
Report on shared software stack prototype

MultiXscale Deliverable 1.1
Deliverable Type: Report

Delivered in December, 2023

MultiXscale
EuroHPC Centre of Excellence for

Multiscale Modelling

Acknowledgement
Funded by the European Union. This work has received funding from the European High Performance Computing Joint
Undertaking (JU) under grant agreement No 101093169.
Disclaimer
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily

reflect those of the European Union or the European High Performance Computing Joint Undertaking (JU). Neither the European

Union nor the granting authority can be held responsible for them.

MultiXscale Deliverable 1.1 Page ii

Project and Deliverable Information
Project Title MultiXscale: EuroHPC Centre of Excellence for Multiscale Modelling
Project Ref. Grant Agreement 101093169

Project Website https://www.multixscale.eu
EuroHPC Project Officer Dr. Linda Gesenhues

Deliverable ID D1.1
Deliverable Nature Report

Dissemination Level Public
Contractual Date of Delivery Project Month 12 (31st December, 2023)

Actual Date of Delivery 28th December, 2023
Description of Deliverable Intermediate report on development of a stable, shared software stack.

Document Control Information

Document

Title: Report on shared software stack prototype
ID: D1.1
Version: As of December, 2023
Status: Accepted by Steering Committee
Available at: https://www.multixscale.eu/deliverables
Document history: Internal Project Management Link

Review Review Status: Reviewed

Authorship

Written by: Pedro Santos Neves (RUG)
Contributors: Bob Dröge (RUG)
Reviewed by: Caspar van Leeuwen (SURF)
Approved by: Alan O‘Cais (University of Barcelona)

Document Keywords
Keywords: MultiXscale, HPC, software , CI/CD

28th December, 2023
Disclaimer: This deliverable has been prepared by the responsible Work Package of the Project in accordance with the
Consortium Agreement and the Grant Agreement. It solely reflects the opinion of the parties to such agreements on a
collective basis in the context of the Project and to the extent foreseen in such agreements.

Copyright notices: This deliverable was co-ordinated by Pedro Santos Neves1(RUG) on behalf of the MultiXscale con-
sortium with contributions from Bob Dröge (RUG). This work is licensed under the Creative Commons Attribution 4.0
International License. To view a copy of this license, visit:
http://creativecommons.org/licenses/by/4.0

cb
1p.m.santos.neves@rug.nl

https://www.multixscale.eu
https://www.multixscale.eu/deliverables
https://github.com/multixscale/planning/issues/101
http://creativecommons.org/licenses/by/4.0
mailto:p.m.santos.neves@rug.nl

MultiXscale Deliverable 1.1 Page iii

Contents

Executive Summary 1

1 Introduction 2
1.1 Scope of the deliverable . 2
1.2 Target audience . 2
1.3 Report outline . 2

2 Passive Continuous Deployment 3
2.1 Overview and setup of CernVM-FS network . 3
2.2 Streaming scientific software to clients . 3
2.3 Availability on (Euro)HPC systems . 3

3 Supported software 5
3.1 Key MultiXscale Applications . 5
3.2 Other applications . 5
3.3 End-user experience . 5

4 Supported client systems 7
4.1 Operating Systems . 7
4.2 Hardware . 7

4.2.1 CPUs . 7
4.3 GPU support . 8
4.4 Interconnects . 8

5 Continuous Integration and Monitoring 9
5.1 Continuous Integration . 9
5.2 Monitoring . 9

6 Conclusion and outlook 10

Acknowledgements 11

References 11

List of Figures

1 Simplified schematic representation of a typical CernVM File System (CernVM-FS) setup. Icon source:
https://www.flaticon.com. 3

List of Tables

1 Key MultiXscale Applications . 5

https://www.flaticon.com/authors/smashicons

MultiXscale Deliverable 1.1 Page 1

Executive Summary

This report summarizes the progress and work carried out for the shared software stack prototype. This software stack
is implemented through the European Environment for Scientific Software Installations (EESSI) [1], a project focusing
on developing a shared scientific software stack, the design and capabilities of which will be elaborated on in this
report.

