Multi{tscale

Exascale pathways for performance portable electrostatics
solvers

MultiXscale Deliverable 2.2
Deliverable Type: Report
Delivered in December, 2023

MultiXscale
EuroHPC Centre of Excellence for
Multiscale Modelling

PR Co-funded by N
SO the European Union ’

* o4k

Acknowledgement
Funded by the European Union. This work has received funding from the European High Performance Computing Joint

Undertaking (JU) under grant agreement No 101093169.
Disclaimer
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily

reflect those of the European Union or the European High Performance Computing Joint Undertaking (JU). Neither the European
Union nor the granting authority can be held responsible for them.

MultiXscale Deliverable 2.2

Page ii

Project and Deliverable Information

Contractual Date of Delivery
Actual Date of Delivery

Project Title MultiXscale: EuroHPC Centre of Excellence for Multiscale Modelling
Project Ref. Grant Agreement 101093169
Project Website https://www.multixscale.eu
EuroHPC Project Officer Dr. Linda Gesenhues
Deliverable ID D2.2
Deliverable Nature Report
Dissemination Level Public

Project Month 12(31%* December, 2023)
28t December, 2023

Description of Deliverable

Report on exascale pathways for performance portable electrostatics solvers
and further plans

Document Control Information

Title: Exascale pathways for performance portable electrostatics solvers
ID: D2.2
Document Version: As of December, 2023
Status: Accepted by Steering Committee
Available at: https://www.multixscale.eu/deliverables
Document history: Internal Project Management Link
Review Review Status: Reviewed
Written by: Godehard Sutmann(FZJ)
Authorship Contributors:
Reviewed by: Matej Praprotnik (NIC), Alan O‘Cais (UB)
Approved by: Matej Praprotnik (NIC)
Document Keywords

Keywords: \ MultiXscale, HPC!,

28" December; 2023

Disclaimer:This deliverable has been prepared by the responsible Work Package of the Project in accordance with the
Consortium Agreement and the Grant Agreement. It solely reflects the opinion of the parties to such agreements on a
collective basis in the context of the Project and to the extent foreseen in such agreements.

Copyright notices: This deliverable was co-ordinated by Godehard Sutmann' (FZ]) on behalf of the MultiXscale consor-

tium with contributions from

. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license,

visit:

http:/lcreativecommons.org/licenses/by/4.0

©®

lg sutmann@fz-juelich.de

https://www.multixscale.eu
https://www.multixscale.eu/deliverables
https://github.com/orgs/multixscale/projects/3
http://creativecommons.org/licenses/by/4.0
mailto:g.sutmann@fz-juelich.de

MultiXscale Deliverable 2.2 Page iii
Contents
1 Introduction 2
1.1 Scalability oo e 2
1.2 Portability o o e 2
2 Performance Portability Considerations 4
2.1 Software products for Portability e e e e 4
3 Methods and Libraries for Electrostatics Computations 7
3.1 ScaFaCoS . . . o e e e e e e 7
3.2 Shortand Long Range INteractions v v v vt vt i e e e e e e e e e e e e e e e e e 8
4 Steps to provide a performance portable electrostatic library 10
5 Cooperation and Collaboration 11
6 Outreach and Dissemination 12
7 Conclusions 13
List of Figures
1 Measured runtime of the Ewald summation method on five different architectures. 5
2 Rescaled performance of the Ewald summation method on five different architectures. 5

3 Efficiency of the Ewald summation method implemented in Kokkos using five different architectures

relative to the maximum achievable performance.

MultiXscale Deliverable 2.2 Page 1

Executive Summary

To enable simulation codes to run efficiently on exascale architectures it is not sufficient to only consider porting
and optimisation effort for existing software. The complexity of heterogeneous hardware together with a large total
number of compute units requires additional effort define (and achieve independence) between tasks in simulation
codes and to adjust task distribution over compute units.

For the case of electrostatic computations which are based on variants of the Ewald summation method, coarse grain
task division can be achieved by considering short- and long range contributions to the electrostatic potential and
forces separately. Given different performance characteristics between real space and Fourier k-space parts, multi-
domain partitioning can be applied together with adjustment of relevant parameters of the Ewald method to achieve
a balance of computational load between independently running computational partitions. Optimisation of opera-
tions, performed on k-space and real space parts is essential in order to achieve good load balancing between real-
and k-space part partitions.

Due to the bandwidth limited performance characteristics of the FFT, the k-space partition will be much smaller than
the partition on which the real space contribution is computed. The Fourier part has to consider efficient and flexible
implementations of FFT libraries, running on CPUs and GPUs of different vendors.

The real space part needs additional flexibility to allow for a possible integration into the main driver simulation code.
This is considered as an option if an optimised version of a function for short range interactions exists into which the
electrostatic short range part could be integrated. Performance portability is essential for software which is designed
for new HPC architectures, which makes it sustainable and flexible.

Performance portability can be achieved by coupling devices and using offloading of compute kernels based on, e.g.,
OpenMP, OpenACC, Kokkos or Raja. Based on preliminary work on an Ewald summation method, it is suggested
to compare different software providing frameworks for offloading, in order to decide about the best approach. To
provide software which can be used by a broader community the product will be integrated into a library.

Cooperation will be established with both internal and external project partners. Internally, expertise from WP2 part-
ners will provide feedback and specific needs for functionality and details for code coupling. Cooperation with part-
ners from WP1 will be essential for a stable software stack on pre-exascale and exascale machines and a seamless
transition between architectures. External expertise include a cooperation with the POP CoE in an early stage of the
testing phase of the electrostatic solver library to detect and analyse possible bottlenecks in the implementation and to
achieve a high level of code optimisation. Dissemination of the library will start with hands-on tutorials for a broader
scientific community followed by tutorials and workshops.

The presented report reflects plans and started activities of the MultiXscale partner from FZJ to enable electrostatic
solvers being integrated efficiently into particle simulation codes.

