval import create_net

net = create_net(num_channels=3)


Before training the network, hyperparameters are defined. Here, we simply collect them in a dict:

HP = {

   "epochs": 10,

   "base_lr": 0.0001,

   "batch_size": 16,

   "weights": [0.05, 0.95]

}


Here, epochs refers to the number of full runs through the training data that should be
undertaken. base_lr is
the initial or base learning rate for the ADAM optimizer, batch_size is
the number of training/testing samples that
are passed through the network in a single run
(decrease this value if you run into VRAM issues). Finally, weights
are weights passed to the loss
function in order to give priority to learning roads. Errors in the road class then influence
the
neural network much more than errors in the no road class. This is an attempt to counteract the
predominance of
no-road-pixels in the training dataset.

Finally, we use the run_single_train_test-Function to run one set of training (for epochs as
defined in the
hyperparameters) and testing:

from CNN_CV_eval import run_single_train_test

from pathlib import Path

run_single_train_test(train_set, test_set, net, HP, 
out_folder=Path('temp'))


The network then starts training. Example plots showing (1) an RGB representation of the current
dataset, (2) the
binary training labels, and (3) the pseudo-probability map are created every 100
iterations (with a batch size of 16,
this means every 1600th input set). Similarly, the loss curve
(training loss) is plotted every 100 iterations. Here are
examples of how these plots look like:
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After 280 batches:

After 330 batches:

After 1 epoch (10,000 batches): 

After 3 epochs (end of training): 

After completing a full epoch, the network weights are written to a file as backup. All files are
written to the out_folder
directory as given above.
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After finishing the last epoch, the network is switched to evaluation mode and the test_set data
is fed through. As
the patches used as input are (typically) overlapping, most pixels (if not all) are
classified multiple times. To
get one final result raster, multiple options to merge these datasets
are implemented:

average: Averages pseudo-probabilities over all patches a pixel is contained within

linear: Same as average, but using the distance from the patch center as weights

flatroof: Same as linear, but clipping weights for all points closer than patch_size//4 to
the maximum value

gaussian: Same as average, but using a 2D Gaussian centered on the patch center, and
with a variance of patch_size//4 as weights

center: Cutting out the center of each patch such that the concatenation of the cut-out
parts makes a complete image.

The actual size of the cut-out parts depends on the patch size and the defined overlap.
Currently, this only works
if the overlap is exactly half the patch size.

By default, the average method is used.

To continue training from an existing checkpoint, weights can be reloaded as follows:

import torch

net.load_state_dict(torch.load(r"path/to/segnet128_final.pth"), 
strict=False)


And then running the training method as normal. To run training and testing separately (and also
to use one of
the other options for merging the overlapping test datasets), the following methods
can be used:

import torch


train_loader = torch.utils.data.DataLoader(train_set, batch_size=16, 
shuffle=True, pin_memory=True, num_workers=5)

test_loader = torch.utils.data.DataLoader(test_set, batch_size=16, 
shuffle=True, pin_memory=True, num_workers=5)


WEIGHTS = [0.05, 0.95]


train(net, train_loader, weights=WEIGHTS, base_lr=0.01, 
out_folder='temp', epochs=10)

test(net, test_loader, test_set, 'temp_test')


Ensure the output folders exist before attempting to write to them.

Running inference
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g
To simply predict roads in new (previously unseen by the network) image data, it is possible to
use a pre-trained classifier. Assume a pre-trained model is available in a file
segnet128_final.pth. Similar to above, the weights are loaded after initializing the network
with the correct number of layers:

import torch

from CNN_CV_eval import init_net


net = init_net(num_channels=3)

net.load_state_dict(torch.load(r"path/to/segnet128_final.pth"), 
strict=False)


Next, the dataset is specified. As we will want to run wall-to-wall predictions, we disable any
subselection or augmentation, but use a 50% overlap to minimize any edge-effects.

test_set = RoadDataset(

   r"E:\Data\lwiniwar\aoi_rasters\ps-tile.tif",

   r"E:\Data\lwiniwar\aoi_rasters\ps_label_notrails.tif",

   None, cache=False, augmentation=False, overlap=112, num_channels=3,

   min_road_pixels=-1, dilate_iter=1, 

   minv=[49, 155, 157], maxv=[961, 1181, 1316])


   test_loader = torch.utils.data.DataLoader(test_set, 
batch_size=HP['batch_size'], shuffle=False, pin_memory=True, 
num_workers=5)


Then, we can run inference on this data, and save the output to a specified directory:

test(net, test_loader, test_set, Path('./output_dir'),

             merge_option=['gaussian'])


Here, we also specified the option 'gaussian' for merging the overlapping tiles.