We begin, in Section 2, by addressing Continuous Deployment (CD) and describing the development and the imple-
mentation of the file system, which is responsible for distributing scientific software. Several milestones in the de-
velopment of the filesystem were achieved, beginning with the setup of a CernVM File System (CernVM-FS) software
distribution network, hosted and operational at the University of Groningen, with funding from the MultiXscale CoE
and additional server CernVM-FS instances which are hosted by Amazon Web Services (AWS) and Microsoft Azure.
These additional server instances provide redundancy and reliability for the system. In addition, the shared software
stack is now also included in EuroHPC systems Vega and Karolina and in a number of MultiXscale partner HPC sys-
tems. Furthermore, in collaboration with the developers from CERN, the deployment of the shared software stack is
made easier by including it in the default CernVM-FS configuration. Lastly, to ensure a low barrier of entry and ease
of use and maintenance by system administrators and end users, extensive documentation on accessing the shared
software stack is provided in the EESSI documentation portal2.

Section 3, titled Supported Software, focuses on the available scientific applications and their accessibility for users.
The key applications for MultiXscale (A Load-balancing Library (ALL), Extensible Simulation Package for Research on
Soft Matter Systems (ESPResSo), Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), Open Field
Operation And Manipulation (OpenFOAM), Widely Applicable Lattice Boltzmann solver from ERLAngen (waLBerla))
are now included in the shared software stack. Additionally, software relevant for other disciplines was also included
in order to widen the audience of potential users, which we believe is key for the project to be sustainable. The radio
astronomy community has shown interest in EESSI through the Square Kilometre Array (SKA) project and is currently
assessing the potential value of EESSI for their domain. In total, 139 unique applications are available, together with
690 unique extensions (for Perl, Python and R), and a total of 1709 builds.

We give an overview of the Supported client systems in Section 4, that is, how we ensure the shared software stack
works on a wide range of Linux distributions. This section also describes how the software installation used by the
end-user is optimized for the specific hardware in their system, and which CPU architectures are supported. Finally,
it describes our current level of GPU and interconnect support.

Lastly, we discuss Monitoring and Continuous Integration (CI) in Section 5 and provide an overview of how we aim to
ensure the quality of the shared software stack. Monitoring will be done for both the infrastructure as well as for the
applications that make up the shared software stack. Continuous Integration (CI) workflows, likewise, are employed at
two levels, the first when the infrastructure of the shared software stack is changed, and the second when new software
is shipped with the shared software stack. In addition, we have a GitHub Action that facilitates the use of the shared
software stack in CI of other software, including the key applications in MultiXscale.

2https://www.eessi.io/docs/

https://www.eessi.io/docs/
https://docs.github.com/en/actions

MultiXscale Deliverable 1.1 Page 2

1 Introduction

1.1 Scope of the deliverable

This deliverable aims to provide notes on the progress of the development of the shared software stack prototype and
its transition to a production-quality Technology Readiness Level (TRL). In addition, it lists currently implemented
features and software and gives an overview of current development and future plans.

1.2 Target audience

This report is aimed at High Performance Computing (HPC) system managers and administrators, scientific software
developers, junior and expert end-users who wish to use, deploy or extend the shared software stack.

1.3 Report outline

In Section 2 we outline the progress, design, and implementation details of the deployment of the shared software
stack through what we call passive CD, where the deployment of software at hosting sites is done automatically, with-
out any intervention of local site administrators.

In Section 3 we discuss the available software, both generally and in key applications specific to MultiXscale. We also
describe how an end user can easily start using the shared software stacks via a familiar interface.

Section 4 details the design and implementation of the measures which allow the shared software stack to be utilised
across a very broad spectrum of Linux distributions and the progress made in supporting additional technologies
such as Message Passing Interface (MPI), and preliminary NVIDIA CUDA GPU acceleration support. Additionally,
we describe in Subsection 4.2.1 which CPU types the software is available and optimised for (at the time of writing,
December 2023).

In Section 5 we describe how monitoring of the performance and health of the system is achieved currently, and what
work will be done in the future to extend the collected metrics and their visualisation. Furthermore, we lay out the
implementation of CI at the multiple levels of the shared software stack, and the potential these workflows have on
enhancing the capabilities of the shared software stack.

