
O-D code repository
To execute the julia script contained in this directory :

first install julia (best using juliaup)
open a terminal in the "0D" folder
start a julia REPL and activate the project environment by entering julia --project . If the
julia command is not found, run . ~/.bashrc (or . ~/.zshrc depending on your shell
environment) to reload the configuration file.
enter the package manager mode by typing a right square bracket]
install our three packages that are not listed in the general registry :

add https://github.com/Leooop/SCAM.jl.git
add https://github.com/Leooop/DataFormatter.jl.git
add https://github.com/Leooop/ParametersEstimator.jl.git

run the instantiate command to install other project dependencies
finally, run include("SCAM_0D_forward.jl") or
 include("SCAM_0D_parameters_inversion.jl") to run one of the available scripts.

Scripts content

 SCAM_0D_forward.jl simulates both constant strain rate and constant stress experiments.
Details can be found in the example section of the this README.
 SCAM_0D_parameters_inversion.jl shows the inversion procedure with live visualization of the
model behavior as parameters get optimized. The Prior parameters are an intermediate result of
parameter inversion against constant strain rate experimental data, whereas what is performed in
this script is the full inversion against both constant strain rate and constant stress data. The last
part of the script computes the posterior covariance matrix of the inverted parameters and a plot
of the probability distribution of each parameter.

Introduction

This rheological model considers the growth of tensile cracks in a compressive stress state, based on
the wing-crack model of Ashby and Sammis (1990) coupled with a sub-critical crack growth law
(Charles, 1958), where the shear modulus is altered by the increase of the damage state of the
material.

≥ 1.10

https://github.com/JuliaLang/juliaup
https://link.springer.com/article/10.1007/BF00878002

It uses an empirical linear dependency of the shear modulus on damage ,
were is the number of cracks per unit volume, is the length of each tensile crack growing from
the tips of closed penny-shaped cracks of radius and oriented at an angle .

The penny-shaped cracks normals are assumed to be be contained in the - plane, such that
Ashby and Sammis (1990) derived an expression for the stress intensity factor at the tips of wing
cracks, using linear elastic fracture mechanics, that can be plugged into the Charles Law to describe
the slow extension of cracks under sustained applied stresses, and its effect on elastic modulus.

Long term behavior, post crack coalescence (at), can be represented by 2-dimentional Mohr-
Coulomb plasticity in the same plane.

This model specifically describes the deformation of compact rocks under various conditions of
confining pressures, strain rates or constant stress, in the brittle regime. Temperature dependence of
brittle deformation is not taken into account.

Coupled with the unregistered packages DataFormatter.jl and ParametersEstimator.jl, This model can
be used to perform bayesian parameters inversion against triaxial experimental data under constant
strain rate or brittle creep conditions.

Get started

To simulate the mechanical behavior of a damaged material, you first need to build a Model
Instance.
The Model constructor takes two arguments :

A ConstitutiveModel instance, representing the rheology of the material
A NumericalSetup instance, including the geometry of the problem and setting control
parameters for the simulation.

The class diagram of the next section helps understanding types relationships within this Model
type.

Once a model::Model instance is created, you just need to call the simulate function to integrate
your model's ODEs in time using DifferentialEquations.jl:

D = ​πN ​(l +3
4

v αa)3

N ​v l

a ψ = cos α−1

σ ​1 σ ​3

K ​I

D ∼ 1

https://link.springer.com/article/10.1007/BF00878002
https://github.com/Leooop/DataFormatter.jl
https://github.com/Leooop/ParametersEstimator.jl
https://docs.sciml.ai/DiffEqDocs/dev/

tspan = (0.0, 530)
sol = simulate(model, tspan;
 solver = Tsit5(), # ODE solver
 saveat = range(0, tspan[2]; length=500), # array of times saved in sol
 abstol = 1e-6, # absolute tolerance of the solver
 reltol = 1e-4, # relative tolerance of the solver
 maxiters = 1e5, # maximum number of solver iterations
 Dᵢ=nothing, # initial damage (if not specified or nothing: D(t0) = D0)
 Dmax=0.95, # maximum damage value
 stop_at_peak = false, # whether the solver should stop when peak stress is achi
 cb=nothing # DiffEq Callbacks. If nothing, uses default callbacks appropriate t
)

The result of simulate is a solution Object (more about it here), where the solution vector at each
timestep holds the deviatoric stress or strain (depending on the deformation being performed under
constant strain rate or constant stress conditions), damage, and accumulated plastic strain (if the
chosen plastic yield stress is StrainWeakenedCoulombYieldStress).