MultiXscale Deliverable 2.2 Page 2

1 Introduction

The target of this report is to characterize the steps to be taken to port software of time intensive simulation codes
to modern high performance computing architectures. As a special focus we will consider architectures which are
installed as pre-exascale architectures in Europe and will also consider features foreseen for exascale architectures in
Europe, e.g. the Jupiter machine in Jiilich. The report mainly considers examples coming from applications in fields
such as soft matter physics and biophysics, as these are relevant for the Center of Excellence MultiXscale. However,
algorithms considered here may have much broader scope and are also relevant for, e.g., Plasma Physics or Astro-
physics applications. Therefore, scalability issues will be considered beyond the specific scope of MultiXscale. When
discussing electrostatic solvers, we are considering methods which are designed to solve the Poisson equation. For
many applications, this must also include consideration of different boundary conditions. As a consequence of this
consideration, formulations for solvers have to be adjusted, which in most cases also includes algorithmic modifica-
tions.

Although the problem of solving the potential and the force at the position of a particle has been solved in principle
for many practical applications, the development of efficient methods for big particle systems had a long evolution
starting with the Ewald summation method in the early 20’s of the last century [1, 2]. The central issue of solving
the problem is (i) the conditional convergence of the summation and (ii) the internal quadratic numerical complex-
ity with respect to number of particles, which makes the solution very expensive for upscaled system sizes. Modern
methods have overcome this complexity and reduced it O(Nlog(N)) or even O(N) by taking advantage of FFT’s, mul-
tipole expansions, wavelet expansions or multigrid hierarchical methods. Although the complexity can be reduced,
two central questions still exist, which are related to the pre-factor and the scalability of the methods. Scaling them
up to large numbers of processors comes with bottlenecks, related to collective communication behavior, which is
necessary for sorting particles or to transpose computational meshes.

1.1 Scalability

An important issue to be discussed is the fact that the desired scalability, and hence the implied meaning of scalabil-
ity, may be domain dependent. Not every community needs the weak scaling approach where the system of interest
is enlarged to study, e.g. upscaling size effects. Domains like life sciences or soft matter, where the size of systems
is intimately coupled to timescales, rather need efficient strong scaling, i.e. reducing computational density on each
compute process to enable simulation of larger time scales. It is observed for many systems that when increasing
the system size, the inherent timescale is non-linearly increased (e.g. increasing relaxation and diffusion time with
O(N3'2) or @(N?) depending on the inclusion of hydrodynamic interactions), i.e. for perfect weak scaling the tar-
get system size could be reached but with a non-linear increase in compute time. Therefore it has been discussed
to foster also ensemble-level parallelism, which has a potential to play an increasing role in parallel molecular dy-
namics and statistical physics. This implies, e.g., large sets of systems with identical thermodynamic conditions but
initialized with different initial conditions in velocities or coordinates. In this regard, the Copernicus ensemble frame-
work has been developed to provide the possibility to scale up to ten-thousands of simulations in a parallel environ-
ment [3] which has been integrated into the Gromacs workflow engine [4]. Therefore, scalability has to be discussed
in a broader context:

» Strong scaling: shortening, e.g., timescales for a given system size (e.g. present in protein folding)
* Weak scaling: increasing system size to study large scale phenomena (e.g. material sciences)
¢ Ensemble simulations: obtaining statistical evidence within a large set of similar systems of comparable size

Therefore, it will not only be important to develop software which can scale to the largest possible number of pro-
cesses, but also to have software which can be coupled to different codes and can be ported to different architectures.
This favors a modular software design and library solutions, from which several codes can profit and which facilitates
maintenance and sustainability.

1.2 Portability

One of the central questions for the era of new HPC architectures is portability between architectures of different
type. Most simulation codes have a long history and have originally been developed for traditional CPU architectures.
Although variations come with, e.g., vectorization or parallelization, the underlying programming model had been
stable. This changed with the advent of accelerators, in particular GPUs. Some experience had been gained with “al-
ternative” approaches to accelerate computations, e.g. FPGAs or streaming architectures but this has not (yet) been
established as a standard in HPC [5, 6]. This is in contrast to GPU accelerators, which nowadays are the main perfor-
mance drivers of cutting edge HPC machines. Although the GPU’s now form a major part of the HPC landscape, they
are still a challenging target for code development. This is due to an unusual data layout and unique native language
paradigms, both of which pose compatibility issues for traditional codes, typically written in C, C++ or Fortran. Some

MultiXscale Deliverable 2.2 Page 3

support has been provided to address the compatibility layer between CPU’s and GPU'’s via directive based additions,
like OpenACC or OpenMP, and language based frameworks like Kokkos or Raja. These facilitate porting to some extent,
but also introduce another level of complexity to codes.

This report will provide a plan of how existing implementations for solving the electrostatic problem have to be ex-
tended to provide the basis for being ported to exascale machines, how the performance portability issue has to be
considered and how task decomposition in such codes might be adapted to allow for overall scalability of the codes.
The solution of the electrostatic problem in particle codes definitely plays a dominant role for the overall consumption
of compute time. However, for the final scalability of a code all parts/tasks of the simulation code or workflow have
to be considered. In this report, our focus is placed on the electrostatic part, which nevertheless has to be considered
together with the task of solving short range interactions, as all fast solvers split the total work into short- and long-
range contributions. As will be discussed, this splitting not only is a technical necessity, but also enables optimization
between parts, which show different scalability behavior.

MultiXscale Deliverable 2.2 Page 4

2 Performance Portability Considerations

Due to the increase in heterogeneous computer systems, porting software between different platforms has become
more and more important. In particular, the transition from CPU to GPU architectures has posed a challenge for many
codes.

Both hardware vendors and developers of parallel libraries offer offloading solutions to port software between archi-
tectures. This, however, does not guarantee that the performance on the accelerator platform reaches the relative
performance, which has been achieved on the CPU side. Possible reasons include missing optimization on the accel-
erator side or different memory access patterns, i.e. non-optimal or non-adjusted data structure layout.

To realise the transition from CPU to GPU, a change in the layout of data structure might be necessary, e.g. switching
from an AoS (array-of-structure) type particle list to a SoA (structure-of-arrays) type list. Usually SoA style particle lists
show better properties in streaming and cache usage (on a GPU). Therefore, porting code without the adjustment of
data structures often results in loss of performance.

The alternative to offloading kernels via tools is the specific design of kernels in a supported language of the accelera-
tion platform, e.g. CUDA for the Nvidia GPU’s. This approach, however, makes it necessary to rewrite portions of the
code when changing to other types of GPU’s and therefore restricts porting to a specific vendor.

