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I. INTRODUCTION

The estimation of the forces produced by muscles is an
aspect of great interest in several fields, e.g., rehabilitation,
human-machine interface and sports, where it is pivotal to
estimate the muscle forces produced by the human biome-
chanics control system. Since muscles are the engines of
human motion, the scientific community is actively involved
in studying methods to model muscles in order to simulate
human motions [1]. In our preliminary study, we built a
computational model for the contraction dynamics estimation
of three muscles of the lower leg (tibialis anterior, gastrocne-
mius lateralis, gastrocnemius medialis). Acquisition data have
been gathered by using the iFeel technology (IMU nodes
and sensorized portable shoes) developed by the Artificial
and Mechanical Intelligence (AMI) of the Italian Institute of
Technology (https://ifeeltech.eu) and a off-the-shelf system of
surface electromyography (EMGs). The architecture has been
implemented on the middleware YARP [13] for both the in-
lab sensors and the EMGs tool (https://github.com/ami-iit/
yarp-devices-bts-freeemg).

II. LOWER LEG CONTRACTION DYNAMICS MODELING

We consider three lower leg muscles: tibialis anterior,
gastrocnemius lateralis and gastrocnemius medialis, Fig. 1.
Muscle elements have been added into the human URDF-
format model implemented in [2] usig a model-generator
tool (https://github.com/ami-iit/human-model-generator) that
includes skeletal and muscular properties. A contraction dy-
namics computational pipeline has been built for both the
muscles (M) and the tendons (T), i.e., a musclulotendon (MT)
complex of the lower leg and modeled by a block framework
[3] [4] [5] [6] [7], Fig. 2. The pipeline runs per each muscle
and each block represents a different process that actively
contributes to the muscle force production, as follows.

• The musculotendon kinematics (Block 1) represents the
kinematics of the MT complex. The block computes the
length lMT and the velocity vMT of the complex, given
lower leg joint angles s and joint velocities ṡ readings
from wearable iFeel IMU sensors.

• The activation dynamics (Block 2) represents the pro-
cess from muscle excitation to activation [8] given the
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Fig. 1: Lower leg muscle modeling.

Fig. 2: Musculotendon (MT) contraction dynamics pipeline.

Fig. 3: Hill-type model for musculotendon complex.
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Fig. 4: Contraction dynamics estimation during three consecutive repetitions of a dorsiflexion/plantarflexion task for tibialis anterior,
gastrocnemius lateralis and gastrocnemius medialis, respectively.

EMGs readings. It approximates the composite biochem-
ical relation between muscle neuronal stimulation u and
muscle activity a by a first order differential equation [9],
such as

ȧ = f(u, a) =
(
(u c1) + c2

)
(u− a) , (1)

where c1 and c2 are time constants taking into account
the activation time τACT for buildup of activation when
the muscle is fully excited (i.e., u = 1) and the deacti-
vation time τDEACT for relaxation when the muscle is
deactivated (i.e., u = 0), i.e.,

c1 =
1

τACT
− 1

τDEACT
, c2 =

1

τDEACT
. (2)

• The contraction dynamics (Block 3) represents the
process from activation to force production. The muscle
dynamics is characterized by a Hill-type model, Fig. 3.
It consists of three main components: i) the contractile
element (CE) responsible of the active force generated
by the muscle; ii) the parallel elastic element (PE)
responsible for the passive elastic properties of the muscle
fibers, iii) the serial elastic element (SE) representing the
elasticity of the actin-miosyn crossbridges that captures
the elastic properties of the tendon and the aponeurosis
[10]. The overall complex force FMT can be written as
a composition of forces related to lenght lMT , velocity
vMT and modulated by activation a [3] [11], such that

FMT =
(
a FM

0 FCE
L FCE

V + FM
0 FPE

L

)
cosα , (3)

where, FM
0 is the maximum isometric muscle force,

FCE
L and FCE

V represent the force-length and force-
velocity relationships of CE, respectively, and FPE

L is
the force-length relationship of PE. Angle α represents
the pennation of the muscle, i.e., the angle between the

direction of fibers and the direction of the line of action of
the muscle (tabulated data in [12] for lower leg muscles).

Fig. 5: Real-time visualization of lower leg muscle force estimation
during a plantarflexion (on the left) and a dorsiflexion (on the right).
The red colour of the line (i.e., the muscle) represents a higher level
of contraction, the grreen colour a lower level of contraction.

III. EXPERIMENTAL APPLICATION

A healthy subject equipped with wearable distributed sen-
sors (iFeel IMU nodes to detect human kinematics, a pair of
portable sensorized force/torque shoes to detect the external
forces exchanged with the ground, a wireless set of surface
electromyography probes to detect muscle activity) performed
a simple dorsiflexion/plantarflexion task. Equation 3 has been
computed in real-time during the task. Figure 4 shows the
estimated forces of tibialis anterior, gastrocnemius lateralis
and medialis muscles during three consecutive repetitions
of a dorsiflexion/plantarflexion trial. During plantarflexion,
the gastrocnemii contract and their force is higher than the
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tibialis force. Dorsiflexion, on the other hand, leads the tibialis
anterior to contract and its force to increase more than the
gastrocnemii.