Lastly, in Section 6 we outline future developments and work planned for the shared software stack and we summarise
the progress achieved so far.

MultiXscale Deliverable 1.1 Page 3

2 Passive Continuous Deployment

The shared software stack is being made available using CernVM-FS, a filesystem developed by CERN specifically
for distributing software installations. CernVM-FS is highly optimized for this particular use case, and offers various
levels of caching and redundancy to further improve the performance and increase resilience against failure. Client
packages are available for, and can be easily installed on, many Linux distributions, which align well with the goal of
EESSI to make the shared software stack available to virtually any Linux user.

In addition, this filesystem provides the foundation for the passive continuous deployment that we aim to do with the
software stack: new software can be continuously added to the shared software stack on a centrally located server,
and after several minutes this new software will then automatically become visible and usable on all client systems.
No operation is required from the clients themselves.

2.1 Overview and setup of CernVM-FS network

Based on the experience within the EESSI project, a new network of CernVM-FS servers has been set up to provide
a production-ready infrastructure for this shared software stack. MultiXscale funding has been used to purchase a
physical server located at the University of Groningen. This server hosts the CernVM-FS stratum 0, which holds the
definitive copy of the software stack (see Fig. 1, dark green circle in the center). The stratum 0 server is tightly secured
with strict firewall rules and Yubikeys.

AWS and Azure clouds are being used to run stratum 1 servers (in Fig. 1 the light green circles over the circumference),
which mirror the stratum 0. These are the servers that end-user clients connect to to make the shared software stack
available on their system. An optional, but highly advisable final intermediate layer between the mirror servers and the
HPC cluster, made up of so called squid proxy servers provides lower latency and faster access to the hosted software
(Fig. 1, represented by the smaller light blue circles).

Clients will automatically connect to the closest mirror server. If one server would becomes unavailable, they auto-
matically switch over to the another option. In the near future, more of these mirror servers can and will be added, in
order to further increase the performance and redundancy.

Figure 1: Simplified schematic representation of a typical CernVM-FS setup. Icon source: https://www.flaticon.com.

2.2 Streaming scientific software to clients

Users of the shared software stack mount the filesystem on their Linux machine, which only involves installing a
CernVM-FS client package and an accompanying configuration package. This should make the new shared software
stack available on their system, accessible at /cvmfs/software.eessi.io. Note that this does not require down-
loading the full software stack to their system. Instead, the CernVM-FS client offers a view of the actual filesystem,
and the scientific applications themselves are being "streamed" to the client on-the-fly whenever they are being used.
Critically, only the files that are actually being accessed are downloaded by the client. This greatly reduces the amount
of data that has to be downloaded as compared to, for instance, containers.

2.3 Availability on (Euro)HPC systems

Through collaboration with the developers of CernVM-FS, the EESSI configuration has recently been added to the
default CernVM-FS client configuration. This means that the shared software stack provided by EESSI automatically

https://en.wikipedia.org/wiki/YubiKey
https://www.flaticon.com/authors/smashicons

MultiXscale Deliverable 1.1 Page 4

becomes available to nearly any system that already has the CernVM-FS client installed. More and more HPC clusters
are already providing this client, and this includes several European High Performance Computing Joint Undertaking
(EuroHPC) systems. For instance, the EESSI shared software stack is now already available on EuroHPC systems Vega
in Slovenia and Karolina in Czechia, and there is ongoing contact with other sites to discuss additional deployments
via the collaboration activities of the CASTIEL2 project. Additionally, several MultiXscale partners, such as SURF,
the University of Groningen and Ghent University, among others, have made the stack available to the users of their
system(s).

In order to provide users of the shared software stack with instructions on getting access to and using the stack, exten-
sive documentation is available at the EESSI documentation portal3. The landing page of the documentation provides
quick links based on the type of user:

• For end users, which focuses on initializing and using the shared software stack.

• For system administrators, which focuses on making the shared software stack available on their systems.

• For contributors, which explains how someone can add software to the shared software stack.

