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Abstract—This paper proposes a genetic algorithm based on a
new replacement strategy to solve the quadratic assignment problems,
which are NP-hard. The new replacement strategy aims to improve the
performance of the genetic algorithm through well balancing the
convergence of the searching process and the diversity of the
population. In order to test the performance of the algorithm, the
instances in QAPLIB, a quadratic assignment problem library, are
tried and the results are compared with those reported in the literature.
The performance of the genetic algorithm is promising. The
significance is that this genetic algorithm is generic. It does not rely on
problem-specific genetic operators, and may be easily applied to
various types of combinatorial problems.
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I. INTRODUCTION

HE Quadratic Assignment Problem (QAP) was introduced

by Koopmans and Beckmann [1] in 1957 as a mathematical
model for the location of indivisible economical activities.
QAP is often used to describe a location problem. Let us assign
n facilities to n locations with the cost being proportional to the
flow between the facilities multiplied with their distances. The
objective is to allocate each facility at a location such that the
total cost is minimized. Thus we are given two n X n matrices,
the flow matrix A = (;), and the distance matrix B = (by). The
QAP in Koopmans-Beckmann form can now be written as

(1)

minC =
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where S, is the set of permutation of {1, 2, ..., n}. Each
individual product ayybj is the cost caused by assigning
facility n(i) to location i and facility 7(j) to location j. A QAP
instance with input matrices A and B is denoted by QAP(A, B)
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sometimes. If any of the coefficient matrices A, B is symmetric,
QAP(A, B) is termed as a symmetric QAP. Otherwise, QAP(A,
B) is said to be asymmetric.

In addition to location theory, QAP has other applications
such as layout problems, backboard wiring, computer
manufacturing, scheduling, process communications, turbine
balancing, ranking of archeological data, ranking of a team in a
relay race, scheduling parallel production lines. A survey [2]
gives extensive references on applications and solution
methods for QAP.

It is well known that QAP is NP-hard [3]. Although some
“easy” cases are known [4], QAPs in general have been proven
to be extremely difficult to be solved to optimality. Most QAP
types and instances are collected in the QAPLIB, a well-known
library of QAP instances compiled by Burkard et al. [5].
Several famous instances in the QAPLIB, including the
problems of size n = 36 posed by Steinberg [6], and problems
of size n =30 posed by Nugent et al. [7], have only been solved
to optimality for the first time in 1990s.

II. LITERATURE REVIEW

There are three main exact methods used to find the global
optimal solution for a given QAP: dynamic programming,
cutting plane techniques, and branch and bound procedures.
Research has shown that the latter is the most successful among
exact algorithms for solving QAP. Even still, due to the
overwhelming complexity of QAP, most problems with their
sizes greater than n = 30 remain nearly intractable by exact
algorithms.

The extreme difficulty of QAP has made it an ideal problem
for the development of heuristic search methods. Local search
methods, simulated annealing [8], tabu search [9, 10], genetic
algorithms [11]-[14], GRASP [15], ant systems [16] and other
specialized methods have all been applied to QAP. The
performance of different heuristics also tends to vary with
certain problem characteristics [17]. Among these heuristics,
the tabu search methods, the GRASP[15] and the GA approach
[14] are currently the most promising heuristic algorithms to
solve QAP.

Conventional genetic algorithms did not find the best known
solution for the Nugent’s problems of sizes 20 and 30. For
larger problems of size up to 100, they seldom really compete
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with tabu search procedures. In 2000, Ahuja, Orlin and Tiwari
[13] obtained very promising results on large scale QAPs in
QAPLIB by applying a version of GA called a greedy genetic
algorithm. Recently, Drezner [14] designed a new GA with a
problem-specific crossover rule and a tabu search, and obtained
even better results than those obtained by Ahuja et al.
Currently, this new genetic algorithm seems to be the best
heuristics to solve QAPs in terms of accuracy [14].

The genetic algorithm proposed by Drezner exploited the
problem-specific characteristics in designing the crossover
operator, which increased the complexity of the algorithm and
made it difficult to be used to solve other problems.

In this paper, a genetic algorithm based on a new
replacement strategy is devised to solve the QAPs. The purpose
is to examine the probability of devising a heuristic for solving
QAPs efficiently without using any problem-specific
characteristics. The general-purpose GA may have the potential
to solve other types of NP-hard problems.

III. THE PROPOSED GENETIC ALGORITHM

A. The New Replacement Strategy

The replacement strategy refers to a selection strategy
defining how to select the next generation members from the
offspring and the last generation members. It is very important
particularly for highly-constraint problems because it guides
the searching of the algorithm throughout the searching space
and thus influences the performance of the algorithm.