Performance portability is key to use different accelerator platforms efficiently. A simple definition of performance
portability is that the same source code will run productively on a variety of different architectures [7]. However, there
is a debate in literature on how to actually quantify performance portability [8, 9, 10].

Our aim is to take a more generic approach, where the electrostatic solvers can be used on diverse hardware archi-
tectures. Historically, OpenCL [11] was established as alternative to CUDA providing a programming environment
to target different types of architectures. While OpenCL is at present not as prominent as in the past it is still part of
developments such as ROCm [12] from AMD.

2.1 Software products for Portability
Examples of software products, enabling the transition from CPU to GPU or parallel use include

¢ OpenMP [13] has been invented as a shared memory parallel programming paradigm. It has been further de-
veloped to allow off-loading to accelerator devices. It follows the so-called host-device model, where the host
creates the data environment and maps data to this environment on the device. Compute kernels within “tar-
get” regions are off-loaded to the target architecture and operations between OpenMP directives are executed
on the device, from where data are back-transferred to the host. OpenMP host device model allows for both
C/C++ and Fortran code to be off-loaded. Using OpenMP clauses, multi-level parallelism can be achieved (e.g.
combination of omp teams and omp parallel do).

e OpenACC [14] is an initiative of CRAY, CAPS, Nvidia and PGI to enable existing C/C++ and Fortran codes to run
on heterogeneous CPU/GPU systems. With simple compiler directives in the source code, compute kernels can
be off-loaded to a GPU. This enables computations on the GPU but does not guarantee maintaining perfor-
mance. Optimization is available at compile time, but data layout is not automatically transposed from CPU
to GPU. This is one reason for the performance loss between native code, designed for the GPU and offloaded
kernels with CPU adjusted data layout.

e HIP [15] is a heterogeneous compute interface from AMD. It consists of a C++ runtime API and kernel language
that allows to develop code for Nvidia and AMD GPU's. It allows for coding in C++ code and to use many modern
features such as templates or lambdas. The tool HIPIFY allows to port CUDA code from Nvidia cards to AMD
cards, providing an automatic translation from CUDA into HIP C++ to be run on AMD cards. Effort is made to
establish a common code base for AMD and Nvidia cards. However, it is not guaranteed that the performance
of the CUDA code is fully maintained.

¢ Raja [16, 17] and Kokkos [18, 19] are both C++ based products. Both provide many backends, so that code can
be run on different target devices. Raja is developed at LLNL and consists of a collection of C++ abstractions. On
the other hand, Kokkos is developed at Sandia NL and provides a C++ framework. It has introduced so-called
views which map arrays from the program to nearly optimal data layout on the target device. This allows a
rather seamless transition from architecture to another, without the need to architecture dependent data layout
on code level. This strongly facilitates coding and maintaining a code. For Kokkos, portability relies on the
up-to-date version of Kokkos, i.e. whether the target architecture has been included into the Kokkos data view
(however, it is also possible for the programmer to experiment with and to adjust the data layout in the code
under development).

MultiXscale Deliverable 2.2 Page 5

For compute kernels with a low algorithmic complexity, different implementations, e.g. OpenMP, OpenACC and

Kokkos, can be directly compared. In a first implementation phase the different approaches will be compared to
each other in a testbed environment for the case of a typical compute kernel.

T T T T T T T]
32768 | Haswell —e— o i
Kepler —o— o N2 e - 4
KNL e
8 1024 + Skylake - -7 s
() Volta —e—
L,
() -
E o -
[
>
—
1 i
0.03125 . . .]

32768 65536 131072 262144 524288 1048576 2097152 4194304

number of particles N

Figure 1: Measured runtime of the Ewald summation method on five different architectures.

Haswell —+— e

32768 | Kepler —s— x N2 P -
KNL

] Skylake L ¢/
o Volta —e— o7 /
9, 1024 ona : i
° -
= -
=
c
-}
—_

32

32768 65536 131072 262144 524288 1048576 2097152 4194304
number of particles N

Figure 2: Rescaled performance of the Ewald summation method on five different architectures.

For the case of Kokkos, some experience has already been gained for the computation of short range interactions for
the case of a traditional Ewald summation as well as for an example of particle based hydrodynamics computation
in the formulation of Multi-Particle Collision Dynamics (MPCD) [20, 21]. The scientific case of Ewald summation has
been tested on a number of platforms (cmp. Fig. 1) [Halver2020a,Sutmann2020a]. Since Kokkos is an on-node paral-
lelization environment, performance has been tested for single-node only with a modification of particle number. As
can be expected (i) the runtime increases with the number of particles (here a quadratic increase since all particles in

the central simulation box interacted with each other); (ii) depending on the architecture performance capability the
runtime differs between the architectures.

In order to check the specific issue of performance portability, the number of performed operations on each architec-
ture has been measured and put in relation with maximum achievable performance which could have been obtained

MultiXscale Deliverable 2.2 Page 6

relative performance on architecture
45 T T T T T

reached relative performance [%]

32768 110592 262144 512000 884736 1404928 2097152 4096000 7077888
charges
Skylake mmmmm Haswell mmmmm Kepler Volta === KNL ——=

Figure 3: Efficiency of the Ewald summation method implemented in Kokkos using five different architectures relative
to the maximum achievable performance.

if operations could be performed without memory or runtime overhead. The resulting comparison of this rescaled
performance is shown in Fig. 2 from where it is nicely seen that the use of Kokkos enables performance portabil-
ity in terms of achievable performance on a given architecture within a narrow band of performance differences. In
a different representation this is also shown as relative performance compared to the maximum achievable perfor-
mance in Fig. 3. Although a direct comparison between Kokkos and both OpenMP and OpenACC for a similar case

study is not yet performed, a first choice for the portability work in Task 2.3 of WP 2 will be to start with the Kokkos
framework.