3https://www.eessi.io/docs/

https://www.eessi.io/docs/

MultiXscale Deliverable 1.1 Page 5

3 Supported software

Scientific software has become increasingly important and diversified in a large number of fields, with some appli-
cations becoming widely adopted standards and many others in a flux of development and adoption. Given the en-
vironment within which it is developed, a scientific software stack will typically be characterized by (mostly) open
source applications for which performance and optimisation are very important. Initial development efforts of EESSI
focus on this use case, while simultaneously providing advice on how the EESSI infrastructure can be leveraged and
adapted for alternative use cases (such as industrial use cases and licensed software)

Software is currently built and optimised for eight target CPU types (see Section 4.2.1), with plans to extend the target
list further, and using two recent compiler toolchain versions.

3.1 Key MultiXscale Applications

In addition to the broad scope of the shared software stack, Key MultiXscale Applications (hereafter: key applica-
tions) are available, supporting the work being carried out in Work Packages 2 through 4 in making these applications
exascale-ready and producing cutting-edge research.

Software Purpose Technologies
ALL Load balancing C++ header only library

ESPResSo Molecular simulations MPI, CUDA
LAMMPS Molecular simulations MPI, CUDA, Kokkos

OpenFOAM Computational fluid dynamics MPI
waLBerla Computational fluid dynamics MPI, CUDA, HIP

Table 1: Key MultiXscale Applications

3.2 Other applications

In addition to software directly required by the MultiXscale project, EESSI welcomes software contributions from
other communities. The adoption of the shared software stack by the scientific software community is considered
to be a very important aspect of the project which will contribute to its long term sustainability, which is reflected
in the design and planning of not only the shared software stack, but also in the support portal (see D5.2 report of
MultiXscale) and community contribution policy and GitHub App facilitating software contributions (see D5.1 report
of MultiXscale).

This approach is proving effective in engaging contributors and end-users. As an example of the early adoption of the
shared software stack by researchers at large, the radio astronomy community has been the first to request a scientific
software suite tailored to the SKA radio telescope. Included software ranges from compiler toolchains, which allow
users and HPC managers to compile their own custom applications, popular statistical and numerical programming
environments such as R. It also includes general-purpose programming languages such as Python, TensorFlow (an
AI and machine-learning platform), domain specific applications like GROMACS for molecular dynamics research.
This amounts to a total of 1709 builds, 139 software packages, and 690 extensions at the present, with the numbers
expected to increase as more applications are requested and newer versions of existing software are released.

3.3 End-user experience

Care was taken to make the initialisation and setup of the shared software stack as easy as possible for end-users, with
auto-detection of the optimized binaries that should be served (for more details, see Section 4.2.1). Given that the
distribution is guaranteed via CernVM-FS, this initialisation script can be easily sourced with:

source /cvmfs/software.eessi.io/versions/2023.06/init/bash

Applications are installed, managed and made available to HPC users through a module environment. Software instal-
lation and management is achieved via EasyBuild, a standardised software installation and management framework
for HPC systems. New software can be contributed by the community, making use of the GitHub App implemented in
Work Package (WP) 5 and described in the associated Deliverable D5.1. The software is then made available to users
via Lmod, a module system that facilitates and abstracts environment management from users with a command as
simple as:

module load Python/3.11.3-GCCcore-12.3.0

This ensures that the necessary compatible dependencies are loaded when the desired software – in this example,
Python v3.11.3 – are loaded.

https://cran.r-project.org/
https://www.tensorflow.org/
https://www.gromacs.org/
https://easybuild.io/
https://lmod.readthedocs.io/

MultiXscale Deliverable 1.1 Page 6

Environment modules, and Lmod in particular, are therefore the end-user interface of EESSI. Many existing users of
HPC systems are likely to be quite familiar with environment modules giving their ubiquity on HPC systems.

MultiXscale Deliverable 1.1 Page 7

4 Supported client systems

A key goal is to make the shared software stack work on a wide range of systems, irrespective of hardware and Linux
distribution. The following sections explain how that is achieved.

One of the main goals of the shared software stack is to make sure it works well on as many Linux compute resources
as possible, and it should not matter if this is a workstation, virtual machine, HPC cluster, or cloud infrastructure.
However, we also need to make the actual scientific applications work on all those different systems. This section
discusses how this has been achieved and what kind of hardware is and will be supported.