The most commonly used replacement strategy in the
literature is the steady-state replacement strategy. In every
generation, individuals are selected for conducting the genetic
operators. Every new offspring will be compared with the
worst member in the population. If the offspring is better than
the worst member, then the offspring will replace it.

A new replacement strategy is proposed in this paper. It aims
to improve the global searching ability of the algorithm. It
incorporates two different replacement policies, i.e., the
replace-worst policy and the replace-parent policy. The
replace-parent policy is taken once every generation, i.e., every
new offspring only compares with its parent (the chromosome
before mutation). If the fitness of the offspring is better than its
parent, then the new offspring will replace it. In comparison,
the replace-worst policy is taken once in every certain amount
of generations, i.e., each new offspring will compare with the
worst chromosome in the current population. If the new
offspring is better, then it will replace this worst member. By
adjusting the frequency of the replace-worst policy, the
convergence of the searching process and the diversity of the
population can be well balanced, and the potential of each
chromosome can be well exploited before it is removed out of
the population.

The scheme of the genetic algorithms based on this new
replacement strategy can be described as follows. In the
scheme, the replace-worst policy is applied once in every T,
generations (T is called the period for the replace-worst
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policy).

begin
create initial population;
for every generation, repeat
randomly select individuals into the mating pool;
apply genetic operators to generate offspring;
(maybe) apply post-crossover heuristic on offspring;
if not in ixT, generations
compare every offspring with its similar parent and
remove the worse one;
else
compare every offspring with the worst member in
the current population and remove the worse one
until some stopping criterion is met
end;

B. Description of the Proposed GA for the QAP

In the following, the proposed GA for the QAP is described
according to the chromosome representation, the fitness
function, the crossover, and the post crossover heuristic.

Chromosome Representation

In the genetic algorithm for the QAP, permutation
representation is employed, which is illustrated in Fig. 1. The
illustration takes the facility location problem as an example.

HENENERENED

This gene means that facility 5 is placed at location 2

Fig. 1 Representation scheme of the genetic algorithm

In the above representation, the value of every gene
represents the facility that is assigned to corresponding
location. In the chromosome shown in Fig. 1, there are 10
facilities to be placed at 10 locations. For example, the second
gene in the chromosome means that facility 5 is placed at
location 2.

Obijective and Fitness Functions

The objective of the genetic algorithm is to minimize the
total cost C as described in the objective function (1). The
fitness function for the chromosome in the genetic algorithm is
defined as:

f, =1/C, 2)

where f; is the fitness of chromosome i, and C; is the objective
value of chromosome i.

Crossover

A special type of uniform crossover with constant
percentage of exchanging genes. This percentage of
exchanging genes is set to be small value like 20%, so each of
the two children will be much similar to one of their parents.
This crossover process is illustrated in Fig. 2. After the
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crossover, individuals A and B produce C and D. We define A
as the direct parent of C since they are similar to each other, and
likewise, we define B as the direct parent of D.

Randomly selected
crossover points

A B
l_I_LLI_I_I_HZI<-> [Tl Tt

c U o U
CBLTICT W] <> CRCTRETTE

Fig. 2 Crossover scheme in the new genetic algorithm

In every generation, every chromosome is paired up with
another chromosome randomly. Crossover operator will be
applied to all pairs of chromosomes. That means the crossover
rate is 1.

Through preliminary tests, it was found that the mutation
operator did not have much impact on the performance of the
GA for solving the problem, so there is no mutation operator
used in the proposed GA.

The Post-Crossover Heuristic
To help improve the evolution of all the chromosomes, a
post-crossover heuristic is applied to the newborn offspring.
The combined heuristic used in our genetic algorithm is the
descent local search heuristic, which is defined as follows:
Step 1 Examine the change in the fitness value for all the
pairwise exchanges of nearby alleles.
Step 2 The best improving exchange is executed and go back
to Step 1 again.
Step 3 If no improving exchange is found, the heuristic
terminates.

IV. COMPUTATIONAL EXPERIMENTS

In this section, instances in the QAPLIB [5] were used to test
the new genetic algorithm. The results were compared with
those obtained by Ahuja et al. [13] and those obtained by
Drezner [14]. The effect of the new replacement strategy will
also be evaluated.