MultiXscale Deliverable 2.2 Page 7

3 Methods and Libraries for Electrostatics Computations

In many simulations, electrostatics calculations are one of the more expensive computational parts. When using a
naive approach they scale quadratically with the number of charges in the system, i.e. as @(N?). Since this complex-
ity hinders scalability to large systems and introduces prohibitive computational cost, considerable effort has been
devoted to the development of fast methods, which all rely on a separation of space in terms of long-range and short-
range contributions. Promising methods for higher scaling are the Fast Multipole Method, variations of the Ewald
method using FFT’s for the far field, multigrid method or wavelet based methods. While FMM and multigrid promise
to scale linearly with number of charges, the other methods exhibit computational complexity of ©(Nlog(N)). Al-
though a computational complexity of @ (V) looks promising for large systems, parallel scalability of these methods
has not yet been shown to have a clear advantage. Differences and preferences of the methods can be found in advan-
tages for specific applications, e.g. Monte Carlo techniques, where only energy changes upon single particle changes
are to be computed. Since the majority of applications in physics and materials science, which need the electrostat-
ics calculations, apply system dynamics or global changes between iteration steps, we will not focus on such special
applications.

3.1 ScaFaCoS

For electrostatic calculations, boundary conditions play an important role for the physical setup. Several variants
of FMM, P3M and wavelet methods have been developed to distinguish between periodic, partial periodic, open and
finite-geometry boundary conditions. Therefore, there is not only one method which has to be considered if one deals
with porting of electrostatics to new architectures. In view of this diversity, the ScaFaCoS library [22] has been devel-
oped, which provides a number of different solvers for the electrostatic problem. Originally the development had two
goals: (i) make methods comparable in a common benchmark and development environment and test performance
and scalability under controllable and comparable conditions; and (ii) compare methods, which might perform dif-
ferently for different simulation conditions, e.g. number of charges or different simulation requirements, e.g. level of
accuracy. This also included the goal to include method variants dealing with different boundary conditions.

A comparison of the scalability of the ScaFaCoS methods has revealed that the implemented methods had different
performance properties[23]. From those properties a clear superiority of a certain method could not be identified.
All included methods have in common the separation of the computation into long- and short-range contributions.
For the comparative study, it has not been taken into account whether different scalability properties of these two
parts might exist. Rather the short and long-range parts were setup for a single or small set of processors with the re-
quirement of optimizing the total runtime over the benchmark specification. From these initial set of parameters, the
upscaling was performed. Especially for the methods including FFTs, this is certainly not the optimal choice. There-
fore, a porting of the methods also has to take into account an optimization process to balance the work in the short-
and long-range parts not only on small processor counts but to take into account the high demand of communication
of parts of the computation, e.g. the FFT. This calls for a hybrid partitioning of the tasks in the computations, i.e. per-
forming computation of bandwidth limited parts on a smaller subset of resources. Since the porting of the methods
have to include GPU architectures, the performance optimization needs a strategy to partition resources for different
tasks.

The existing ScaFaCoS library is already integrated into the ESPResSo code [24, 25] of the MultiXscale partner in
Stuttgart, where the P3M method is applied for most applications including electrostatics interactions between par-
ticles. It has also been integrated into the LAMMPS simulation engine (26, 27, 28]. The FMM code from the library
has been further developed in the context of the Gromacs code [29], where the special need for lambda-dynamics was
required, which needs energy changes of single groups of particles, i.e. local changes, and does not require in each
step the update of the full system energy [30]. Since the FMM is already being developed further in a different context,
the main focus of the porting approach within MultiXscale will be on the P3M method and variants for boundary con-
ditions and possibly on wavelet methods. The wavelet methods in particular have been demonstrated to capture both
the field of high accuracy computations and achieve high scalability. These methods were developed by Gédecker and
collaborators [31, 32, 33, 34, 35], and have been both integrated into the DFT code BigDFT [36, 37] and provisioned as
stand-alone package to be included into existing simulation codes with small adjustments.

The described methods are available in different development stages. The methods implemented into ScaFaCoS have
C, C++ and Fortran90 interfaces. The wavelet methods available from the BigDFT or the GitLab repository are in
Fortran90. C++ versions have been realized but are not yet accessible as open source. This also includes a GPU ready
version of Poisson solvers for various boundary conditions, including open and periodic boundary conditions [38].
Therefore, addressing porting also implies a modernization of ScaFaCoS and the methods included therein. As a
result, it is important to identify first a set of methods which are serving the MultiXscale community and have the
potential to reach out to a wider community so as to focus development effort where it is likely to have the most
impact.

MultiXscale Deliverable 2.2 Page 8

From the point of view of applications in the MultiXscale context, the P3M method is most promising as it has been
applied to a large set of applications in the context of soft matter physics and complex system simulations. In the
context of P3M, various modifications were developed. This includes the electrostatic layer correction (ELC) [39],
which takes into account restricted geometries with plane walls in one or two dimensions. In principle this allows
also for open boundaries. Other modifications include the introduction of electrostatic shadowing which includes
modified dielectric properties in the system. Therefore, the starting point for the porting approach will consider the
P3M method, as it is currently used in the ESPResSo code. To achieve highest efficiency and flexibility, the method is
modularized and prepared to be included into an integrated library.

3.2 Short and Long Range Interactions

All of the mentioned candidate methods rely on splitting the electrostatic problem into a short- and long-range part.
The short-range part can be computed by standard means of short-range molecular dynamics methods including
setup of neighbor lists and computing explicit pair-pair particle interactions within a cutoff region. Short-range real
space contributions can be mapped to a standard domain decomposition, where particle information is imported/ex-
ported from neighbor domains, i.e. having local range of interactions. This is usually implemented by point-to-point
communications between processes. On a multi-GPU system this is consequently translated to inter-GPU point-to-
point communication via ROCm [12] or GPUdirect [40].

Since computation of short-range interactions between particles is common for all MD community codes, implemen-
tation has received much attention, resulting mainly in highly optimized routines. Therefore the short-range part of
electrostatic interactions is likely to be computed in the MD driver program. In this case a library solution has to pro-
vide the proper functions, which are required by the Poisson solver. However, computing short-range interaction in
the MD code comes with restrictions concerning the size of the short-range part, which has to be considered as an op-
timization parameter for balancing long- and short-range contributions. If the cutoff radius in the program is adjusted
to sizes which are typically several particle diameters large, this is not necessarily true for the Coulomb short-range
part. Increasing this radius in the program would need to adjust the interaction range for different types of interac-
tions which might introduce another overhead or require an independent implementation of the short-range part in
the program. Therefore, a library solution will also need to offer an implementation of the computation of the short-
range contributions. This has as a consequence, that parts of the library are called simultaneously on different domain
partitions in the case where the long-range part is computed on a subset of CPUs/GPUs.