4.1 Operating Systems

For our software stack to work on an Operating System (OS), we require two things:

1. our distribution mechanism (CernVM-FS) needs to be supported on that OS.

2. our software stack needs to function correctly under that OS.

The first requirement means we need an OS that is supported by CernVM-FS. As discussed in Section 2, using the
CernVM-FS ensures that the shared software stack can be mounted on the many different Linux distributions that
support it, as discussed in Section 2.

The second requirement means we need some form of isolation from the host OS. Usually, software binaries depend
on certain system libraries, and they will no longer work if you try to use them on another system where these li-
braries do not exist or are incompatible. For instance, in terms of Linux distributions, software that was compiled for
a Debian distribution may no longer work if you try to use it on a RedHat distribution: operating system packages
providing the required system libraries may be missing or have a different version. This is why we build against our
own intermediate OS, this is conceptually similar to how a container provides an OS for isolation from the host but
with the critical difference that our approach avoids the need for a runtime environment. The intermediate OS must
be compatible with the architecture of the system it is running on. To ensure availability across a large number of
systems, we offer support for both x86_64 and aarch64 architectures, and will support riscv64 in the future. Lastly.
and since CernVM-FS distributes all its files under the prefix /cvmfs/<repo_name>/, we need an OS that can install
under a custom prefix. Gentoo Prefix is a Linux based OS that offers this essential feature, and is thus our Linux distri-
bution of choice. Through this system, which we will actively maintain, we ensure the shared software stack is widely
portable.

4.2 Hardware

4.2.1 CPUs

As mentioned in the previous subsection, the current prototype of the shared software stack supports both x86_64
and aarch64CPUs. However, for optimal performance, it is important that binaries are built for a specific microarchi-
tecture (e.g. AMD Zen 3, Intel Skylake, etc.). This is why the scientific software installations are done multiple times,
once for each specific microarchitecture. Currently, the prototype of the shared software stack provides optimized
installations for the following microarchitectures:

• x86_64

– generic

– Intel Haswell

– Intel Skylake (with AVX512)

– AMD Zen 2

– AMD Zen 3

• aarch64

– generic

– Neoverse N1

– Neoverse V1

By using a smart auto-detection mechanism, users of the software stack will automatically get access to binaries that
are optimized for their system’s CPU microarchitecture. If an optimized binary is not available for a given microar-
chitecture, e.g. because it is too new, auto-detection falls back to the newest architecture that is supported. As a last

https://wiki.gentoo.org/wiki/Project:Prefix

MultiXscale Deliverable 1.1 Page 8

resort, if a microarchitecture is completely unrecognized then the auto-detection mechanism will fall back to generi-
cally optimized binaries.

4.3 GPU support

The prototype of the shared software stack currently contains initial support for NVIDIA GPUs. While support for
NVIDIA GPUs is in a more mature stage, in future work we intend to assess the necessary steps to support AMD GPUs.
There are three key challenges when it comes to NVIDIA GPU support:

1. The Compute Unified Device Architecture (CUDA) Software Development Kit (SDK) does not allow redistribu-
tion of the full SDK, only runtime components can be redistributed.

2. The drivers on the host system need to be found by the software in the shared software stack.

3. Newer versions of the CUDA SDK only work when sufficiently recent drivers are present on the host. The com-
patibility range can be increased (within limits) by installing the CUDA Compatibility Libraries.

To overcome the first challenge, we install the full CUDA SDK in our build environment. This allows us to build
CUDA enabled software (e.g. ESPResSo, GROningen MAChine for Chemical Simulation (GROMACS) and TensorFlow).
However, we then ship only the part that the CUDA SDK license allows to be redistributed in the shared software stack.
This is enough to run CUDA enabled software (such as ESPResSo, GROMACS and TensorFlow), but not to build new
CUDA-enabled software. To enable end users to build CUDA-enabled software, system administrators of the host site
(i.e. the site offering the shared software stack on their system) can install a full CUDA SDK copy in a special directory
(which we refer to as the host_injections directory), that then seamlessly integrates with the shared software stack
(appearing to the end user as if the full copy was shipped as part of the stack).