Model architecture

The top level Model type displays the following type hierarchy :

Model

cm : ConstitutiveModel

setup : NumericalSetup

ConstitutiveModel

weakening : Weakening

damage : DamageGrowth

elasticity : Elasticity

plasticity : Plasticity

«abstract Type»

NumericalSetup

«abstract type»

Weakening

«abstract type»

DamageGrowth

«abstract type»

Elasticity

Plasticity

threshold : PlasticityThreshold | Nothing

σy : YieldStress

LinearWeakening

γ : Real

«abstract type»

MicroMechanicalCharlesLaw

PrincipalKICharlesLaw

r : MicroMechanicalParameters

MicroMechanicalParameters

μ : Real

β : Real

K₁c : Real

a : Real

ψ : Real

D₀ : Real

n : Real

l̇ ₀ : Real

IncompressibleElasticity

G : Real

«Abstract type»

PlasticityThreshold

«singleton»

MinViscosityThreshold

DamageThreshold

value : Real

«abstract type»

YieldStress

ConstantYieldStress

val : Real

CoulombYieldStress

μ : Real

C : Real

StrainWeakenedCoulombYieldStress

μ : Real

C : Real

μweak : Real

Cweak : Real

ϵₚcrit : Real

TriaxialSetup

geom : Geom

control : DeformationControl

pc : Real

«abstract type»

Geom

«abstract type»

DeformationControl

ConstantStrainRate

ϵ̇ : Real

ConstantStress

s : Real

«singleton»

Geom2D

«singleton»

Geom3D

The ConstitutiveModel type contains the parameterization for all bricks of the O-D rheology
(equations 4, 5, 8, 19 and 23 of the manuscript):

https://docs.sciml.ai/DiffEqDocs/dev/basics/solution/

 weakening=LinearWeakening(γ) - Linear weakening of shear modulus G as a function of
damage D :

 damage=PrincipalKICharlesLaw(r) - Micromechanical damage as defined by Ashby and
Sammis (1990) coupled with Charles' Law:

with the expression of the stress intensity factor derived by Bhat et al. (2011):

 elasticity:IncompressibleElasticity(G) - Incompressible elasticity gives rise to a
damaged-elastic Maxwell rheology upon time differentiation of the elastic constitutive law
including a damage dependent altered elastic modulus:

where

Constructed ODE

Depending on NumericalSetup.control , the ODE that will be constructed will be:

equation 27 if NumericalSetup.control=ConstantStrainRate(ϵ̇) :

equation 28 if NumericalSetup.control=ConstantStress(σ) :

f(D) = ​D +
1 − D ​0

γ − 1
​.

1 − D ​0

1 − γD ​0

=Ḋ ​ ​ ,
αa

3D D ​ ​

​3
2

0
​3

1

l̇0 (
K ​IC

K ​I)
n

K ​ =I ​ σ ​A ​ − σ ​A ​ c ​ + c ​ + σ ​c ​ .πa [(3 3 1 1) (1 2) 3 3]

​ =ėij ​ +
2G ​f(D)0

​ṡij
​,

2η ​D

s ​ij

η ​ =D ​ .
∣f (D)∣ ′ Ḋ

f (D) G ​

2
0

​ =ṡax 2G ​f(D) ​ − ​ ,0 (ėax 2η ​D

s ​ax)

​ =ėax ​,
2η ​D

s ​ax

https://link.springer.com/article/10.1007/BF00878002
https://link.springer.com/article/10.1007/BF00878002
https://link.springer.com/article/10.1007/s00024-011-0271-9

Examples

The code in this section can also be found in the example folder.

Constant axial strain rate axisymmetric simulation

Let's load SCAM , an ODE solver library and a plotting package

using SCAM
using OrdinaryDiffEq
using Plots

Let's assume that we want to model the mechanical behavior of a rock under axisymmetric loading
(i.e. 50 MPa) and constant axial strain rate of s .

We need a NumericalSetup type corresponding to the above conditions :

ϵ̇ = -1e-5
setup = TriaxialSetup(
 geom = Geom3D(),
 control = ConstantStrainRate(ϵ̇),
 pc = 50e6
)

Note that if we used Geom2D() instead of Geom3D() , a plane-strain setup would be generated.

We seek to model the damaged-elastic part of the deformation with Incompressible elasticity and a
shear modulus of 30 GPa :

elast = IncompressibleElasticity(G = 30e9)

Assume penny-shaped cracks of radius mm and oriented at an angle (actually the
only possible value) are initially present in the material and are characterized by damage
(function of their number per unit volume).