For short-range part of electrostatic interactions, lists provide an efficient way to reduce the number of distance com-
putations between particles. Lists can can be constructed in different ways, e.g., Gromacs [29] choses the way to define
small clusters, which are interacting and which can be mapped profitably onto SIMT, SIMD-based CPU and GPU. In
this way, the possibility for vectorization is inherently included in the algorithm. Similarly, offloading via OpenMP
or OpenACC can also profit and it has to be investigated whether Kokkos would further profit from introducing data
locality via cluster interactions.

Similar to clusters (which have to be constructed during runtime) is the introduction of containers, holding a certain
number of particles. They can be defined similar to linked lists, making it fast to sort particles geometrically. Con-
tainers can host particle data locally, forming a data local mesh of particle containers. This can be used profitably to
implement similar data locality and data reuse patterns as in mesh based computations. An advantage is that a static
mapping of containers can be performed, which also allow static patterns for data access, similar to mesh-based op-
erations. Since containers might only be filled partially they increase overall memory demand, which introduces bot-
tlenecks in memory management. It has to evaluated which short-range implementation performs best and whether
it might be dependent on the underlying architecture.

In contrast, FFT works on a global mesh, which has to transposed after each transform in a cartesian direction. This
involves global communication, which dominates the FFT calculation for large partitions, i.e. makes it bandwidth
limited. Therefore, the runtime can be optimized by choosing a hybrid approach for partitioning resources, where
part of the resources works the main part of the simulation, including the real space short-range contributions, while
another smaller part of resources works on the FFT part. In principle, for a heterogeneous CPU/GPU system, the
FFT part could be run on the CPU partition. This partitioning is certainly a very important step to reach at a bal-
anced distribution of runtime together with a minimization of a communication cost function. Therefore, extensive
benchmarks together with runtime models will provide information about mapping of programs onto the CPU/GPU
resources or on partitioned GPU'’s.

Effort has been spent in developing new FFTs or improving runtime behavior and scalability [41, 42]. A subset of
available FFT implementations is able to run on GPU’s. Since the current project has not the goal to design and
implement a new version of FFT, it is important to find the best suited version in terms of minimal communication
overhead, fast computation and good scalability. An important step for building a strategy of resource partitioning
and implementation is therefore the scalability characteristics of available FFT methods as function of mesh size and

MultiXscale Deliverable 2.2 Page 9

CPU/GPU resources.

From a functional perspective, the larger part of the resources is dedicated to real space part calculations and to
the preparation of the charge density distribution on the mesh. This is also a short-range contribution where the
influence region of a mesh point to neighbored charges depends on the range of finite support of the method (often
third-order cardinal splines or truncated Gaussian functions). This work is linearly scaling with number of charges
and has no dominant contribution. The operations have generally small arithmetic intensity, so that the operations
are memory bound. Independent of the performance portability framework which will be used, performance has to
be monitored and possible optimizations, e.g. loop tiling or changes in memory access patterns, can be performed
and support the offload tool. To support local memory access and reuse, short-range interactions could profit from
sorting particles according to, e.g., space-filling curves. Although there is some overhead included, performance gain
might over-compensate this additional work. Therefore, sorting routines, including space-filling curves will provide
the basis for locality of particle coordinates in memory.

With respect to the Fourier space part of the computation, the charge-mesh is transferred to the domain partition,
where the FFT is performed. It is assumed that this is a non-local memory transfer, where communication is per-
formed with GPU-aware MPI, e.g. ROCm for AMD and GPUdirect for Nvidia GPU’s. The FFT calculation is then carried
out in parallel to the real space part. As mentioned, a balanced distribution of work between real- and Fourier-space
part is required for good level of load balancing. To be most flexible in optimizing resource utilization, a repartitioning
should be possible. This however, has to be coordinated with the main driver code and therefore cannot be fully de-
tailed here. Nevertheless, implementations of P3M methods and the like allow to adjust parameters, like the k-space
cutoff maximum wavenumber, the real space cutoff radius or the width of the continuous charge distribution. A suit-
able choice of these parameters can then allow for runtime optimization and balancing the relative work between
Fourier- and real-space parts [43, 44, 45, 46].

The API for inclusion of an FFT library is to be designed in a flexible way so that the underlying code can profit from
the currently best performing FFT version. It has also to take into account that the FFT should be executable on both
CPU and GPU. There are only a few implementations, until now, which provide this flexibility:

¢ HeFFTe: is the only library that provides support for distributed-memory systems with AMD and Intel GPU’s.
Backends involve rocM for AMD and oneMKL for Intel. It has its own backend solution [47] which avoids licens-
ing issues but can also make use of FFTW or vendor specific single process implementations.

* AccFFT: allows distributed computing on CPUs and GPUs, implementing a hybrid message passing via MPI and
CUDA.

¢ FFTE: has GPU support but with a restricted compiler support (PGI), which limits its use cases in view of licens-
ing issues. As backend it uses cuFFT [48] and FFTW [49].

In addition to splitting short-range and long-range interaction parts of the Coulomb solver, it has to be clarified,
whether single precision calculations can be performed in parts of the compute pipeline, which could have both
advantages for faster calculation and smaller communication volume. Single precision calculation can be combined
with error reduction algorithms [50, 51] (e.g. when summing contributions onto mesh points in preparation for the
FFT), thereby reducing round-off errors, making it attractive when the required accuracy is not too high.

MultiXscale Deliverable 2.2 Page 10

4 Steps to provide a performance portable electrostatic library

Here we provide a summary of the actions which have to be taken to develop a performance portable framework for
electrostatics calculations.

Choice of good / best candidates of electrostatics methods, originating from ScaFaCoS library and other com-
munity developed methods.

Benchmarks and choice of the best suited FFT

Benchmarks of bandwidth measurements between CPU/GPU and GPU/GPU to decide on packaging data and
batching FFT

Get most efficient mapping between (MD) compute nodes and FFT nodes. Set of MD compute nodes should
consist of a multiple of the subset of FFT nodes for best load distribution and avoidance of redistribution. Effi-
ciency has to be, however, measured and optimized.

Decide on collective vs point-to-point communication during FFT
Characterize target systems with performance achievements of FFT’s

Optimisation of all-to-all communication, e.g. using MPI_alltoallw, which allows for more complex data
structures and strides which has high potential for the communication steps in the transpositions.