A pivotal outcome of the paper is represented by the pos-
sibility to visualize in real-time the muscle forces estimation
for pipeline in Fig. 2. Figure 5 shows two motion frames of
a real-time visualization during the dorsiflexion/plantarflexion
task. Lines attached to human links represent the muscles
and their colour depends upon their activation and force
production (i.e., red colour means higher contraction than
green). A new YARP-based module has been added to the
software architecture already presented in [14]. Overall, this
boosted architecture allows for the real-time and simultaneous
i) readings of the sensors, ii) human whole-body kinematics
and dynamics estimation and iii) muscle contraction dynamics
estimation and visualization. Furthermore, the software tool
modularity paves the way for the force estimation of all the
muscles in the body and it is a fundamental step towards the
estimation of the human whole-body joint torques.

ACKNOWLEDGMENT

The paper was supported by the Italian National Institute for
Insurance against Accidents at Work (INAIL) ergoCub Project.

REFERENCES

[1] M. W. Mathis and S. Schneider, “Motor control: Neural correlates
of optimal feedback control theory,” Current Biology, vol. 31, no. 7,
pp. R356–R358. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0960982221001524

[2] C. Latella, S. Traversaro, D. Ferigo, Y. Tirupachuri, L. Rapetti, F. J.
Andrade Chavez, F. Nori, and D. Pucci, “Simultaneous floating-base
estimation of human kinematics and joint torques,” Sensors, vol. 19,
no. 12, p. 2794. [Online]. Available: https://doi.org/10.3390/s19122794

[3] T. S. Buchanan, D. G. Lloyd, K. Manal, and T. F. Besier, “Estimation
of muscle forces and joint moments using a forward-inverse dynamics
model,” Medicine and Science in Sports and Exercise, vol. 37, no. 11,
pp. 1911–1916.

[4] M. Sartori, M. Reggiani, D. Farina, and D. G. Lloyd, “EMG-driven
forward-dynamic estimation of muscle force and joint moment about
multiple degrees of freedom in the human lower extremity,” PloS One,
vol. 7, no. 12, p. e52618.

[5] M. Millard, T. Uchida, A. Seth, and S. L. Delp, “Flexing
computational muscle: modeling and simulation of musculotendon
dynamics - PubMed.” [Online]. Available: https://pubmed.ncbi.nlm.nih.
gov/23445050/

[6] E. Ceseracciu, A. Mantoan, M. Bassa, J. C. Moreno, J. L. Pons, G. A.
Prieto, A. J. d. Ama, E. Marquez-Sanchez, Gil-Agudo, C. Pizzolato,
D. G. Lloyd, and M. Reggiani, “A flexible architecture to enhance wear-
able robots: Integration of EMG-informed models,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
4368–4374.

[7] F. Romero and F. J. Alonso, “A comparison among different hill-
type contraction dynamics formulations for muscle force estimation,”
Mechanical Sciences, vol. 7, no. 1, pp. 19–29. [Online]. Available:
https://ms.copernicus.org/articles/7/19/2016/ms-7-19-2016.html

[8] F. E. Zajac, “Muscle and tendon: properties, models, scaling, and
application to biomechanics and motor control,” Critical Reviews in
Biomedical Engineering, vol. 17, no. 4, pp. 359–411.

[9] A. Nagano and K. G. M. Gerritsen, “Effects of neuromuscular strength
training on vertical jumping performance— a computer simulation
study,” Journal of Applied Biomechanics, vol. 17, no. 2, pp. 113–128.
[Online]. Available: https://journals.humankinetics.com/view/journals/
jab/17/2/article-p113.xml

[10] M. S. Andersen, “Chapter 33 - rigid-body and musculoskeletal models,”
in Human Orthopaedic Biomechanics, B. Innocenti and F. Galbusera,
Eds. Academic Press, pp. 659–680. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780128244814000354

[11] H. Geyer and H. Herr, “A muscle-reflex model that encodes principles
of legged mechanics produces human walking dynamics and muscle
activities,” IEEE transactions on neural systems and rehabilitation
engineering: a publication of the IEEE Engineering in Medicine and
Biology Society, vol. 18, no. 3, pp. 263–273.

[12] S. L. Delp, “Surgery simulation: A computer graphics system to
analyze and design ... - scott lee delp - google livres.” [Online].
Available: https://books.google.fr/books?id=ipzVPAAACAAJ

[13] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet another robot
platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, p. 8. [Online]. Available: https://doi.org/10.5772/5761

[14] C. Latella, Y. Tirupachuri, L. Tagliapietra, L. Rapetti, B. Schirrmeister,
J. Bornmann, D. Gorjan, J. Camernik, P. Maurice, L. Fritzsche,
J. Gonzalez-Vargas, S. Ivaldi, J. Babic, F. Nori, and D. Pucci, “Analysis
of human whole-body joint torques during overhead work with a passive
exoskeleton,” IEEE Transactions on Human-Machine Systems, pp. 1–9.
[Online]. Available: https://ieeexplore.ieee.org/document/9647004/

42

https://www.sciencedirect.com/science/article/pii/S0960982221001524
https://www.sciencedirect.com/science/article/pii/S0960982221001524
https://doi.org/10.3390/s19122794
https://pubmed.ncbi.nlm.nih.gov/23445050/
https://pubmed.ncbi.nlm.nih.gov/23445050/
https://ms.copernicus.org/articles/7/19/2016/ms-7-19-2016.html
https://journals.humankinetics.com/view/journals/jab/17/2/article-p113.xml
https://journals.humankinetics.com/view/journals/jab/17/2/article-p113.xml
https://www.sciencedirect.com/science/article/pii/B9780128244814000354
https://www.sciencedirect.com/science/article/pii/B9780128244814000354
https://books.google.fr/books?id=ipzVPAAACAAJ
https://doi.org/10.5772/5761
https://ieeexplore.ieee.org/document/9647004/