To resolve the second challenge, the visibility of the GPU drivers, the host site needs to run a small script, which
also creates links in a specific location under the host_injections directory that point to the GPU drivers on the
host system. Software installed in the shared software stack will look for the drivers in the defined location under
host_injections directory, follow the links, and correctly pick up the ones from the host.

Finally, the third challenge is mitigated by checking the compatibility and printing a clear warning about whether
the host drivers can suppprt the required CUDA version. If the end-user loads a module that requires CUDA as a
dependency, the version of CUDA required is checked against the version compatible with the host driver. If that
combination is incompatible, instructions are printed to contact the sysadmin and request either a driver update, or
to consider installing compatibility libraries.

Since enabling GPU support requires some steps from system administrators from host site, these will be clearly de-
scribed in the GPU documentation.

4.4 Interconnects

The MPI installations that are included in the shared software stack have been compiled in such a way that they should
already support many different types of interconnects, e.g. Infiniband, Omnipath, and EFA. Site-specific tuning of MPI
can typically be done by the use of environment variables for the specific MPI implementation. However, some host
sites may still prefer their own MPI installations to be used, e.g. because they have a highly optimized MPI library from
the vendor of their HPC system.

To make this possible, we inject a small entry (known as an RPATH) in the header of any executable compiled with
MPI support in the shared software stack. This causes the executable to first look in (another) specific location in the
host_injections directory for an MPI library, before it falls back to using the MPI shipped with the shared software
stack. Thus, if a host site installs (or links) their own MPI installation in the host_injections directory, that gets
used preferentially.

Note that a requirement is that the MPI installation injected in this way is so-called ABI compatible [2] with the MPI
library used in the shared software stack.

The current support for interconnects already enables their use. Future work will focus on assessing their scalability
in site-specific contexts and ensuring that, in relevant applications, their use is beneficial in large compute node
contexts.

https://docs.nvidia.com/deploy/cuda-compatibility/index.html
https://www.eessi.io/docs/gpu/

MultiXscale Deliverable 1.1 Page 9

5 Continuous Integration and Monitoring

In order to ensure the availability, stability, and performance of the infrastructure and contents of the shared software
stack, several components are (planned to be) in place for monitoring and continuous integration.

5.1 Continuous Integration

Continuous Integration (CI) is implemented at many levels to make sure that any proposed changes in the compo-
nents of the software stack are being checked before they get merged into the software stack and made accessible to
end users. CI pipelines are also extensively used when new pull requests are opened by contributors or EESSI devel-
opers to add a new scientific application to the shared software stack.

Examples of features implemented through CI workflows:

• At the infrastructure level, new releases are built, tested and distributed through CI workflows.

• Software licenses of contributed applications are checked to confirm they match a valid and accepted Software
Package Data Exchange (SPDX) license.

• On new application contributions, count and identify which missing dependencies would need to be installed.

• Ensure that every newly contributed application has been built for all the supported CPU microarchitectures.

• Run the test suite, for which application specific tests can be created.

Because the shared software stack can be mounted and used on any Linux system, it can easily be used in CI workflows
(e.g. GitHub Actions or GitLab Runners) as well. Besides all the capabilities that this provides to EESSI developers, it
can be used by anyone else as well. For instance, scientific software developers can also use the shared software stack
in their software development life cycle by making use of all the scientific libraries and applications provided by the
software stack, allowing them to run various tests against different versions of dependencies of their software or using
different compiler toolchains.

To make this process even easier, EESSI provides an EESSI Github Action that will make the EESSI software stack
available in a GitHub Workflow. With just a single line of code this can be added to any existing GitHub Workflow,
immediately resulting in a complete and reproducible build environment for the project. Though GitLab does not
offer a similar kind of Marketplace, we will soon make documentation available that explains how developers can
achieve the same thing in a GitLab CI/CD pipeline.

5.2 Monitoring

Monitoring is and will be done at several levels: first, the health of the infrastructure itself is being monitored to make
sure that the servers hosting the shared software stack are available and in sync. Monitoring of disk space and the
information gathered via the tools available in AWS is already ongoing. In addition, a end-user facing status page4

allows users to quickly get information on the availability of the system infrastructure and which sends alerts to the
EESSI administrators in case issues are found. We intend to extend this with checks on the performance of the servers
by doing regular bandwidth checks to and between the different servers.