Setting up an interface to enable simple exchange of underlying FFT for optimal execution on target architec-
tures

Accessing available pre-exascale architectures and, as soon as possible, the Jupiter exascale machine

Cooperation with the EESSI project partners to have a unique installation and software environment on the
target machines

Development of a testbed framework, consisting of application scenarios, which can be used for strong and
weak scaling.

Profiling of existing methods and identifying most demanding parts in the codes

Evaluate performance of list- vs container-implementation for particle data management for short range inter-
actions.

Development of tuning electrostatic solver parameters to balance load between computations of short- and
long-range interactions in splitting methods.

Development of new library approach, which can be integrated into existing codes

Development of load balancing strategy for task partitioning by considering minimization of communication
need for bandwidth limited kernels, e.g. FFT.

Exploring possibilities to concurrently use CPU and GPU resources and to exploit modular supercomputing
Setup of CI environment, including

— Gitlab repository

- Cross compiler checks

— Documentation

— Cross architecture checks
Integrating the library approach into selected codes

Setting up a benchmark environment for testing on different architectures and archiving benchmark results

MultiXscale Deliverable 2.2 Page 11

5 Cooperation and Collaboration

Besides outreach activities it is important to have feedback, exchange and support from specialists in fields not fully
covered by local research groups. In particular this includes:

¢ Performance analysis tools
¢ Progress in performance portability frameworks
¢ Tools for software development, provision and deployment

For performance analysis tools close cooperation has to be established to the EuroHPC Center-of-Excellence POP,
which has a strong record not only in analysis but also in support for performance improvement. It will be very im-
portant to follow the developments of POP with respect to provision of analysis tools for pre-exascale and exascale
architectures. Further development in performance portability frameworks will be actively followed by close cooper-
ation with core developer groups, which will also allow for constructive feedback and co-design approaches. Current
cooperation includes groups from LANL, where Kokkos based library Cabana is developed, which has been applied in
arecent work [52, 53]. Furthermore, developments in, e.g., OpenMP or OpenACC will be followed in view of being ad-
vantageous with respect to Kokkos (the framework, currently chosen as candidate for performance portability).

During development, testing and provision of new software, tools and environment for development, provision and
deployment will profitably used from the MultiXscale branch of the EESSI workpackages. It is important already in an
early development stage to make benefit from the software provision environment, provided by the EESSI group. This
will provide a transparent and seamless transition between the EuroHPC pre-exascale and exascale machines. As are-
sult of the EESSI workpackages, the same software stack will be available on each target architecture, which will allow
both the development of software within the target architecture software environment and the seamless transition
from development to production stage on a number of different architectures. In addition, the cooperation will also
allow for a co-design approach by providing feedback between development groups of software provision environ-
ment and scientific software developments. Furthermore, cooperation with WP6 will be fostered and that developed
software for electrostatic interaction in particle systems will also provide material for training events organized within
MultiXscale.

Collaboration activities

¢ Together with MultiXscale partner Stuttgart, software for electrostatic solvers will be tested with the MD package
ESPResSo

* Codesign activities with the Stuttgart partners will be established, especially in view of library design and func-
tionality.

¢ In line with project partners from WP2 (NIC), the electrostatic solver library should be coupled to other com-
munity codes, e.g. LAMMPS, and tested on different architectures.

MultiXscale Deliverable 2.2 Page 12

6 Outreach and Dissemination

It is important to include a wider community into the development and testing phase of the performance ported elec-
trostatic methods already during the development phase. This is not only important for providing new methods and
tools to the community, but also to receive feedback from the a wider and inter-disciplinary audience. This will not
only provide user experience on a practical level, but further allows to get into discussion about new developments in
performance portable approaches, which can either enrich existing implementations or lead to alternative pathways,
which might be considered as an alternative for a later release. An interesting and natural community to be included
into these outreach and dissemination activities is the CECAM community, where computational scientists from dif-
ferent research fields come together. Electrostatic problems are relevant in both classical techniques like molecular
dynamics or Monte Carlo methods, applied in Soft Matter Physics, Biophysics, Statistical Physics and Materials Sci-
ence, as well as in ab initio methods, applied in reactive systems or first principles materials applications. It is also
of interest to include approaches, relying on machine learning or Al, which need efficient methods for large sets of
training data. For reaching out to a most broad user community base, the other CoE’s will be invited to contribute or
participate in improving the implementations by testing or active contributing. In this respect it is intended to have
different instruments of exchange:

¢ Workshops This is intended as a platform for knowledge exchange within and across the communities. New
approaches for performance portability as well as new ideas for electrostatic algorithms are discussed. This also
includes topics like (i) including electrostatics into Multi-Level- and Multi-Scale-Simulations where different
time and length scales are considered concurrently or; (ii) including long-range effects into ML protocols, which
often rely on local structure or pattern recognition.

¢ Tutorials During tutorials the basic concepts of fast electrostatic solvers together with efficient approaches
for parallelization are taught to students and postdoctoral researchers. In addition, performance portable ap-
proaches, based on, e.g., OpenMP or Kokkos are introduced.

¢ Hands-on meetings During hands-on tutorials, the developed software from WP2 on electrostatics will be pro-
vided where researchers can work together with tutors from the project on their own codes. The integrated
library on performance portable electrostatics solvers will be provided in its current development stage. This
will have a mutual benefit on the project and the community. On the one side the community can profit from
the distribution of a developed software, on the other side the project will receive feedback on possible bottle-
necks in integrating the library into existing codes, so that a continuous correction and improvement process is
in place.

These kind of outreach and dissemination actions can be organized, e.g., as part of the CECAM flagship event cal-
endar upon application, or as CECAM node events, e.g., at the CECAM-DE-Juelich or the CECAM-DE-SMSM (Mainz,
Stuttgart, Darmstadt). Further outreach activities comprise presentations on external conferences and workshops,
where also hands-on sessions are offered together with introductory sessions into performance portability and long
range interactions.