The population size in the genetic algorithm was set to be
100. The period for the replace-worst policy T, was set to be
equal to the problem size n, i.e., the replace-worst policy will
apply once every n generations. The percentage of exchanging
genes in the crossover operator was set to be 0.2. The algorithm
was set to be run until there was no improvement during n
generations.

A. Computation Results

In this section, the new genetic algorithm was tested on all
instances of size n ranging from 30 to 100, most of which still
can not be solved to optimality. The program was coded in
Microsoft Visual C++ 6.0, and ran on a desktop computer with
Pentium IIT 866 CPU and 256 RAM, which was similar to the
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computer used by Ahuja et al. [13]. Ahuja et al. ran the
algorithm only once for each problem. Drezner ran his
algorithm 200 times for each problem, and we ran our genetic
algorithm 20 times for each problem. The results shown in
Table I are the averages. The numeric digits in a problem name
state the problem size. The percentage deviations from the best
known solutions are given in the “Gap” columns.

TABLEI
COMPARISON OF OUR GA AND AND THE OTHER TWO GAS
Our GA Ahuja et al Drezner
Problem " Gap Time Gap  Time Gap Time
(%) (min) (%) (min) (%) (min)
esc32a 20 0 0.37 0 6.36 0 0.35
esc32b 20 0 0.24 0 6.67 0 0.30
esc32c 20 0 0.20 0 6.49 0 0.27
esc32d 20 0 0.15 0 5.88 0 0.28
esc32e 20 0 0.23 0 6.16 / /
esc32f 20 0 0.17 0 6.14 / /
esc32g 20 0 0.33 0 6.18 / /
esc32h 20 0 0.26 0 5.82 0 0.29
escbda 20 0 4.13 0 43.85 / /
kra30a 20 0 0.29 0 5.02 0 0.33
kra30b 20 0 0.34 0 5.51 0 0.33
lipa30a 20 0 0.16 0 5.74 / /
lipa30b 20 0 0.16 0 5.62 / /
lipa40a 20 0 1.02 0960 17.03 / /
lipa40b 20 0 0.90 0 17.10 / /
lipa50a 20 0 331 0950 24.77 / /
lipa50b 20 0 2.98 0 25.14 / /
lipa60a 20 0 1035 0.770  50.95 / /
lipa60b 20 0 9.97 0 50.79 / /
lipa70a 6 0.127 30.08 0.710 102.47 / /
lipa70b 20 0 28.23 0 102.05 / /
lipa80a 2 0242 47.82 0.610 158.55 / /
lipa80b 20 0 45.25 0 158.31 / /
lipa90a 1 0.187 61.88 0.580 205.97 / /
lipa90b 20 0 60.08 0 205.32 / /
nug30 20 0 036 0.070 5.9033 0 0.37
sko42 20 0 1.57 0250 16.77 0 1.15
sko49 10 0.038 3.78 0.210 20.87 0.009 2.13
sko56 20 0 736  0.020 49.6 0.001 3.24
sko64 20 0 12.11  0.220 63.14 0 5.85
sko72 3 0.042 3539 0.290 84.63 0.014 8.36
sko81 2 0.067 57.28 0.200 182.74 0.014 13.30
sko90 1 0.073 102.50 0.270 211.63 0.011 22.35
sko100a 2 0.051 174.13 0.210 276.80 0.018 33.55
sko100b 7 0.039 16550 0.140 24549 0.011 34.05
sko100c 16 0.015 158.54 0.200 338.57 0.003 33.80
sko100d 11 0.022 184.41 0.170 33837 0.049 33.90
sko100e 10 0.030 167.31 0.240 352.12 0.002 30.67
sko100f 5 0.017 170.88 0.290 357.98 0.032 35.74
ste36a 18 0.025 0.84 0.270 11.827 0.005 0.55
tho30 20 0 0.31 0 6.59 0 0.35
tho40 9 0.041 1.98 032 1597 0.010 098
wil50 0.028 5.06 0.070 3525 0.002 1.99
wil100 2 0.041 176.28 0.200 34240 0.002 33.11
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Notes:

*:Number of times out of 20 runs that the best known solutions obtained.
Gap (%) : Percentage deviations over the best known solutions

Time(min): The average running time for a single run of the algorithm.

The results by Ahuja et al (2000) were obtained by GA-3, which was their best
algorithm

There are totally 44 instances for the comparison. It can be
seen that our genetic algorithm performed much better than the
greedy genetic algorithm designed by Ahuja et al. [13], in terms
of both objective value and computation time. The average
percentage deviation from the best known solution for our
genetic algorithm was 0.025%, while that for Ahuja's GA is
0.187%. And the computation time for our genetic algorithm
was much less than Ahuja's GA (GA-3). For all these 44
problems, our genetic algorithm found the best known solution
at least once in 20 runs.