Analysis of results
The results were analysed on two different, spatially separated test and validation datasets. The
figure below shows the location
of these subsets in the area of interest, where ID 0 was used for
validation and ID 7 for testing. The other rectangular areas were employed as training data .
The
red polygons show the ranges of Caribou herds in B.C. For the test- and validation area, manual
editing was carried out to get a more realistic
account of roads that are detectable from satellite
imagery. The human operator was given the same input imagery as
the neural network, and
checked the existing road layer for consistency with the images, removing or adding road
segments
as required.
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The road network was then again rasterized, and a raster-based comparison was carried out. Each
pixel was assigned to one
of the classes

1. True Positive (TP): Predicted to be a road pixel by the neural network and by the human
operator

2. True Negative (TN): Not predicted to be a road pixel by the neural network nor by the
human operator

3. False Positive (FP): Predicted to be a road pixel by the neural network, but not by the
human operator

4. False Negative (FN): Not predicted to be a road pixel by the neural network, but by the
human operator

The count of these four classes was then used to evaluate four metrics:

1. Accuracy = (TP + TN) / (TP + TN + FP + FN)
2. Precision = TP / (TP + FP)
3. Recall = TP / (TP + FN)
4. F1-Score = 2 * precision * recall / (precision + recall)

The accuracy describes the total proportion of correctly classified pixels, with no consideration of
the class. The
precision value explains how many of the pixels classified as road are actually road,
the recall value describes
how many of the (reference) road pixels have been found by the
classifier. Finally, the F1-Score is a trade-off
value between precision and recall.
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Morphological dilation

A visual interpretation showed that (a) rasterized reference data with only 1 px width did often
not correspond to
the actual visible road in the imagery (which was wider than 3 m or 5 m,
respectively of the dataset), as well as
some misalignment between the datasets, leading to a low
performance score. As the exact location of the road (within a
few meters) was not of importance
in this study, we opted for a pragmatic approach to recalculate the performance values.

Using binary morphological operators, a buffer around pixels predicted roads was created (binary
dilation). Then,
TP, TN, FP and FN were identified. As the misalignment resulted in a number of FP
on one side and FN on the other side
of each road, the regions around TP were again buffered
using binary dilation. All pixels within this buffer were then
set to "no road" in both the training
and the test set. This resulted in a typically 1 px wide line of TP surrounded by TN,
if both
predicted and reference datasets had found road pixels within these buffers. The buffer size (a
multiple of the
pixel size) was varied to find a trade-off between realistic result interpretation and
allowing for multi-pixel wide
road as well as a spatial mismatch of a few meters.

With increasing buffer size, the metrics of accuracy, precision, recall and F1-score converged to
values < 100%. By looking
at the limit, an estimate of the evaluation given no spatial mismatch
can be derived. This is presented below:


Dependency on slope, aspect, NDVI and land cover class

To further identify areas in which the correct identification of roads is difficult, we calculate the
performance metrics
stratified by

1. topographic slope
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2. topographic aspect (orientation of the slope)
3. NDVI calculated from the input RGB(I) imagery, to proxy for canopy closure/coverage,
4. land cover class

The results without and with dilation (value in parentheses) are given in the following table:

Accuracy [%] Precision [%] Recall [%] F1 [%]

NDVI < 0 N/A (98.6) N/A (60.0) N/A (100.0) N/A (75.0)

0 <= NDVI < 0.5 95.0 (97.8) 13.6 (68.1) 50.0 (88.2) 21.4 (76.8)

0.5 <= NDVI < 0.75 91.7 (97.6) 11.5 (81.2) 61.7 (96.4) 19.4 (88.1)