MultiXscale Deliverable 2.2 Page 13

7 Conclusions

Implementation of electrostatic long range interactions require flexibility in distributing compute kernels over hetero-
geneous resources, especially CPU and GPU devices. This flexibility can be achieved with adapting modern framework
implementations for performance portability. It is suggested to use Kokkos as performance portability framework, as
there are already promising results obtained for similar, yet different, tasks. It is suggested to also have a comparison
with other kernel offload libraries, e.g. OpenMP and OpenACC, for smaller kernels to get a direct ranking. For the
highest flexibility of the computations, a library approach is suggested which separates long- and short-range contri-
butions from the calculations, in order to decide whether short range part can be covered by the driver program (e.g.
MD) or should be delegated to the library. It will be important to connect to the scientific user community in order to
have both the information exchange about experiences in applying the library and the feedback about performance
and correctness issues. Workshops and hands-on are planned to satisfy these needs.

MultiXscale Deliverable 2.2

Page 14

Acronyms Used
Al Artificial Intelligence
ALL A Load-balancing Library
API Application Programming Interface
CECAM Centre Européene de Calcul Atomique et Moléculaire
CI Continuous Integration
CoE Center of Excellence
CPU Central Processing Unit
DFT Density Functional Theory
EESSI European Environment for Scientific Software Installations
ELC Electrostatic Layer Correction
ESDW Extended Software Development Workshop

ESPResSo Extensible Simulation Package for Research on Soft Matter
EuroHPC The European High-Performance Computing
EuroHPCJU European High Performance Computing Joint Undertaking

FFT Fast Fourier Transformation

FFTW Fastest Fourier Transform in the West

FMM Fast Multipole Method

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HeFFTe Highly Efficient Fast Fourier Transforma for Exascale
HIP Heterogeneous Interface for Portability
HPC High Performance Computing

HTC High Throughput Computing

HPDA High Performance Data Analysis

JSC Jiilich Supercomputing Centre

KPI Key Performance Indicators

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
LANL Los Alamos National Laboratories

LLNL Lawrence Livermore National Laboratories
ML Machine Learning

MPCD Multi Particle Collsion Dynamics

MD Molecular Dynamics

MPI Message Passing Interface

NIC National Institute of Chemistry

NL National Laboratories

openACC Open Accelerators

openMP Open Multi-Processing

P3M Particle-Particle Particle-Mesh method

POP Performance Optimisation and Productivity
PRACE Partnership for Advanced Computing in Europe
ScaFaCoS Scalable Fast Coulomb Solvers

SIMD Single Instruction Multiple Data

SIMT Simultaneous Multithreading

SOA Structure Of Arrays

UB University of Barcelona

WP Work Package

URLs referenced

Page ii
https://www.multixscale.eu ... https://www.multixscale.eu
https://www.multixscale.eu/deliverables ... https://www.multixscale.eu/deliverables
Internal Project Management Link ... https://github.com/orgs/multixscale/projects/3
g.sutmann@fz-juelich.de ... mailto:g.sutmann@fz- juelich.de
http://creativecommons.org/licenses/by/4.0 ... http://creativecommons.org/licenses/by/4.0

https://www.multixscale.eu
https://www.multixscale.eu/deliverables
https://github.com/orgs/multixscale/projects/3
mailto:g.sutmann@fz-juelich.de
http://creativecommons.org/licenses/by/4.0

MultiXscale Deliverable 2.2 Page 15

References

[1] P Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann. Phys., vol. 64, p. 253, 1921.

[2] B. Luty, M. Davis, I. Tironi, and W. van Gunsteren, “A comparison of particle-particle, particle-mesh and Ewald
methods for calculating electrostatic interactions in periodic molecular systems,” Mol. Sim., vol. 14, pp. 11-20,
1994.

[3] S. Pronk, I. Pouya, M. Lundborg, G. Rotskoff, B. Wesen, P. Kasson, and E. Lindahl, “Molecular Simulation Work-
flows as Parallel Algorithms: The Execution Engine of Copernicus, a Distributed High-Performance Computing
Platform,” J. Chem. Theo. Comp., vol. 11, pp. 2600-2608, 2015.

[4] Http://Copernicus.gromacs.org.

[5] C.Yang, T. Geng, T. Wang, R. Patel, Q. Xiong, A. Sanaullah, C. Wu, J. Sheng, C. Lin, V. Sachdeva, W.Sherman, and
M. Herbordt, “Fully integrated FPGA molecular dynamics simulations,” in SC’19: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, 2019.

(6] D.]J. and].E. Allen, Y. Y. andW.ED. Bennett, M. Gokhale, N. Moshiri, and T. Rosing, “Accelerators for Classical
Molecular Dynamics Simulations of Biomolecules,” J. Chem. Theory Comput., vol. 18, p. 4047-4069, 2022.

[7] J.Larkin, “Performance Portability Through Descriptive Parallelism,” in DOE CoE Performance Portability Work-
shop 2016, 2016.

[8] S.Pennycook,J. Sewall, and V. Lee, “Implication of a Metric for Performance Portability,” Future Generation Com-
puter Systems, vol. 92, pp. 947-958, 2019.

[9] S.Pennycook and J. Sewall, “Revisiting a Metric for Performance Portability,” in 2021 International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), vol. 2, 2021, pp. 1-9.

[10] A. Marowka, “Reformulation of the performance eportability metric,” Software Practice and Experience, vol. 52,
pp. 154-171, 2022.

[11] 2016, Khronos OpenCL Working Group. The OpenCL Specification, 2.2 edition, March.

[12] Https://rocm.docs.amd.com/en/latest.

[13] Http://www.openmp.org.

[14] Http://www.openacc.org.

[15] Https://rocm.docs.amd.com/projects/HIP/en/develop/index.html.

[16] Https://computing.llnl.gov/projects/raja-managing-application-portability-next-generation-platforms.

[17] D. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. Kunen, O. Pearce, P. Robinson, B. Ryujin, and
T. Scogland, “RAJA: Portable Performance for Large-Scale Scientific Applications,” Lawrence Livermore National
Laborotory, Tech. Rep. LLNL-CONF-788757, 2019.

[18] Http://kokkos.org.

[19] H. Edwards, C. Trott, and D. Sunderland, “Kokkos: Enabling manycore performance portability through poly-
morphic memory access patterns,” J. Parallel Distrib. Comput., vol. 74, p. 3202-3216, 2014.

[20] G. Gompper, T. Ihle, D. Kroll, and R. Winkler, “Multi-Particle Collision Dynamics: A Particle-Based Mesoscale
Simulation Approach to the Hydrodynamics of Complex Fluids,” Adv. Polym. Sci., vol. 221, pp. 1-87, 2009.