The contents of the shared software stack will also be monitored properly by leveraging the test suite described in De-
liverable D1.2. This will allow us to collect performance metrics of the scientific applications included in the software
stack for a range of HPC sites (and in particular targeting EuroHPC sites), and these will be used to provide a status
page of the stack on these sites. The page will also include an overview of all available applications.

4https://status.eessi-infra.org

https://github.com/marketplace/actions/eessi
https://status.eessi-infra.org

MultiXscale Deliverable 1.1 Page 10

6 Conclusion and outlook

In this report we outlined the progress that has been made so far in working towards a production-ready version of a
scientific software stack that can be used on virtually any Linux system.

New infrastructure has been set up for this new stack, and the required configuration files for clients are now part of
a common configuration package provided by CernVM-FS, which makes it extremely easy for potential users to start
using the stack on their systems. As soon as users install the CernVM-FS package on their system using a package
manager they will be given immediate get access to a large number of scientific applications, not only including the
Key MultiXscale Applications and their dependencies, but also lots of other popular software.

With the stack containing its own operating system base layer and providing optimized binaries for a whole range
of different CPUs, we already support lots of different types of client systems. Besides providing stable support for
x86_64 CPUs, we also support popular ARM CPUs that are, e.g., available in the commercial Azure and AWS clouds,
as well as in Deucalion, a recently inaugurated ARM based EuroHPC system. Even NVIDIA GPUs and different inter-
connects can already be used in conjunction with the software that is part of the stack.

Initial monitoring and continuous integration has been developed and set up to ensure the stability, reliability, and
performance of the stack itself and its software installations. The CI/CD capabilities of our software stack also provide
users and developers with unique possibilities to integrate the stack into their development workflows, unleashing
lots of possibilities for testing in reproducible environments.

In the upcoming months, given that initial support for ARM and NVIDIA GPUs has been achieved, we intend to acquire
experience with these systems by exploring and technical details and possibility of including additional software that
makes use of their capabilities. Also, we intend to study and identify the necessary steps to support further technolo-
gies, such as RISC-V CPU and AMD GPU support. In terms of software, we will be expanding the amount of scientific
software packages, and updating versions for already included packages. Most of this work can be automated and
user-triggered due to the work done in Work Package 5. The monitoring of the shared software stack will be extended
by setting up detailed monitoring pages that will collect information from the test suite developed in WP 1. Finally,
documentation will continuously be worked on as features in the shared software stack mature and/or new features
are added and improved.

MultiXscale Deliverable 1.1 Page 11

Acknowledgements

We are grateful to Amazon Web Services (AWS) and Microsoft Azure for generously sponsoring the EESSI project with
cloud credits, feedback, and guidance. We gratefully acknowledge the support provided by the CernVM-FS develop-
ment team in setup and configuration of the shared software stack’s CernVM-FS repository, and for including it in the
default CernVM-FS configuration for easy distribution. We thank the administrators of Vega at the Institute of Infor-
mation Science, Slovenia (www.izum.si) and Karolina at the IT4Innovations National Supercomputing Center at the
Technical University of Ostrava, Czechia (www.it4i.cz) for early deployment of the shared software stack.

References

Acronyms used

AWS Amazon Web Services
CD Continuous Deployment
CI Continuous Integration
CernVM-FS CernVM File System
EESSI European Environment for Scientific Software Installations
HPC High Performance Computing
WP Work Package
MPI Message Passing Interface
OS Operating System
SDK Software Development Kit
SKA Square Kilometre Array
SPDX Software Package Data Exchange
TRL Technology Readiness Level
HIP Heterogeneous-compute Interface for Portability
EuroHPC European High Performance Computing Joint Undertaking

Software mentioned

ALL A Load-balancing Library
ESPResSo Extensible Simulation Package for Research on Soft Matter Systems
CUDA Compute Unified Device Architecture
GROMACS GROningen MAChine for Chemical Simulation
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
OpenFOAM Open Field Operation And Manipulation
waLBerla Widely Applicable Lattice Boltzmann solver from ERLAngen