0.75 <= NDVI < 1 98.9 (99.5) 6.1 (74.6) 40.9 (96.6) 10.6 (84.2)

Slope < 5 deg 98.1 (99.3) 9.2 (79.9) 51.3 (96.4) 15.6 (87.4)

5 <= Slope < 10 deg 97.9 (99.2) 8.9 (79.2) 50.4 (96.4) 15.2 (86.9)

10 <= Slope < 20 deg 98.5 (99.3) 7.8 (73.5) 46.9 (95.8) 13.4 (83.2)

20 <= Slope < 30 deg 99.1 (99.4) 5.0 (54.8) 38.9 (93.9) 8.8 (69.2)

30 <= Slope 99.3 (99.4) 1.7 (25.6) 24.9 (90.2) 3.2 (39.9)

Aspect: North 98.2 (99.3) 8.5 (75.9) 47.6 (95.7) 14.4 (84.7)

Aspect: East 98.3 (99.3) 8.7 (77.2) 51.6 (96.5) 15.0 (85.8)

Aspect: South 98.4 (99.4) 8.5 (77.0) 51.4 (96.5) 14.6 (85.6)

Aspect: West 98.5 (99.4) 7.9 (74.4) 48.3 (96.1) 13.6 (83.9)

LC: 20 (Water) 99.5 (99.6) 1.0 (23.1) 40.6 (100.0) 1.9 (37.5)

LC: 31 (Snow/ICE) 98.2 (98.9) 5.1 (55.4) 54.5 (97.5) 9.3 (70.7)

LC: 32 (Rock/rubble) 98.0 (98.1) 0.0 (4.0) 1.0 (64.9) 0.1 (7.5)

LC: 33 (Exposed/Barren land) 96.0 (98.0) 6.6 (67.0) 28.2 (88.0) 10.8 (76.1)

LC: 50 (Shrubs) 94.4 (98.5) 10.2 (86.3) 55.4 (97.4) 17.3 (91.5)

LC: 80 (Wetland) 97.1 (99.0) 9.8 (80.3) 66.9 (98.5) 17.1 (88.5)

LC: 81 (Wetland-treed) 98.2 (98.8) 4.3 (53.9) 60.1 (99.2) 8.0 (69.8)

LC: 100 (HERBS) 92.0 (98.6) 12.0 (91.8) 56.7 (97.4) 19.8 (94.5)

LC: 210 (CONIFEROUS) 99.2 (99.6) 7.1 (68.2) 51.4 (96.7) 12.5 (80.0)

LC: 220 (Broadleaf) 98.1 (99.1) 6.9 (70.3) 45.7 (95.9) 12.0 (81.1)

LC: 230 (Mixed wood) N/A (99.9) N/A (60.0) N/A (75.0) N/A (66.7)

Calculation of performance metrics
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To calculate these performance metrics, we provide the script
create_eval_bin_from_rasters.py. Paths have to be adapted
at the end of the file, and a plot
and a list of accuracies will be provided. It is possible to run the script
with or without the
stratification described above. Note that the raster layers have to be aligned with the
binary road
predictions, but may cover a larger area than the prediction.

Post-processing
While the binary road raster can be used for evaluation of the classification performance, its use
for further processing
is limited. We therefore derive a topologically intact vector road network
using the approach presented by Roussel
et al. (2023, submitted).

The input to this algorithm is a probability map as well as starting road segments.
We use the
existing road network layer we used for training/test, explode it into individual line segments,
and
intersect these with the bounding box of the test area. This results in short line segment leading
into the evaluation
area. Roads that have no connection to these input features will not be
present in the extracted dataset - however, they
are also not accessible from outside of this area,
making them mostly unusable (exceptions might be e.g. islands or
tunnels, or cases where the
connecting road cannot be reliably detected by the CNN).

To obtain these seeds automatically, we provide the QGIS model
qgis_prepare_seeds_from_reference.model3. As with
the previous model, load the relevant
layers into QGIS (the probabilities raster and the reference roads), drag
and drop the .model3 file
into QGIS and you will be presented with a user interface:

Here, the buffer size can be set, as well as a nodata value which is used during processing to
determine whether the
seeds actually cover any valid pixels in the dataset. The model works best
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for fully populated, rectangular raster
predictions. If your area of interest is not rectangular, you
might want to consider adding manual seeds.