σ ​ =2 σ ​ =3 −10 −5 −1

a = 0.5 ψ = 45°
D ​ =0 0.2

https://github.com/Leooop/SCAM.jl/tree/master/examples

mmp = MicroMechanicalParameters(
 μ=0.7,
 ψ=45,
 a=0.5e-3,
 D₀=0.2,
 n=10,
 K₁c=2e6,
 l̇₀=1e-2
)

where is the coefficient of friction of the material. is the fracture toughness of the material, is
the Charles' exponent and the reference tensile crack speed. The Charles (1958) subcritical crack
growth law reads :

The evaluation of the stress intensity factor can be performed using the principal stresses (see
Ashby and Sammis, 1991) which we indicate by wrapping the micromechanical parameters in the
following type :

damage_growth = PrincipalKICharlesLaw(mmp)

Now we need a connection between damage and the mechanical behavior. This is done through a
damage-induced weakening of the shear modulus. In this package you can choose between a linear
and an assymptotic weakening. Let's use the form with . This parameter corresponds to the
residual value of shear modulus when the material is broken (i.e.,) :

weak = LinearWeakening(0.5)

We can now assemble the ConstitutiveModel type

cm = ConstitutiveModel(
 weakening = weak,
 damage = damage_growth,
 elasticity = elast,
 plasticity = nothing
)

and finally the full model, also using the setup informations :

μ K ​Ic n

​l̇0

=l̇ ​ ​ .l̇0 (
K ​Ic

K ​I)n

K ​I

γ = 0.5
D = 0

model = Model(cm,setup)

The coupled integration of axial stress and damage is then performed up to s by invoquing

tspan = (0.0, 530)
sol = simulate(model, tspan;
 solver = Tsit5(), # ODE solver
 saveat = range(0, tspan[2]; length=500),
 abstol = 1e-6,
 reltol = 1e-4,
 maxiters = 1e5,
 Dᵢ=nothing, # if nothing D(t0) = D0
 Dmax=0.95,
 stop_at_peak = false,
 cb=nothing # whatever DiffEq Callback. If nothing, uses the appropriate callbac
)

If you want to use you own ODE solver, the package also provides the lower level function

update_derivatives!(du::Vector,u::Vector,p::NamedTuple,t::Any,model::Model)

returning the relevant vector of time derivatives du from state u and model model . p must be a
 NamedTuple containing the field Dmax . Overall for Constant strain rate models the state vector
contains the axial deviatoric stress and damage, whereas for constant stress setup, the deviatoric
stress is replaced by the creep strain rate. t can be input anything, it is not used, and is there to
satisfy OrdinaryDiffEq.jl interface.

The sol return variable is the Solution type ouput by OrdinaryDiffEq . We can straightforwardly
plot it :

530

ϵs = -sol.t.*ϵ̇.*100 # in %
σs = sol[1,:]
Ds = sol[2,:]
plot(ϵs, -σs./1e6,
 c=:black,
 lw=2,
 label="",
 xlabel = "axial strain (%)",
 ylabel = "axial deviatoric stress (MPa)"
)
plot!(twinx(), ϵs, Ds,
 c = :firebrick,
 lw=2,
 label = "",
 ylabel= "damage"
)

Constant stress (brittle creep) axisymmetric simulation

In order to model the brittle creep (also referred to as static fatigue) behavior of the same material
under the same confining pressure, we need to get the rock to the desired stress and then keek the
axial stress fixed. Let's evaluate brittle creep behavior at MPa. We can reuse previous
results to obtain the damage state at this stress level :

σ ​ =c 200

creep_stress = -200e6
σs_to_peak = σs[1:findfirst(diff(σs).>= 0)]
id = argmin(abs.(σs_to_peak .- creep_stress))

σc = σs[id]
Dᵢc = Ds[id]

We then create a new constant stress setup and reinstantiate a model,

setup_creep = TriaxialSetup(
 geom = Geom3D(),
 control = ConstantStress(σc),
 pc = 50e6
)

model_creep = Model(cm,setup_creep)

integrate again (notice the initial damage initialized at)

tspan = (0.0, 1500)
sol_creep = simulate(model_creep, tspan;
 solver = Tsit5(), # ODE solver
 saveat = range(0, tspan[2]; length=500),
 abstol = 1e-6,
 reltol = 1e-4,
 maxiters = 1e5,
 Dᵢ = Dᵢc, # if nothing D(t0) = D0
 Dmax=0.95,
 stop_at_peak = false,
 cb=nothing # whatever DiffEq Callback. If nothing, uses the appropriate callbac
)

and plot !

D ​ci

ts_creep = sol_creep.t
ϵs_creep = -sol_creep[1,:].*100 # in %
Ds_creep = sol_creep[2,:]

plot(ts_creep, ϵs_creep,
 c=:black,
 lw=2,
 label="strain",
 legend =:topleft,
 xlabel = "time (s)",
 ylabel = "axial creep strain (%)"
)
plot!(twinx(), ts_creep, Ds_creep,
 c = :firebrick,
 lw=2,
 label = "",
 ylabel= "damage"
)