We can also see that our genetic algorithm performed as
good as the genetic algorithm designed by Drezner [14] when
the problem size is not so large. But Drezner’s algorithm seems
to perform slightly better and faster when the problem size is
larger than 50. This is partly because Drezner’s algorithm was
designed only for symmetric problems. As stated by Drezner
[14], this may significantly reduce the computation time of the
fitness function. But the main reason was that it incorporated a
problem-specific which exploit the characteristics of QAPs and
a highly efficient tabu search into the genetic algorithm. In
contrast, there are only two main differences between our
genetic algorithm and conventional genetic algorithms: the new
replacement strategy and the descent local search heuristic to
improve the offspring, both of which are not problem-specific.
So the our GA can be easily used for solving other types of
problems.

B. Evaluation of the Effect of the New Replacement Strategy

In this section, in order to examine the effect of the new
replacement mechanism, the post-crossover heuristic was
removed. The results were compared with those obtained by the
conventional genetic algorithm devised by Tate and Smith [12].

The population size of our GA was set to be 100, the same as
that in the GA proposed by Tate and Smith. We ran our genetic
algorithm for 2000 generations. Other parameters were set to
be the same as those in Section 4A.

The comparison of these two algorithms is shown in Table II.
Because Tate and Smith only tested two instances of sizes
larger than 30, we compared the results of these two instances.
From the results, it can be seen that even without the
post-crossover heuristic, our genetic algorithm obtained much
better results than the genetic algorithm proposed by Tate and
Smith.

TABLEII
COMPARISON BETWEEN THE STANDARD GA USED BY TATE AND SMITH (1995)
AND OUR GA WITHOUT POST-CROSSOVER HEURISTIC

Best GA by Tate and Smith Our GA
Problem
Known Best Average gap (%) Best Average gap (%)
nug30 6124 6184 6305.4 2.96 6124  6176.1 0.85
ste36c  8239.11 8592 8946.2 8.58 8239.11 8354.46 1.4
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In order to evaluate the effect of the value of T, the period
for the replace-worst policy, on the performance of the
proposed genetic algorithm, we further varied the values of T,
and compared the results obtained by the genetic algorithm
with different Te. In this test, the post-crossover heuristic was
also removed. The instance nug30 was used as the testing
instance.

T, was set to be different values of 10, 20, 30, 40, 50, and 60.
The genetic algorithm ran 20 times for each T value. In each
run, the genetic algorithm was running for 1000 generations.
Other parameters were set to be the same as those in Section
4A. Table I1I shows the average results obtained by the genetic
algorithm with different T values.

TABLE IIT
AVERAGE RESULTS OBTAINED BY THE GENETIC ALGORITHM WITH DIFFERENT
Te
T, Value 10 20 30 40 50 60
Average value 6312 6293 6258 6237 6190 6176

From Table III, it can be seen that the period for the
replace-worst policy T, has significant effect on the
performance of the genetic algorithm. It should be noted that
the optimal solution to nug30 is 6124. The genetic algorithm
could obtain very good result when T, =60. Fig. 3 illustrates the
convergence process of the genetic algorithm with T, =10 and
T, =60. From the figure, we can see that when T, is small, the
genetic algorithm tends to converge in the early stage. When T,
is large, better solution may be found. However, the
computation effort will be increased. The CPU time for the
genetic algorithm with T, =60 was about 7 seconds. When the
problem size increases, the computation effort of the algorithm
will increase exponentially. Fine tuning of the T, value is
important to the overall performance of the genetic algorithm.

8000 T Tc =10
Tc =60
g 7500 +
g
% 7000 -
8 6500 I
o~
6000
1 301 601 901

Generation

Fig. 3 Convergence process for T, =10 and T, =60

V. DISCUSSION AND CONCLUSION

This paper proposed a new genetic algorithm for the
quadratic assignment problems, which are NP-hard. The new
genetic algorithm is based on a new replacement strategy,
which aims to balance the exploitation and exploration of the
searching space. The test on the QAP instances obtained
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promising results. The significance is that the new genetic
algorithm is not problem specific, which means the algorithm
does not rely on a problem-specific characteristics and can be
easily applied to various optimization problems.

However, it would be quite difficult to judge about the
performance of an algorithm based on a single type of
optimization problems. Other types of problems shall be tested
in the future to evaluate the proposed genetic algorithm and the
new replacement strategy.
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