Subsequently, the following R code is run to extract the roads:

library(terra)

library(sf)

library(vecnet)

seeds <- st_read("seeds.shp") |> st_geometry()

map <- rast("prob_gaussian.tif")

res <- vectorize_network(map, seeds, min_conductivity=0.15, 
display=TRUE, threshold=0.03)

st_write(res, "result_roads.shp", append=FALSE)


The following parameters (selection) can be set for the road extraction:

Minimum conductivity (min_conductivity)
Threshold (threshold)
View distance (step size) (sightline)
Minimum length (min_length)

For a full explanation of the parameters, you can run the documentation in R: ?
vectorize_network and ?track_line,
or visit the documentation website. By setting
display=TRUE,
a live view of the extracted roads will be shown as a plot, which may look like this:

https://github.com/Jean-Romain/vecnet/tree/main/man
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The resulting vectorized road network can be used to compute accessibility metrics, navigation, or
simply act as an
update to the existing road data.

Large scenes

In order to process the whole scene, the dataset had to be processed in parts.
The CNN
predictions were run separately for the individual parts. As the input data files
overlapped, a full
coverage of the area of interest was ensured.

In QGIS, the provided processing workflows can be executed "as a batch process", which allows
to
run the same method on multiple input/output files:


For the road extraction, the R-Script to run the vectorization was adapated to go through
the files
in a loop, resulting in a number of road network files. To merge these files,
the "merge vector
layers" function in QGIS was used.

Density calculation
To present the data as a road network density map, the python script road_density_calc.py
can be used. To run it,
import the file and run the main-Function:

import road_density_calc

road_density_calc.main(

   r'path/to/input/file.shp',  # input vector file

   15,  # pixel size of the output map in [m]

   2000,   # search radius for the density calculation,

   r'path/to/output/file.tif'  # path to output raster file

)


The calculation makes use of a spatial index (R-tree) built on the input vector dataset, but may
still take some time
to run for larger datasets (typically less than 1h). The output may look
something like this and can be visualized in
any GIS system:
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Discussion
The CNN-based road extraction approach developed in this study and trained on Planetscope
imagery, achieved reasonably high performance on both the paved and unpaved rural roads
typical of the boreal regions of Canada. Recall, Precision and F1 quality metrics were
comparable
to studies using higher resolution imagery, such as Rapideye, to extract paved
roads across much
smaller areas using deep learning (e.g.,
Gao et al., 2019;
Xu et al., 2018)
and other approaches
(e.g.,
Miao et al., 2015;
Zhou et al., 2019). A key benefit of using data
from CubeSats, such as
PlanetScope, is a high spatial and temporal resolution. While PlanetScope
imagery is typically
available at daily or near-daily timesteps, clouds and cloud shadows
increase the revisit period
which can, in cloudy areas, exceed a number of weeks (Keay et al., 2022).
In most cases this
delayed temporal resolution is unlikely to cause issues, as the updating of road
information is
unlikely to occur more often than a few times per year. PlanetScope data products use
anomalous
brightness values to detect clouds. However, recently constructed roads with little remaining
vegetation will also have anomalous brightness values and may be misclassified as cloud, thereby
reducing the
number of valid pixels from which to detect a change. With improvements in the
UDM2 product and addition of new
spectral bands to PlanetScope satellites, this misclassification
of clouds may be reduced
(Keay et al., 2022).
In addition, while users can download PlanetScope

https://doi.org/10.3390/rs11050552
https://doi.org/10.3390/rs10091461
https://doi.org/10.1109/JSTARS.2015.2443552
https://doi.org/10.3390/rs11010079
file:///c%3A/Users/Lukas/Documents/Projects/road-cnn/repo/report/report_tmp.html
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scenes with a daily temporal revisit, Planet now offers image
composites at coarser temporal
resolutions (e.g., biweekly or monthly), which typically have lower cloud cover
than that of the
average scene over a given area.