[21] G. Sutmann, C. Huang, R. Winkler, and G. Gompper, “Semidilute Polymer Systems under Shear Flow,” in IAS
Series, M. K. G. Miinster, D. Wolf, Ed., vol. 3. Jiilich: Forschungszentrum Jiilich, 2010, pp. 287-294.

[22] Http://www.scafacos.de.

[23] A. Arnold, E Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver, I. Kabadshow, E Géhler, E Heber,
J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts, and G. Sutmann, “Comparison of scalable fast methods for
long-range interactions,” Phys. Rev. E, vol. 88, p. 063308, 2013.

[24] H.J. Limbach, A. Arnold, B. A. Mann, and C. Holm, “ESPResSo - An Extensible Simulation Package for Research
on Soft Matter Systems,” Comp. Phys. Comm., vol. 174, pp. 704-727, 2006.

[25] Http://espressowiki.mpip-mainz.mpg.de/wiki/index.php/Main_Page.

[26] S.Plimpton, “Fast parallel algorithms for short range molecular dynamics,” J. Comp. Phys., vol. 117, p. 1, 1995.

MultiXscale Deliverable 2.2 Page 16

(27]

(28]
(29]
(30]

(31]
(32]

[33]

(34]

[35]

(36]

[37]
(38]

[39]

(40]
(41]

(42]

(43]
(44]

(45]

(46]

(47]

(48]
[49]
(50]
(51]

(52]

(53]

A. Thompson, H. Aktulga, R. Berger, D. Bolintineanu, W. Brown, P. Crozier, P. in’t Veld, A. Kohlmeyer, S. Moore,
T. Nguyen, R. Shan, M. Stevens, J. Tranchida, C. Trott, and S. Plimpton, “LAMMPS - a flexible simulation tool for
particle-based materials modeling at the atomic, meso, and continuum scales,” Comp. Phys. Comm., vol. 217, p.
10817, 2022.

Http://lammps.sandia.gov.
Http://www.gromacs.org.

B. Kohnke, C. Kutzner, and H. Grubmiiller, “A GPU-Accelerated Fast Multipole Method for GROMACS: Perfor-
mance and Accuracy,” J. Chem. Theory Comput., vol. 16, pp. 6938-6949, 2020.

S. Goedecker, “Linear Scaling Electronic Structure Methods,” Rev. Mod. Phys., vol. 71, pp. 1085-1123, 1998.

L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, and G. Beylkin, “Efficient solution of Poisson’s equation with
free boundary conditions,” J. Chem. Phys., vol. 125, p. 074105, 2006.

L. Genovese, T. Deutsch, and S. Goedecker, “Efficient and accurate three-dimensional Poisson solver for surface
problems,” J. Chem. Phys., vol. 127, p. 054704, 2007.

S. Ghasemi, A. Neelov, and S. Goedecker, “A particle-particle, particle-density algorithm for the calculation of
electrostatic interactions of particles with slablike geometry,” J. Chem. Phys., vol. 127, p. 224102, 2007.

A. Neelov, S. Ghasemi, and S. Goedecker, “Efficient solution of Poisson’s equation with free boundary conditions,”
J. Chem. Phys., vol. 125, p. 074105, 2007.

S. Mohr, L. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch, and S. Goedecker, “Daubechies wavelets for
linear scaling density functional theory,” J. Chem. Phys., vol. 140, no. 20, p. 204110, May 2014.

Https://1_sim.gitlab.io/bigdft-doc/index.html.

N. /Dugan, L. Genovese, and S. Godecker, “A customized 3D GPU Poisson solver for free boundary conditions,”
Comp. Phys. Comp., vol. 184, p. 18151820, 2013.

J. de Joannis, A. Arnold, and C. Holm, “Electrostatics in Periodic Slab Geometries I1,” J. Chem. Phys., vol. 117, p.
2503, 2002.

Https://developer.nvidia.com/gpudirect.

M. Pippig, “PFFT - An Extension of FFTW to Massively Parallel Architectures,” SIAM Journal on Scientific Com-
puting, vol. 35, pp. C213-C236, 2013.

M. Pippig and D. Potts, “Parallel three-dimensional nonequispaced fast Fourier transforms and their application
to particle simulation,” SIAM Journal on Scientific Computing, vol. 35, pp. C411-C437, 2013.

D. Fincham, “Optimisation of the Ewald sum for large systems,” Molec. Sim., vol. 13, pp. 1-9, 1994.

H. G. Petersen, “Accuracy and efficiency of the particle mesh Ewald method,” J. Chem. Phys., vol. 103, pp. 3668—
3679, 1995.

M. Deserno and C. Holm, “How to mesh up Ewald sums. I. A theoretical and numerical comparison of various
particle mesh routines,” J. Chem. Phys., vol. 109, p. 7678, 1998.

——, “How to mesh up Ewald sums. II. An accurate error estimate for the P3M algorithm,” J. Chem. Phys., vol.
109, p. 7694, 1998.

D. Sharp, M. .Stoyanov, S. Tomov, and J. Dongarra, “A More Portable HeFFTe: Implementing a Fallback Algorithm
for Scalable Fourier Transforms,” in 2021 IEEE High Performance Extreme Computing Conference (HPEC), 2021.

Https://docs.nvidia.com/cuda/cufft/index.html.
Https:/ /www.fftw.org.
B. Dmitruk and P. Stpiczynski.

——, “Improving accuracy of summation using parallel vectorized Kahan’s and Gill-Moller algorithms,” Concur-
rency Computat. Pract. Exper., vol. 35, p. 7763, 2023.

R.Halver, C. Junghans, and G. Sutmann, “Kokkos-Based Implementation of MPCD on Heterogeneous Nodes,” in
Lecture Notes in Computer Science, vol. 13827, 2023, pp. 3-13.

——, “Using heterogeneous GPU nodes with a Cabana-based implementation of MPCD,” Parallel Computing,
vol. 117, p. 103033, 2023.

	Introduction
	Scalability
	Portability

	Performance Portability Considerations
	Software products for Portability

	Methods and Libraries for Electrostatics Computations
	ScaFaCoS
	Short and Long Range Interactions

	Steps to provide a performance portable electrostatic library
	Cooperation and Collaboration
	Outreach and Dissemination
	Conclusions