URLs referenced

Page ii
https://www.multixscale.eu . . . https://www.multixscale.eu
https://www.multixscale.eu/deliverables . . . https://www.multixscale.eu/deliverables
Internal Project Management Link . . . https://github.com/multixscale/planning/issues/101
p.m.santos.neves@rug.nl . . . mailto:p.m.santos.neves@rug.nl
http://creativecommons.org/licenses/by/4.0 . . . http://creativecommons.org/licenses/by/4.0

Page iii
https://www.flaticon.com . . . https://www.flaticon.com/authors/smashicons

Page 1
EESSI documentation portal . . . https://www.eessi.io/docs/
GitHub Action . . . https://docs.github.com/en/actions

Page 3
Yubikeys . . . https://en.wikipedia.org/wiki/YubiKey
https://www.flaticon.com . . . https://www.flaticon.com/authors/smashicons

Page 4
EESSI documentation portal . . . https://www.eessi.io/docs/

Page 5
R . . . https://cran.r-project.org/

https://www.izum.si/en/home/
https://www.it4i.cz/en/infrastructure/karolina
https://www.multixscale.eu
https://www.multixscale.eu/deliverables
https://github.com/multixscale/planning/issues/101
mailto:p.m.santos.neves@rug.nl
http://creativecommons.org/licenses/by/4.0
https://www.flaticon.com/authors/smashicons
https://www.eessi.io/docs/
https://docs.github.com/en/actions
https://en.wikipedia.org/wiki/YubiKey
https://www.flaticon.com/authors/smashicons
https://www.eessi.io/docs/
https://cran.r-project.org/

MultiXscale Deliverable 1.1 Page 12

TensorFlow . . . https://www.tensorflow.org/
GROMACS . . . https://www.gromacs.org/
EasyBuild . . . https://easybuild.io/
Lmod . . . https://lmod.readthedocs.io/

Page 7
Gentoo Prefix . . . https://wiki.gentoo.org/wiki/Project:Prefix

Page 8
CUDA Compatibility Libraries . . . https://docs.nvidia.com/deploy/cuda-compatibility/index.html
GPU documentation . . . https://www.eessi.io/docs/gpu/

Page 9
EESSI Github Action . . . https://github.com/marketplace/actions/eessi
end-user facing status page . . . https://status.eessi-infra.org

Page 11
www.izum.si . . . https://www.izum.si/en/home/
www.it4i.cz . . . https://www.it4i.cz/en/infrastructure/karolina

Citations

[1] B. Dröge, V. Holanda Rusu, K. Hoste, C. van Leeuwen, A. O’Cais, and T. Röblitz, “EESSI: A cross-platform
ready-to-use optimised scientific software stack,” Software: Practice and Experience, vol. 53, no. 1, pp. 176–210,
2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3075

[2] “Application binary interface,” https://en.wikipedia.org/wiki/Application_binary_interface, accessed: 2023-11-
30.

https://www.tensorflow.org/
https://www.gromacs.org/
https://easybuild.io/
https://lmod.readthedocs.io/
https://wiki.gentoo.org/wiki/Project:Prefix
https://docs.nvidia.com/deploy/cuda-compatibility/index.html
https://www.eessi.io/docs/gpu/
https://github.com/marketplace/actions/eessi
https://status.eessi-infra.org
https://www.izum.si/en/home/
https://www.it4i.cz/en/infrastructure/karolina
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3075
https://en.wikipedia.org/wiki/Application_binary_interface

	Executive Summary
	Introduction
	Scope of the deliverable
	Target audience
	Report outline

	Passive Continuous Deployment
	Overview and setup of CernVM-FS network
	Streaming scientific software to clients
	Availability on (Euro)HPC systems

	Supported software
	Key MultiXscale Applications
	Other applications
	End-user experience

	Supported client systems
	Operating Systems
	Hardware
	CPUs

	GPU support
	Interconnects

	Continuous Integration and Monitoring
	Continuous Integration
	Monitoring

	Conclusion and outlook
	Acknowledgements
	References