A key benefit of the approach used in this study is the use of a pre-existing training set with
which to build
the initial CNN model. The use of deep learning algorithms such as CNN has
expanded greatly within the past 5 years
and advances in computing power and the ability to
apply deep learning algorithms in a spatial context allows users
previously unable to utilise the
power of CNN, to now be able to do so. Roads are difficult objects to classify due
to their spectral
similarity to other high albedo objects such as bare soil and rock, and their morphological
similarity
to other linear features such as rivers and pipelines making a CNN approach logical to
apply.

Another key outcome of the methods developed in this paper is the development of a fully
connected road network,
rather than separate, discrete, road segments. Even after post-
processing, a pixel-based road extraction approach
can be difficult to convert into a fully
connected vectorized road network for navigation (
Xu et al., 2018
). The
approach, developed by
Rousell et al. (2023, submitted)
and applied here, allows the detected road segments to be
connected in a
vector dataset to ensure a topologically correct road network, which is required
for most applications such as road
planning, and conservation and needed in order to ingest this
road information into existing vector databases.

Lastly our analysis indicates how long-term archival satellite data can be used to determine the
age of forest
roads in northern British Columbia using time series of spectral indices and annual
Landsat best-available pixel
image composites. The road age results produced from the NDVI and
NBR time series are comparable, with minor variations
year to year. Both methods, however,
result in road segments along a road to fluctuate in age. This fluctuation in age
is in part
attributed to road segments within Landsat pixels being too small or affected by spectral noises
from
background land cover, resulting in no changes being detected. To account for this, future
work will incorporate a
minimum change detection threshold.

Up-to-date information on the rural road network is critical for the management of threatened
and endangered species
and is becoming a critical piece of information to aid in conservation
activities. In British Columbia, with increasing
levels of disturbance due to insect infestation,
harvest, fire as well as ongoing anthropogenic disturbances associated
with exploration and
mining, the density of roads across the region remains of paramount concern. Quantifying the
density of the road network within individual caribou herd ranges is one metric that can provide
some context to how
much activity may be occurring within each of these caribou herd ranges.
This idea is similar to that undertaken with
the management of the grizzly bear in Alberta where
the Albertian provincial government recommended road densities below
certain thresholds to
encourage recovery of the species. While these thresholds are important, it is therefore critical
that spatial coverages showing the extent of the road coverage are accurate and complete which
is often not the case in
remote areas. The technique presented here to detect roads from high
spatial resolution Planet imagery, and then provide
an indication as to their age from historic
Landsat imagery, provides approaches where an accurate road network can be
built. In addition,
the ability to vectorized these predictions to produce a linked road network, whilst in its infancy,
is the critical final step in ensuring these layers can then effectively be used for management.

https://doi.org/10.3390/rs10091461
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Looking to the future, for the management potential of these types of technologies, one possible
strategy would be to
integrate GNSS data acquired from in vehicle loggers, which map the use of
the landscape by vehicles, combined with
geospatial coverages from satellite data such as
demonstrated here could result in a database of both accurate road
location information but also
use. Information on the speed and diurnal use of roads could also be extracted from these
databases to provide a comprehensive analysis of the road infrastructure in an area. Whilst these
types of databases are
starting to be developed within the forest industry using GNSS receivers
on harvesting operations, there broader use in
a conservation setting has not yet been fully
examined and may provide additional insights into road networks
particularly for endangered
species.

Conclusion
We successfully used a pre-trained convolutional neural network as encoder for a SegNet-based
road detector on satellite
imagery data. While the use of the pre-trained weights meant that the
architecture of the network was fixed, training
convergence could be achieved much faster than
when using random initialization. Overall, the road detection with
post-processing resulted in an
accuracy of 99.1%, with precision and recall values of 76.1% and 91.2%, respectively. In
comparison
to existing datasets, including ones that were derived from satellite imagery using
CNNs, our method delivers a better
picture of the road network, since we focus on forest roads
specifically.

The conversion of the raster-based road prediction to a vectorized network is non-trivial, but can
be achieved to a certain
degree. If a vectorized network is required for subsequent processing,
the presented approach provides a mostly automated
method, where only minimal manual effort
is required to ensure consistency in the data. This report can be used as a
step-by-step guide to
create such a dataset.


